植物生态学报 ›› 2011, Vol. 35 ›› Issue (4): 411-421.DOI: 10.3724/SP.J.1258.2011.00411
收稿日期:
2010-11-12
接受日期:
2011-01-04
出版日期:
2011-11-12
发布日期:
2011-04-13
通讯作者:
王彦辉
作者简介:
*E-mail: wangyh@mail.forestry.ac.cn
SUN Lin, XIONG Wei, GUAN Wei, WANG Yan-Hui*(), XU Li-Hong
Received:
2010-11-12
Accepted:
2011-01-04
Online:
2011-11-12
Published:
2011-04-13
Contact:
WANG Yan-Hui
摘要:
树体储水在树木水分传输中具有重要的作用, 不仅为蒸腾提供水分来源, 还具有缓冲作用, 可防止木质部导管水势过低以至于水分传输的失败。树体储水动态及其利用的研究对于认识树木对水分胁迫的响应机制具有重要意义。该研究构建了包含树体储水释放-补充作用的树干水分传输模型, 可模拟计算林分小时尺度的冠层蒸腾、边材液流、树体储水与木质部导管水流交换过程, 并以六盘山北侧的华北落叶松(Larix principis-rupprechtii)人工林为例, 在林分水平分析树体储水利用及其与土壤水分和潜在蒸散之间的关系。检验结果表明, 该模型能够精确地模拟出林分边材液流的日变化特征, 模拟与观测的小时液流速率决定系数R2为0.91 (n = 2 352)。模拟结果表明, 在典型晴朗天气下, 在日出时树体储水利用启动, 至9:00左右达到峰值(0.14 mm·h-1), 午间降至0, 下午降为负值直至午夜, 即进入树体补水阶段; 树体储水日使用量(DJz)为0.04-0.58 mm·d-1, 与日蒸腾量(DTr)成正相关(R2 = 0.91), 对蒸腾的贡献为25.6%。分析结果表明, 当潜在蒸散(ETp)低于4.9 mm·d-1时, ETp是华北落叶松树体储水利用的主要驱动因子, DJz与ETp成正相关(R2 = 0.68); 当ETp高于4.9 mm·d-1时, DJz随着ETp的增加呈现降低趋势; DJz与土壤水势没有显著相关关系(p > 0.05), 但最大树体储水日使用量(DJzmax)与土壤水分含量成正相关(R2= 0.79), 说明土壤水分是树体储水利用的限制因子。
孙林, 熊伟, 管伟, 王彦辉, 徐丽宏. 华北落叶松树体储水利用及其对土壤水分和潜在蒸散的响应: 基于模型模拟的分析. 植物生态学报, 2011, 35(4): 411-421. DOI: 10.3724/SP.J.1258.2011.00411
SUN Lin, XIONG Wei, GUAN Wei, WANG Yan-Hui, XU Li-Hong. Use of storage water in Larix principis-ruprechtii and its response to soil water content and potential evapotranspiration: a modeling analysis. Chinese Journal of Plant Ecology, 2011, 35(4): 411-421. DOI: 10.3724/SP.J.1258.2011.00411
图1 树干水分输运示意图(参考Lhommea et al., 2001)。ψl, 叶水势; ψs, 土壤水势; ψx, 木质部导管水势; ψz, 木质部存水部水势; C, 水容; hsx, 根区土壤-木质部导管高差(m); Js, 木质部导管液流; Jz, 木质部导管与储水组织水分交换; rsx, 土壤-树干木质部导管阻力; rxl, 树干木质部导管-叶-大气阻力; rzx, 树体储水组织-树干木质部导管阻力; Tr, 蒸腾速率。
Fig. 1 Schematic diagram of water transfer within the tree stem (refer to Lhommea et al., 2001). ψl, leaf water potential; ψs, soil water potential conduct; ψx, xylem vessels water potential; ψz, xylem plant-reservoir water potential; C, hydraulic capacitance; hsx, the height of root to xylem vessels (m); Js, xylem conduct water flow; Jz, water exchange between the xylem vessels and the storage compartment; rsx, soil-xylem hydraulic resistance; rxl, xylem-leaf-air hydraulic resistance; rzx, storage hydraulic resistance; Tr, transpiration rate.
样树编号 Sample tree number | 胸径 DBH (cm) | 树高 Tree height (m) | 探头高度 Probe position (m) | 探头位置树径 Diameter at probe position (cm) | 边材面积 Sapwood area (cm2) | 冠幅面积 Canopy area (m2) |
---|---|---|---|---|---|---|
4 | 13.1 | 9.9 | 1.5 | 13.1 | 78.54 | 16.33 |
17 | 11.2 | 7.1 | 2.0 | 10.0 | 50.84 | 10.25 |
18 | 6.4 | 11.1 | 2.0 | 5.7 | 19.85 | 6.31 |
25 | 8.5 | 7.9 | 1.5 | 8.5 | 38.42 | 6.31 |
40 | 9.1 | 8.4 | 1.5 | 9.1 | 43.01 | 6.87 |
51 | 10.2 | 8.6 | 1.5 | 10.2 | 51.93 | 7.94 |
55 | 10.8 | 7.9 | 1.5 | 10.8 | 57.08 | 8.53 |
65 | 13.0 | 8.1 | 1.5 | 13.0 | 77.55 | 10.77 |
表1 观测华北落叶松样木信息
Table 1 Information of the sample trees in Larix principis-rupprechtii stand
样树编号 Sample tree number | 胸径 DBH (cm) | 树高 Tree height (m) | 探头高度 Probe position (m) | 探头位置树径 Diameter at probe position (cm) | 边材面积 Sapwood area (cm2) | 冠幅面积 Canopy area (m2) |
---|---|---|---|---|---|---|
4 | 13.1 | 9.9 | 1.5 | 13.1 | 78.54 | 16.33 |
17 | 11.2 | 7.1 | 2.0 | 10.0 | 50.84 | 10.25 |
18 | 6.4 | 11.1 | 2.0 | 5.7 | 19.85 | 6.31 |
25 | 8.5 | 7.9 | 1.5 | 8.5 | 38.42 | 6.31 |
40 | 9.1 | 8.4 | 1.5 | 9.1 | 43.01 | 6.87 |
51 | 10.2 | 8.6 | 1.5 | 10.2 | 51.93 | 7.94 |
55 | 10.8 | 7.9 | 1.5 | 10.8 | 57.08 | 8.53 |
65 | 13.0 | 8.1 | 1.5 | 13.0 | 77.55 | 10.77 |
参数 Parameter | 定义 Definition | 数值 Value | 单位 Unit | 来源 Source |
---|---|---|---|---|
LAI | 叶面积指数 Leaf area index | 3.78 | m2?m-2 | 观测 Observed |
ρs | 林分边材密度 Stand sapwood density | 15.63 | cm2?m-2 | 观测 Observed |
gsmax | 最大叶片气孔导度 Maximum leaf stomatal conductance | 36.42 | mm?s-1 | 拟合 Fitted |
kIP | 气孔导度光辐射驱动系数 Parameter of stomatal conductance drove by PAR | 5.36 | 拟合 Fitted | |
kDs | 气孔导度水汽驱动系数 Parameter of stomatal conductance drive by Dvp | 6.22 | 拟合 Fitted | |
ψhx | 半气孔导度木质部水势 Xylem water potential at half gsmax | -0.70 | MPa | 拟合Fitted |
kψx | 气孔导度木质部水势系数 Parameter of stomatal conductance limit by xylem water potential | -5.04 | 拟合 Fitted | |
C | 林分树体水容 Stand tree hydraulic capacitance | 0.80 | kg?m-2?MPa-1 | 率定 Calibrated |
rsx | 土壤-木质部导管阻力 Hydraulic resistance of soil to xylem vessels | 2.80 | MPa?cm-2?min-1?g -1 | 观测 Observed |
rzx | 树体储水组织-木质部导管阻力 Hydraulic resistance between xylem vessels to the organism of tree water storage | 0.85 | MPa?cm-2?min-1?g -1 | 率定 Calibrated |
rxl | 木质部导管-叶阻力 Hydraulic resistance of xylem vessels to leaf | 2.80 | MPa?cm-2?min-1?g -1 | 率定 Calibrated |
wzmax | 树体最大储水 Maximum storage water | 20.00 | kg?m-2 | 率定 Calibrated |
表2 冠层导度模型参数
Table 2 Parameters of canopy conductance model
参数 Parameter | 定义 Definition | 数值 Value | 单位 Unit | 来源 Source |
---|---|---|---|---|
LAI | 叶面积指数 Leaf area index | 3.78 | m2?m-2 | 观测 Observed |
ρs | 林分边材密度 Stand sapwood density | 15.63 | cm2?m-2 | 观测 Observed |
gsmax | 最大叶片气孔导度 Maximum leaf stomatal conductance | 36.42 | mm?s-1 | 拟合 Fitted |
kIP | 气孔导度光辐射驱动系数 Parameter of stomatal conductance drove by PAR | 5.36 | 拟合 Fitted | |
kDs | 气孔导度水汽驱动系数 Parameter of stomatal conductance drive by Dvp | 6.22 | 拟合 Fitted | |
ψhx | 半气孔导度木质部水势 Xylem water potential at half gsmax | -0.70 | MPa | 拟合Fitted |
kψx | 气孔导度木质部水势系数 Parameter of stomatal conductance limit by xylem water potential | -5.04 | 拟合 Fitted | |
C | 林分树体水容 Stand tree hydraulic capacitance | 0.80 | kg?m-2?MPa-1 | 率定 Calibrated |
rsx | 土壤-木质部导管阻力 Hydraulic resistance of soil to xylem vessels | 2.80 | MPa?cm-2?min-1?g -1 | 观测 Observed |
rzx | 树体储水组织-木质部导管阻力 Hydraulic resistance between xylem vessels to the organism of tree water storage | 0.85 | MPa?cm-2?min-1?g -1 | 率定 Calibrated |
rxl | 木质部导管-叶阻力 Hydraulic resistance of xylem vessels to leaf | 2.80 | MPa?cm-2?min-1?g -1 | 率定 Calibrated |
wzmax | 树体最大储水 Maximum storage water | 20.00 | kg?m-2 | 率定 Calibrated |
图2 模拟与观测林分液流速率(A)和日液流量(B)检验(2005-07-01-2005-09-15)。
Fig. 2 Measured and modeled stand sap flow velocity (A), and daily water flux (B) form July 1 to Sept. 15, 2005 during the validation period.
图4 模拟林分蒸腾、边材液流速率(A)和树体储水及其交换日进程(B) (2005-07-01-2005-09-15)。
Fig. 4 Daily change of simulated stand transpiration, sap flow velocity (A) and storage water exchange (B) from June 1 to Sept. 15, 2005.
[1] | Buckley TN, Mott KA, Farquhar GD (2003). A hydromechanical and biochemical model of stomatal conductance. Plant, Cell & Environment, 26, 1767-1785. |
[2] | Čermák J, Kučera J, Bauerle WL, Phillips N, Hinckley TM (2007). Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old- growth Douglas-fir trees. Tree Physiology, 27, 181-198. |
[3] | Cox PM, Huntingford C, Harding RJ (1998). A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology, 212-213, 79-94. |
[4] | Dewar RC (2002). The Ball-Berry-Leuning and Tardieu- Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. Plant, Cell & Environment, 25, 1383-1398. |
[5] |
Gao Q, Yu M, Zhang XS, Xu HM, Huang YM (2005). Modelling seasonal and diurnal dynamics of stomatal conductance of plants in a semiarid environment. Functional Plant Biology, 32, 583-598 .
URL PMID |
[6] | Gao Q, Zhao P, Zeng X, Cai X, Shen W (2002). A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. Plant, Cell & Environment, 25, 1373-1381. |
[7] |
Granier A (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI URL PMID |
[8] | Hanson PJ, Amthor JS, Wullschleger SD, Wilson KB, Grant RE, Hartiey A, Hui D, Hunt ER, Johnson DW, Kimball JS, King AW, Luo Y, Mcnulty SG, Sun G, Thornton PE, Wang S, Williams M, Baldocchi DD, Cushman RM (2004). Oak forest carbon and water simulations: model intercomparisons and evaluations against independent data. Ecological Monographs, 74, 443-489. |
[9] | Hunt ER, Running SW, Federer CA (1991). Extrapolating plant water flow resistances and capacitances to regional scales. Agricultural and Forest Meteorology, 54, 169-195. |
[10] |
Jackson RB, Sperry JS, Dawson TE (2000). Root water uptake and transport: using physiological processes in global predictions. Trends in Plant Science, 5, 482-488.
URL PMID |
[11] | Jarvis PG (1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society London Series B, 273, 593-610. |
[12] | Jones HG (1990). Plants and Microclimate. Cambridge University Press, Cambridge. |
[13] | Katul G, Leuning R, Oren R (2003). Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant, Cell & Environment, 26, 339-350. |
[14] | Kumagai T, Aoki S, Otsuki K, Utsumi Y (2009). Impact of stem water storage on diurnal estimates of whole-tree transpiration and canopy conductance from sap flow measurements in Japanese cedar and Japanese cypress trees. Hydrological Processes, 23, 2335-2344. |
[15] | Larcher W (2003). Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups 4th edn. Springer, Berlin. |
[16] | Lhommea JP, Rocheteau A, Ourcival JM, Rambal S (2001). Non-steady-state modelling of water transfer in a Mediterranean evergreen canopy. Agricultural and Forest Meteorology, 108, 67-83. |
[17] | Liu SR (刘世荣), Chang JG (常建国), Sun PS (孙鹏森) (2007). Forest hydrology: forest and water in a context of global change. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 753-756. (in Chinese with English abstract) |
[18] | Loustau D, Berbigier P, Roumagnac P, Arruda-Pacheco C, David JS, Ferreira MI, Pereira JS, Tavares R (1996). Transpiration of a 64-year-old maritime pine stand in Portugal I. Seasonal course of water flux through maritime pine. Oecologia, 107, 33-42. |
[19] | Ma LY (马履一), Sun PS (孙鹏森), Ma LY (马李一) (2001). Sapwood area calculation and water use scaling up from individual trees to stands of Chinese pine and black locus. Journal of Beijing Forestry University (北京林业大学学报), 23(4), 1-5. (in Chinese with English abstract) |
[20] |
Meinzer FC, Clearwater MJ, Goldstein G (2001). Water transport in trees: current perspectives, new insights and some controversies. Environmental and Experimental Botany, 45, 239-262.
DOI URL PMID |
[21] | Monteith JL, Unsworth MH (1990). Principles of Environmental Physics. Edward Arnold, London. |
[22] | Nouvellon Y, Rambal S, Seen DL, Moran MS, Lhomme JP, Bégué A, Chehbouni AG, Kerr Y (2000). Modelling of daily fluxes of water and carbon from shortgrass steppes. Agricultural and Forest Meteorology, 100, 137-153. |
[23] |
Oren R, Sperry JS, Ewers BE, Pataki DE, Phillips N, Megonigal JP (2001). Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: hydraulic and non-hydraulic effects. Oecologia, 126, 21-29.
DOI URL PMID |
[24] | Running SW (1980). Relating plant capacitance to the water relations of Pinus contorta. Forest Ecology Management, 2, 237-252. |
[25] | Tang JW, Bolstad PV, Ewers BE, Desai AR, Davis KJ, Carey EV (2006). Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States. Journal of Geophysical Research, 111, G02009. doi: 10.1029/2005JG000083. |
[26] | Thornley JHM, Johnston IR (1990). Plant and Crop Modelling. Clarendon Press, Oxford. |
[27] | Tyree MT, Ewers FW (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119, 345-360. |
[28] | Verbeeck H, Steppe K, Nadezhdina N, de Beeck MO, Deckmyn G, Meiresonne L, Lemeur R, Čermák J, Ceulemans R, Janssens IA (2007a). Model analysis of the effects of atmospheric drivers on storage water use in Scots pine. Biogeosciences, 4, 657-671. |
[29] |
Verbeeck H, Steppe K, Nadezhdina N, de Beeck MO, Deckmyn G, Meiresonne L, Lemeur R, Čermák J, Ceulemans R, Janssens IA (2007b). Stored water use and transpiration in Scots pine: a modeling analysis with ANAFORE. Tree Physiology, 27, 1671-1685.
URL PMID |
[30] | Wang H (王华), Zhao P (赵平), Cai XA (蔡锡安), Wang Q (王权), Ma L (马玲), Rao XQ (饶兴权), Zeng XP (曾小平) (2007). Partitioning of night sap flow of Acacia mangium and its implication for estimating whole-tree transpiration. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 777-786. (in Chinese with English abstract) |
[31] | Xiong W (熊伟), Wang YH (王彦辉), Xu DY (徐德应) (2003). Regulations of water use for transpiration of Larix princioi-rupprechtii plantation and its response on environmental factors in Southern Ningxia hilly area. Scientia Silvae Sinicae (林业科学), 39, 1-7. (in Chinese with English abstract) |
[32] | Xiong W (熊伟), Wang YH (王彦辉), Yu PT (于澎涛), Liu HL (刘海龙), Xu LH (徐丽宏), Shi ZJ (时忠杰), Mo F (莫菲) (2008). Variation of sap flow among individual trees and scaling-up for estimation of transpiration of Larix principis-rupprechtii Stand. Scientia Silvae Sinicae (林业科学), 44, 34-40. (in Chinese with English abstract) |
[33] | Yu GR (于贵瑞) (2001). Progress in evapotranspiration models for terrestrial vegetation of different canopy types. Resource Science (资源科学), 23, 72-84. (in Chinese with English abstract) |
[34] | Zhou YH (周允华), Xiang YQ (项月琴), Luan LK (栾禄凯) (1996). Climatological estimation of quantum flux densities. Acta Meteorologica Sinica (气象学报), 54, 447-454. (in Chinese with English abstract) |
[35] | Zweifel R, Häsler R (2001). Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiology, 21, 561-569. |
[36] |
Zweifel R, Steppe K, Sterck FJ (2007). Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model. Journal of Experimental Botany, 58, 2113-2131.
URL PMID |
[1] | 方文静, 蔡琼, 朱江玲, 吉成均, 岳明, 郭卫华, 张峰, 高贤明, 唐志尧, 方精云. 华北地区落叶松林的分布、群落结构和物种多样性[J]. 植物生态学报, 2019, 43(9): 742-752. |
[2] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
[3] | 贾彦龙, 李倩茹, 许中旗, 桑卫国. 基于CO2FIX模型的华北落叶松人工林碳循环过程[J]. 植物生态学报, 2016, 40(4): 405-415. |
[4] | 杨秀云, 韩有志, 武小钢. 华北落叶松林细根生物量对土壤水分、氮营养空间异质性改变的响应[J]. 植物生态学报, 2012, 36(9): 965-972. |
[5] | 冷文芳, 贺红士, 布仁仓, 胡远满. 中国东北落叶松属3种植物潜在分布对气候变化的敏感性分析[J]. 植物生态学报, 2007, 31(5): 825-833. |
[6] | 赵文飞, 王华田, 亓立云, 张迎辉. 春季麻栎树干边材木质部液流垂直变化及其滞后效应[J]. 植物生态学报, 2007, 31(2): 320-325. |
[7] | 王华田, 马履一, 徐军亮. 油松人工林SPAC水势梯度时空变化规律及其对边材液流传输的影响[J]. 植物生态学报, 2004, 28(5): 637-643. |
[8] | 王华田, 马履一. 利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究[J]. 植物生态学报, 2002, 26(6): 661-667. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19