植物生态学报 ›› 2014, Vol. 38 ›› Issue (9): 916-928.DOI: 10.3724/SP.J.1258.2014.00086
所属专题: 植物功能性状
吕美强1,朱志红1,*(),李英年2,姚天华1,潘石玉1,孔彬彬1
收稿日期:
2014-01-08
接受日期:
2014-07-14
出版日期:
2014-01-08
发布日期:
2014-09-22
通讯作者:
朱志红
基金资助:
LÜ Mei-Qiang1,ZHU Zhi-Hong1,*(),LI Ying-Nian2,YAO Tian-Hua1,PAN Shi-Yu1,KONG Bin-Bin1
Received:
2014-01-08
Accepted:
2014-07-14
Online:
2014-01-08
Published:
2014-09-22
Contact:
ZHU Zhi-Hong
摘要:
针对目前关于植物群落功能性状构建模式及其驱动因素存在的争议, 研究了33个物种10个功能性状的构建模式。研究结果显示: (1)在刈割-施肥复合梯度上, 这些功能性状主要表现为随机构建模式, 发生随机性和确定性构建的样方比例分别为82.7%和17.3%; (2)在10个功能性状中, 生长型、生活周期、单株地上干质量、叶面积和叶干质量5个功能性状为随机构建模式, 不受试验处理和群落特征(地上净初级生产力、刈割生物量损失、群落高度)变化的影响。植物倾斜度、繁殖方式、固氮性、株高和比叶面积5个功能性状的构建模式与试验处理或群落特征变化有关, 表现出趋同或趋异构建响应。其中, 植物倾斜度和比叶面积的构建模式仅受群落特征影响, 而固氮性、繁殖方式和株高3个性状的构建模式同时还受刈割或施肥处理的影响, 其构建模式因功能性状而异; (3)群落的生物量损失和地上净初级生产力是解释植物功能性状构建模式变化较理想的群落特征; (4)刈割和施肥处理对株高的构建模式具有相反效应, 而刈割和施肥的交互作用对其无显著影响。上述结果说明该研究群落植物功能性状的构建存在不同模式, 以随机构建模式为主, 确定性构建模式居次要地位。确定性构建模式与试验处理和群落特征变化有关, 而且是性状依赖的。相反选择力对趋同和趋异构建模式的平衡效应能引起功能性状发生随机构建。
吕美强,朱志红,李英年,姚天华,潘石玉,孔彬彬. 刈割与施肥干扰下高寒草甸植物功能性状的构建模式. 植物生态学报, 2014, 38(9): 916-928. DOI: 10.3724/SP.J.1258.2014.00086
LÜ Mei-Qiang,ZHU Zhi-Hong,LI Ying-Nian,YAO Tian-Hua,PAN Shi-Yu,KONG Bin-Bin. Assembly patterns of plant functional traits in alpine meadow under disturbances by mowing and fertilization. Chinese Journal of Plant Ecology, 2014, 38(9): 916-928. DOI: 10.3724/SP.J.1258.2014.00086
性状 Trait | FDvar | Mean p | NM | NL | Rq (%) | |
---|---|---|---|---|---|---|
植株性状 Plant trait | 生长型 Growth form | 0.250 | 0.635 | 2 | 2 | 96.3 |
植株倾斜度 Plant inclination | 0.262 | 0.388 | 17 | 1 | 84.3 | |
繁殖方式 Reproductive mode | 0.105 | 0.396 | 46 | 0 | 57.4 | |
生活周期 Life cycle | 0.006 | 0.321 | 1 | 16 | 84.2 | |
固氮性 Nitrogen fixation | 0.046 | 0.365 | 1 | 18 | 82.4 | |
株高 Plant height (cm) | 0.083 | 0.133 | 14 | 10 | 77.8 | |
单株地上干质量 Aboveground dry mass per plant (mg) | 0.541 | 0.362 | 18 | 2 | 81.5 | |
叶性状 Leaf trait | 叶面积 Leaf area (cm2) | 0.375 | 0.589 | 14 | 1 | 86.1 |
比叶面积 Specific leaf area (m2·kg-1) | 0.613 | 0.461 | 14 | 0 | 87.0 | |
叶干质量 Leaf dry mass (mg) | 0.537 | 0.368 | 10 | 1 | 89.8 |
表1 Mason功能多样性指数FDvar平均值及其与模拟FDvar期望值显著不同的平均概率值
Table 1 Mean value of Mason’s index of functional diversity FDvar for each trait and the mean probability that the value differs significantly from the calculated FDvar
性状 Trait | FDvar | Mean p | NM | NL | Rq (%) | |
---|---|---|---|---|---|---|
植株性状 Plant trait | 生长型 Growth form | 0.250 | 0.635 | 2 | 2 | 96.3 |
植株倾斜度 Plant inclination | 0.262 | 0.388 | 17 | 1 | 84.3 | |
繁殖方式 Reproductive mode | 0.105 | 0.396 | 46 | 0 | 57.4 | |
生活周期 Life cycle | 0.006 | 0.321 | 1 | 16 | 84.2 | |
固氮性 Nitrogen fixation | 0.046 | 0.365 | 1 | 18 | 82.4 | |
株高 Plant height (cm) | 0.083 | 0.133 | 14 | 10 | 77.8 | |
单株地上干质量 Aboveground dry mass per plant (mg) | 0.541 | 0.362 | 18 | 2 | 81.5 | |
叶性状 Leaf trait | 叶面积 Leaf area (cm2) | 0.375 | 0.589 | 14 | 1 | 86.1 |
比叶面积 Specific leaf area (m2·kg-1) | 0.613 | 0.461 | 14 | 0 | 87.0 | |
叶干质量 Leaf dry mass (mg) | 0.537 | 0.368 | 10 | 1 | 89.8 |
性状 Trait | 协变量 Covariates df = (1, 4) | 变异来源 Source of variance | |||
---|---|---|---|---|---|
主区 Whole plot | 副区 Subplot | ||||
C df = (2, 4) | F df = (1, 2) | C × F df = (2, 4) | |||
固氮性 Nitrogen fixation | D | 1.347 | 10.269* | 6.801 | |
繁殖方式 Reproductive mode | ANPP | 7.688* | 0.001 | 1.424 | |
固氮性 Nitrogen fixation | ANPP | 12.237* | 1.910 | 5.557 | |
株高 Plant height (cm) | ANPP | 0.879* | 9.382* | 0.474 |
表2 刈割和施肥影响高寒草甸植物功能多样性的协方差分析
Table 2 ANCOVA for the effects of mowing and fertilization on plant functional diversity in alpine meadow
性状 Trait | 协变量 Covariates df = (1, 4) | 变异来源 Source of variance | |||
---|---|---|---|---|---|
主区 Whole plot | 副区 Subplot | ||||
C df = (2, 4) | F df = (1, 2) | C × F df = (2, 4) | |||
固氮性 Nitrogen fixation | D | 1.347 | 10.269* | 6.801 | |
繁殖方式 Reproductive mode | ANPP | 7.688* | 0.001 | 1.424 | |
固氮性 Nitrogen fixation | ANPP | 12.237* | 1.910 | 5.557 | |
株高 Plant height (cm) | ANPP | 0.879* | 9.382* | 0.474 |
性状 Trait | 协变量 Covariate | 刈割处理 Mowing treatment | 施肥处理 Fertilization treatment | ||||
---|---|---|---|---|---|---|---|
不刈割 Un-mowed | 中度刈割 Moderate mowing | 重度刈割 Heavy mowing | 不施肥 Unfertilized | 施肥 Fertilized | |||
固氮性 Nitrogen fixation | D | 0.038 ± 0.017a | 0.065 ± 0.007a | 0.065 ± 0.005a | 0.073 ± 0.006b | 0.039 ± 0.011a | |
繁殖方式 Reproductive modes | ANPP | 0.056 ± 0.020a | 0.099 ± 0.016b | 0.116 ± 0.013b | 0.090 ± 0.026a | 0.090 ± 0.018a | |
固氮性 Nitrogen fixation | ANPP | 0.003 ± 0.013a | 0.043 ± 0.010b | 0.046 ± 0.009b | 0.046 ± 0.017a | 0.015 ± 0.012a | |
株高 Plant height (cm) | ANPP | 0.065 ± 0.022b | 0.017 ± 0.017a | 0.048 ± 0.014ab | -0.012 ± 0.028a | 0.098 ± 0.019b |
表3 刈割和施肥对高寒草甸植物功能多样性影响的方差分析和多重比较(平均值±标准误差)
Table 3 ANOVA for the effects of mowing and fertilization on plant functional diversity and the multiple comparison test of means among different levels within mowing or fertilization treatments in alpine meadow (mean ± SE)
性状 Trait | 协变量 Covariate | 刈割处理 Mowing treatment | 施肥处理 Fertilization treatment | ||||
---|---|---|---|---|---|---|---|
不刈割 Un-mowed | 中度刈割 Moderate mowing | 重度刈割 Heavy mowing | 不施肥 Unfertilized | 施肥 Fertilized | |||
固氮性 Nitrogen fixation | D | 0.038 ± 0.017a | 0.065 ± 0.007a | 0.065 ± 0.005a | 0.073 ± 0.006b | 0.039 ± 0.011a | |
繁殖方式 Reproductive modes | ANPP | 0.056 ± 0.020a | 0.099 ± 0.016b | 0.116 ± 0.013b | 0.090 ± 0.026a | 0.090 ± 0.018a | |
固氮性 Nitrogen fixation | ANPP | 0.003 ± 0.013a | 0.043 ± 0.010b | 0.046 ± 0.009b | 0.046 ± 0.017a | 0.015 ± 0.012a | |
株高 Plant height (cm) | ANPP | 0.065 ± 0.022b | 0.017 ± 0.017a | 0.048 ± 0.014ab | -0.012 ± 0.028a | 0.098 ± 0.019b |
性状 Trait | 最优模型变量 Variables in best-fit model | 置信比 Confidence ratio |
---|---|---|
植株性状 Plant trait | ||
生长型 Growth form | ﹢VegHt | 1.12 |
植株倾斜度 Plant inclination | ﹢ANPP﹣BioL | 321 258.06 |
繁殖方式 Reproductive modes | ﹣VegHt | 1 933 804.76 |
生活周期 Life cycle | Intercept | 1.00 |
固氮性 Nitrogen fixation | ﹣ANPP﹢BioL | 18 769.72 |
株高 Plant height (cm) | ﹣BioL | 1 373.34 |
单株地上干质量 Aboveground dry mass per plant (mg) | ﹢ANPP | 1.42 |
叶性状 Leaf trait | ||
叶面积 Leaf area (cm2) | ﹣BioL | 1.36 |
比叶面积 Specific leaf area (m2·kg-1) | ﹣BioL | 275.34 |
叶干质量 Leaf dry mass (mg) | ﹢ANPP | 2.39 |
表4 10个功能性状的Mason功能多样性指数FDvar值与群落特征参数间的最优回归模型
Table 4 Best-fit models of regressions of the Mason’s index of functional diversity FDvar of 10 functional traits with community characteristics
性状 Trait | 最优模型变量 Variables in best-fit model | 置信比 Confidence ratio |
---|---|---|
植株性状 Plant trait | ||
生长型 Growth form | ﹢VegHt | 1.12 |
植株倾斜度 Plant inclination | ﹢ANPP﹣BioL | 321 258.06 |
繁殖方式 Reproductive modes | ﹣VegHt | 1 933 804.76 |
生活周期 Life cycle | Intercept | 1.00 |
固氮性 Nitrogen fixation | ﹣ANPP﹢BioL | 18 769.72 |
株高 Plant height (cm) | ﹣BioL | 1 373.34 |
单株地上干质量 Aboveground dry mass per plant (mg) | ﹢ANPP | 1.42 |
叶性状 Leaf trait | ||
叶面积 Leaf area (cm2) | ﹣BioL | 1.36 |
比叶面积 Specific leaf area (m2·kg-1) | ﹣BioL | 275.34 |
叶干质量 Leaf dry mass (mg) | ﹢ANPP | 2.39 |
[1] |
Aiba M, Katabuchi M, Takafumi H, Matsuzaki SIS, Sasaki T, Hiura T (2013). Robustness of trait distribution metrics for community assembly studies under the uncertainties of assembly processes. Ecology, 94, 2873-2885.
DOI URL |
[2] | Beisner BE, Haydon DT, Cuddington K (2003). Alternative stable states in ecology. Frontiers in Ecology and the Environment, 1, 376-382. |
[3] | Bersier LF, Sugihara G (1997). Species abundance patterns: the problem of testing stochastic models. Journal of Animal Ecology, 66, 769-774. |
[4] | Burnham KP, Anderson DR (2002). Model Selection and Multi-model Inference: a Practical Information-Theoretic Approach. 2nd edn. Springer, New York. |
[5] | Cingolani AM, Cabido M, Gurvich DE, Renison D, Díaz S (2007). Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits? Journal of Vegetation Science, 18, 911-920. |
[6] | Cleland EE, Clark CM, Collins SL, Fargione JE, Gough L, Gross KL, Pennings SC, Suding KN (2011). Patterns of trait convergence and divergence among native and exotic species in herbaceous plant communities are not modified by nitrogen enrichment. Journal of Ecology, 99, 1327-1338. |
[7] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, van der Heijden MGA, Pansas JG, Poorter H (2003). A handbook of protocols for standardised and easy measure- ment of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[8] | Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126. |
[9] | de Bello F, Lepš J, Sebastià MT (2006). Variations in species and functional plant diversity along climatic and grazing gradients. Ecography, 29, 801-810. |
[10] | de Bello F, Thuiller W, Lepš J, Choler P, Clément JC, Macek P, Sebastià MT, Lavorel S (2009). Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science, 20, 475-486. |
[11] | Diamond JM (1975). Assembly of species communities. In: Cody ML, Diamond JM eds. Ecology and Evolution of Communities. Harvard University Press, Cambridge, USA. 342-444. |
[12] | Díaz S, Cabido M (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646-655. |
[13] | Du XG, Zhou SR (2008). Testing the neutral theory of plant communities in subalpine meadow. Journal of Plant Ecology (Chinese Version), 32, 347-354. (in Chinese with English abstract) |
[ 杜晓光, 周淑荣 (2008). 亚高寒草甸植物群落的中性理论验证. 植物生态学报, 32, 347-354.] | |
[14] | Fukami T, Bezemer TM, Mortimer SR, van der Putten WH (2005). Species divergence and trait convergence in experimental plant community assembly. Ecology Letters, 8, 1283-1290. |
[15] | Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637. |
[16] | Gotelli NJ, McCabe DJ (2002). Species co-occurrence: a meta-analysis of J. M. diamond’s assembly rules model. Ecology, 83, 2091-2096. |
[17] |
Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš J, Lindberg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012). Ecological assembly rules in plant communities— approaches, patterns and prospects. Biological Reviews, 87, 111-127.
URL PMID |
[18] | Grime JP (2006). Trait convergence and trait divergence in herbaceous plant communities: mechanisms and conseq- uences. Journal of Vegetation Science, 17, 255-260. |
[19] | Grman E, Suding KN (2010). Within-year soil legacies contribute to strong priority effects of exotics on native California grassland communities. Restoration Ecology, 18, 664-670. |
[20] | Helsen K, Hermy M, Honnay O (2012). Trait but not species convergence during plant community assembly in restored semi-natural grasslands. Oikos, 121, 2121-2130. |
[21] |
Hillebrand H, Bennett DM, Cadotte MW (2008). Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology, 89, 1510-1520.
URL PMID |
[22] |
Hillebrand H, Matthiessen B (2009). Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters, 12, 1405-1419.
URL PMID |
[23] | Hubbell SP (2001). The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Vol. 32). Princeton University Press, Princeton, USA. |
[24] | Inouye RS, Tilman D (1995). Convergence and divergence of old-field vegetation after 11 yr of nitrogen addition. Ecology, 76, 1872-1887. |
[25] | Kraft NJB, Ackerly DD (2010). Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 80, 401-422. |
[26] |
Kraft NJB, Crutsinger GM, Forrestel EJ, Emery NC (2014). Functional trait differences and the outcome of community assembly: an experimental test with vernal pool annual plants. Oikos, doi: 10.1111/oik.01311.
DOI URL PMID |
[27] | Kühner A, Kleyer M (2008). A parsimonious combination of functional traits predicting plant response to disturbance and soil fertility. Journal of Vegetation Science, 19, 681-692. |
[28] | Lepš J, de Bello F, Lavorel S, Berman S (2006). Quantifying and interpreting functional diversity of natural comm.- unities: practical considerations matter. Preslia, 78, 481-501. |
[29] | Li YN, Wang QX, Gu S, Fu YL, Du MY, Zhao L, Zhao XQ, Yu GR (2004). Integrated monitoring of alpine vegetation types and its primary production. Acta Geographica Sinica, 59, 40-48. (in Chinese with English abstract) |
[ 李英年, 王勤学, 古松, 伏玉玲, 杜明远, 赵亮, 赵新全, 于贵瑞 (2004). 高寒植被类型及其植物生产力的监测. 地理学报, 59, 40-48.] | |
[30] | MacArthur R, Levins R (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385. |
[31] | Mason NWH, MacGillivray K, Steel JB, Wilson JB (2003). An index of functional diversity. Journal of Vegetation Science, 14, 571-578. |
[32] |
McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185.
DOI URL PMID |
[33] | Niu KC, Liu YN, Shen ZH, He FL, Fang JY (2009). Community assembly: the relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. (in Chinese with English abstract) |
[ 牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009). 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.] | |
[34] | Pakeman RJ (2004). Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. Journal of Ecology, 92, 893-905. |
[35] |
Pakeman RJ, Lennon JJ, Brooker RW (2011). Trait assembly in plant assemblages and its modulation by productivity and disturbance. Oecologia, 167, 209-218.
URL PMID |
[36] |
Perry LG, Neuhauser C, Galatowitsch SM (2003). Founder control and coexistence in a simple model of asymmetric competition for light. Journal of Theoretical Biology, 222, 425-436.
DOI URL PMID |
[37] | Pillar VD, Duarte LDS, Sosinski EE, Joner F (2009). Discri- minating trait-convergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science, 20, 334-348. |
[38] | Qiao AH, Han JG, Gong AQ, Li W, Wang YW, Qing GJ, Guo SD, Wu JM, Zhao DZ (2006). Effect of nitrogen fertilizer application on Elymus nutans seed quality and yield in Qinghai-Tibet Plateau. Acta Agrestia Sinica, 14, 48-51, 56. (in Chinese with English abstract) |
[ 乔安海, 韩建国, 巩爱岐, 李伟, 王赟文, 秦歌菊, 郭树栋, 吴精明, 赵殿智 (2006). 氮肥对垂穗披碱草种子产量和质量的影响. 草地学报, 14, 48-51, 56.] | |
[39] |
Sasaki T, Okubo S, Okayasu T, Jamsran U, Ohkuro T, Takeuchi K (2009). Two-phase functional redundancy in plant communities along a grazing gradient in Mongolian rangelands. Ecology, 90, 2598-2608.
DOI URL PMID |
[40] | Schamp BS, Aarssen LW (2009). The assembly of forest communities according to maximum species height along resource and disturbance gradients. Oikos, 118, 564-572. |
[41] | Sonnier G, Shipley B, Navas ML (2010). Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities. Journal of Vegetation Science, 21, 1014-1024. |
[42] | Stubbs WJ, Wilson JB (2004). Evidence for limiting similarity in a sand dune community. Journal of Ecology, 92, 557-567. |
[43] |
Swenson NG, Enquist BJ (2007). Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. American Journal of Botany, 94, 451-459.
URL PMID |
[44] |
Swenson NG, Enquist BJ (2009). Opposing assembly mechanisms in a Neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology, 90, 2161-2170.
DOI URL PMID |
[45] | Thompson K, Petchey OL, Askew AP, Dunnett NP, Beckerman AP, Willis AJ (2010). Little evidence for limiting similarity in a long-term study of a roadside plant community. Journal of Ecology, 98, 480-487. |
[46] | Walker B, Kinzig A, Langridge J (1999). Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems, 2, 95-113. |
[47] | Wang HD, Zhang LL, Zhu ZH (2013). Effects of clipping and fertilizing on the relationships between species diversity and ecosystem functioning and mechanisms of community stability in alpine meadow. Chinese Journal of Plant Ecology, 37, 279-295. (in Chinese with English abstract) |
[ 王海东, 张璐璐, 朱志红 (2013). 刈割、施肥对高寒草甸物种多样性与生态系统功能关系的影响及群落稳定性机制. 植物生态学报, 37, 279-295.] | |
[48] | Weiher E, Keddy PA (1995). Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos, 74, 159-164. |
[49] | Weiher E, Clarke GDP, Keddy PA (1998). Community ass- embly rules, morphological dispersion, and the coexis- tence of plant species. Oikos, 81, 309-322. |
[50] | Wilson JB (2007). Trait-divergence assembly rules have been demonstrated: limiting similarity lives! a reply to grime. Journal of Vegetation Science, 18, 451-452. |
[51] |
Yamaoka K, Nakagawa T, Uno T (1978). Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. Journal of Pharmacokinetics and Biopharmaceutics, 6, 165-175.
DOI URL PMID |
[52] | Yang FT (1982). Natural geography survey of Haibei Alpine Meadow Ecosystem Research Station in Qinghai,. In: Xia WP ed. Alpine Meadow Ecosystem. Facs.1. Gansu People’s Publishing House, Lanzhou. 1-7. (in Chinese) |
[ 杨福囤 (1982). 青海高寒草甸生态系统定位站的自然地理概况. 见: 夏武平主编. 高寒草甸生态系统. 第1集. 甘肃人民出版社, 兰州. 1-7.] | |
[53] | Yang ZL, van Ruijven J, Du GZ (2011). The effects of long- term fertilization on the temporal stability of alpine meadow communities. Plant and Soil, 345, 315-324. |
[54] | Young TP, Chase JM, Huddleston RT (2001). Community succession and assembly comparing, contrasting and com- bining paradigms in the context of ecological restoration. Ecological Restoration, 19, 5-18. |
[55] | Zhao XQ (2009). Global Change and Ecological System in Alpine Meadow. Science Press, Beijing. (in Chinese) |
[ 赵新全 (2009). 高寒草甸生态系统与全球变化. 科学出版社, 北京.] | |
[56] | Zhou XS, Zhu ZH, Li YN, Yuan FR, Fan RJ (2011). Community compensatory mechanism under clipping, fertilizing and watering treatment in alpine meadow. Journal of Lanzhou University (Natural Science), 47(3), 50-57. (in Chinese with English abstract) |
[ 周晓松, 朱志红, 李英年, 袁芙蓉, 樊瑞俭 (2011). 刈割、施肥和浇水处理下高寒矮嵩草草甸补偿机制. 兰州大学学报(自然科学版), 47(3), 50-57.] | |
[57] | Zhu ZH, Wang G, Zhao SL (1994). Aboveground biomass dynamics of clonal ramet population of Kobresia humilis in alpine meadow under different stocking intensities. Grassland of China, (3), 10-14. (in Chinese with English abstract) |
[ 朱志红, 王刚, 赵松岭 (1994). 不同放牧强度下高寒草甸矮嵩草(Kobresia humilis)无性系分株种群的地上生物量动态. 中国草地, (3), 10-14.] | |
[58] | Zhu ZH, Wang G (1996). An approach to analyzing nature of community structure: with examples of alpine meadow and alpine brushland. Acta Phytoecologica Sinica, 20, 184-192. (in Chinese with English abstract) |
[ 朱志红, 王刚 (1996). 群落结构特性的分析方法探讨——以高寒草甸和高寒灌丛为例. 植物生态学报, 20, 184-192.] | |
[59] |
Zhu ZH, Wang XA, Li YN, Wang G, Guo H (2012). Predicting plant traits and functional types response to grazing in an alpine shrub meadow on the Qinghai-Tibet Plateau. Science China Earth Sciences, 55, 837-851.
DOI URL |
[1] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[2] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[3] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[4] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[5] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[6] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[7] | 赵晏平, 王忠武, 温都日根, 赵玉金, 白永飞. 基于Sentinel-2数据的草地植物功能多样性遥感反演及其与生产力的关系[J]. 植物生态学报, 2022, 46(10): 1234-1250. |
[8] | 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响[J]. 植物生态学报, 2020, 44(1): 33-43. |
[9] | 王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. 长期氮添加对典型草原植物多样性与初级生产力的影响及途径[J]. 植物生态学报, 2020, 44(1): 22-32. |
[10] | 许金石,柴永福,刘晓,岳明,郭垚鑫,康慕谊,刘全儒,郑成洋,吉成均,闫明,张峰,高贤明,王仁卿,石福臣,张钦弟,王茂. 华北区域环境梯度上阔叶林构建模式及分布成因[J]. 植物生态学报, 2019, 43(9): 732-741. |
[11] | 柴永福, 许金石, 刘鸿雁, 刘全儒, 郑成洋, 康慕谊, 梁存柱, 王仁卿, 高贤明, 张峰, 福臣, 刘晓, 岳明. 华北地区主要灌丛群落物种组成及系统发育结构特征[J]. 植物生态学报, 2019, 43(9): 793-805. |
[12] | 施晶晶,赵鸣飞,王宇航,薛峰,康慕谊,江源. 黄土高原腹地人工林下草本层群落构建机制[J]. 植物生态学报, 2019, 43(9): 834-842. |
[13] | 唐丽丽, 张梅, 赵香林, 康慕谊, 刘鸿雁, 高贤明, 杨彤, 郑璞帆, 石福臣. 华北地区胡桃楸林分布规律及群落构建机制分析[J]. 植物生态学报, 2019, 43(9): 753-761. |
[14] | 秦浩, 张殷波, 董刚, 张峰. 山西关帝山森林群落物种、谱系和功能多样性海拔格局[J]. 植物生态学报, 2019, 43(9): 762-773. |
[15] | 郝姝珺, 李晓宇, 侯嫚嫚, 赵秀海. 长白山温带森林不同演替阶段群落功能性状的空间变化[J]. 植物生态学报, 2019, 43(3): 208-216. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 4641
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1443
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La