植物生态学报 ›› 2011, Vol. 35 ›› Issue (4): 422-430.DOI: 10.3724/SP.J.1258.2011.00422
国红1,*(), 雷相东1, Veronique LETORT2, 陆元昌1
收稿日期:
2010-09-09
接受日期:
2010-11-18
出版日期:
2011-09-09
发布日期:
2011-04-13
作者简介:
* E-mail: jshe@pku.edu.cn
GUO Hong1,*(), LEI Xiang-Dong1, Veronique LETORT2, LU Yuan-Chang1
Received:
2010-09-09
Accepted:
2010-11-18
Online:
2011-09-09
Published:
2011-04-13
摘要:
林木的结构-功能模型(functional-structural tree modeling, FSTMs)是基于器官级组件构建的将植物结构和功能结合起来的一类模型, 在应用于成年树时需要解决拓扑结构复杂性和年轮分配模式普适性的问题。该文以18年生和41年生的油松(Pinus tabulaeformis)成年树为研究对象, 将GreenLab模型应用到成年树的模拟中。采用破坏性取样, 实测了2株油松成年树的形态结构, 利用子结构模型解决成年树拓扑结构复杂性的问题, 引入年轮影响系数λ, 将全局分配模式和Pressler模式结合起来, 解决年轮分配模式在不同年龄和环境条件下不同的问题。模型的直接参数通过实测数据获得, 隐含参数利用非线性最小二乘法拟合反求获得。通过实测数据与模拟数据的对比、模拟数据与经验模型模拟数据的对比, 对模型的模拟效果进行了评估, 发现节间总重、针叶总重、树高、树干节间重观测值和模型模拟值建立的回归方程的决定系数为0.84-0.98, 结构-功能模型与经验模型对总生物量模拟的决定系数为0.95, 表明该模型能较真实地反映油松的结构和生长过程。
国红, 雷相东, Veronique LETORT, 陆元昌. 基于GreenLab原理构建油松成年树的结构-功能 模型. 植物生态学报, 2011, 35(4): 422-430. DOI: 10.3724/SP.J.1258.2011.00422
GUO Hong, LEI Xiang-Dong, Veronique LETORT, LU Yuan-Chang. A functional-structural model for adults of Pinus tabulaeformis based on GreenLab. Chinese Journal of Plant Ecology, 2011, 35(4): 422-430. DOI: 10.3724/SP.J.1258.2011.00422
图1 基于测量数据的子结构构建示意图。St(p), 生理年龄为p、实际年龄为t的子结构(p = 1, 2, 3, 4; t = 1, 2, 3, 4)。
Fig. 1 Construction of substructure based on measurement data. St(p) is the substructure whose physiological age is p and chorological age is t (p = 1, 2, 3, 4; t = 1, 2, 3, 4).
图2 节间生物量和针叶生物量的比例关系图。A, 18年生。B, 41年生。PAi, 第i个生理年龄(i = 1, 2, 3, 4)。
Fig. 2 Biomass ratio between internodes and needle. A, 18-year-old. B, 41-year-old. PAi, physiological age i (i = 1, 2, 3, 4).
参数 Parameter | 含义 Meaning | 属性 Trait | |||||||
---|---|---|---|---|---|---|---|---|---|
18年生 18-year-old | 41年生 41-year-old | ||||||||
PA1 | PA2 | PA3 | PA4 | PA1 | PA2 | PA3 | PA4 | ||
Pe | 节间汇强 Internode sink | 0.10 | 0.11 | 0.03 | 0.01 | 0.10 | 0.05 | 0.02 | 0.003 |
Pa | 针叶汇强 Needle sink | 1.00 | 0.37 | 0.16 | 0.23 | 1.00 | 0.44 | 0.35 | 0.01 |
be | 节间的比例系数 Scale coefficient of internodes | 26.51 | 29.19 | 33.99 | 26.30 | 33.33 | 32.81 | ||
β | 节间的形状系数 Form coefficient of internodes | 0.04 | -0.20 | -0.36 | -0.02 | 0.20 | 0.36 | ||
SLW | 比叶重 Specific leaf weight | 0.08 g·cm-2 |
表1 油松成年树的直接参数
Table 1 Directly measured parameters for adults of Pinus tabulaeformis
参数 Parameter | 含义 Meaning | 属性 Trait | |||||||
---|---|---|---|---|---|---|---|---|---|
18年生 18-year-old | 41年生 41-year-old | ||||||||
PA1 | PA2 | PA3 | PA4 | PA1 | PA2 | PA3 | PA4 | ||
Pe | 节间汇强 Internode sink | 0.10 | 0.11 | 0.03 | 0.01 | 0.10 | 0.05 | 0.02 | 0.003 |
Pa | 针叶汇强 Needle sink | 1.00 | 0.37 | 0.16 | 0.23 | 1.00 | 0.44 | 0.35 | 0.01 |
be | 节间的比例系数 Scale coefficient of internodes | 26.51 | 29.19 | 33.99 | 26.30 | 33.33 | 32.81 | ||
β | 节间的形状系数 Form coefficient of internodes | 0.04 | -0.20 | -0.36 | -0.02 | 0.20 | 0.36 | ||
SLW | 比叶重 Specific leaf weight | 0.08 g·cm-2 |
图3 油松成年树节间异速生长模型。A, 18年生。B, 41年生。PAi, 第i个生理年龄(i = 1, 2, 3, 4)。
Fig. 3 Internode allometric relationship of adults of Pinus tabulaeformis. A, 18-year-old. B, 41-year-old. PAi, physiological age i (i = 1, 2, 3, 4).
参数 Parameter | 含义 Meaning | 18年生 18-year-old | 41年生 41-year-old | |||
---|---|---|---|---|---|---|
参数值 Value | 变异系数 CV (%) | 参数值 Value | 变异系数 CV (%) | |||
r | 水力阻抗 Water resistance | 2.97 | 0.46 | 3.40 | 2.07 | |
P1 | 年轮分配斜率 Slope for ring compartment | 2.60 | 2.60 | 5.40 | 0.51 | |
λ | 年轮生物量分配参数 Ring biomass allocation parameter | 0.73 | 0.20 | 0.40 | 0.35 | |
Sp | 植株投影面积 Plant projection area | 2.85 m2 | 0.49 | 78.00 m2 | 1.00 |
表2 油松成年树的隐含参数
Table 2 Hidden parameters of adults of Pinus tabulaeformis
参数 Parameter | 含义 Meaning | 18年生 18-year-old | 41年生 41-year-old | |||
---|---|---|---|---|---|---|
参数值 Value | 变异系数 CV (%) | 参数值 Value | 变异系数 CV (%) | |||
r | 水力阻抗 Water resistance | 2.97 | 0.46 | 3.40 | 2.07 | |
P1 | 年轮分配斜率 Slope for ring compartment | 2.60 | 2.60 | 5.40 | 0.51 | |
λ | 年轮生物量分配参数 Ring biomass allocation parameter | 0.73 | 0.20 | 0.40 | 0.35 | |
Sp | 植株投影面积 Plant projection area | 2.85 m2 | 0.49 | 78.00 m2 | 1.00 |
图4 油松节间总生物量和针叶总生物量拟合值和实际值的对比。
Fig. 4 Comparison of simulation and observed data for total internode biomass and total needle biomass of Pinus tabulae- formis.
年龄 Age | 均方根误差 Root mean square error | 平均相对误差绝对值 Average absolute relative error | r | |
---|---|---|---|---|
18年生 18-year-old | 树干节间生物量 Stem internode biomass | 28.90 | 0.44 | 0.90 |
树高 Tree height | 16.70 | 0.28 | 0.96 | |
树干节间直径 Stem internode diameter | 0.89 | 0.24 | 0.95 | |
一级枝节间生物量 Internode biomass of 1st level branch | 1.20 | 0.68 | 0.70 | |
二级枝节间生物量 Internode biomass of 2nd level branch | 2.00 | 0.80 | 0.75 | |
三级枝节间生物量 Internode biomass of 3rd level branch | 1.30 | 1.10 | 0.56 | |
41年生 41-year-old | 树干节间生物量 Stem internode biomass | 50.50 | 0.45 | 0.84 |
树高 Tree height | 28.21 | 0.22 | 0.99 | |
树干节间直径 Stem internode diameter | 1.35 | 0.16 | 0.98 | |
一级枝节间生物量 Internode biomass of 1st level branch | 54.41 | 0.57 | 0.68 | |
二级枝节间生物量 Internode biomass of 2nd level branch | 1.52 | 0.76 | 0.79 | |
三级枝节间生物量 Internode biomass of 3rd level branch | 1.10 | 2.02 | 0.50 |
表3 油松成年树模型误差校正参数值
Table 3 Parameters of model calibration for adults of Pinus tabulaeformis
年龄 Age | 均方根误差 Root mean square error | 平均相对误差绝对值 Average absolute relative error | r | |
---|---|---|---|---|
18年生 18-year-old | 树干节间生物量 Stem internode biomass | 28.90 | 0.44 | 0.90 |
树高 Tree height | 16.70 | 0.28 | 0.96 | |
树干节间直径 Stem internode diameter | 0.89 | 0.24 | 0.95 | |
一级枝节间生物量 Internode biomass of 1st level branch | 1.20 | 0.68 | 0.70 | |
二级枝节间生物量 Internode biomass of 2nd level branch | 2.00 | 0.80 | 0.75 | |
三级枝节间生物量 Internode biomass of 3rd level branch | 1.30 | 1.10 | 0.56 | |
41年生 41-year-old | 树干节间生物量 Stem internode biomass | 50.50 | 0.45 | 0.84 |
树高 Tree height | 28.21 | 0.22 | 0.99 | |
树干节间直径 Stem internode diameter | 1.35 | 0.16 | 0.98 | |
一级枝节间生物量 Internode biomass of 1st level branch | 54.41 | 0.57 | 0.68 | |
二级枝节间生物量 Internode biomass of 2nd level branch | 1.52 | 0.76 | 0.79 | |
三级枝节间生物量 Internode biomass of 3rd level branch | 1.10 | 2.02 | 0.50 |
[1] | Cournède PH, Kang MZ, Rostand-Mathieu A, Yan HP, Hu BG, de Reffye Ph (2006). Structural factorization of plants to compute their functional and architectural growth. Simulation, 82, 427-438. |
[2] | de Reffye Ph, Blaise F, Chemouny S, Jaffuel S, Fourcaud T, Houllier F (1999). Calibration of a hydraulic architecture-based growth model of cotton plants. Agronomie, 19, 265-280. |
[3] | Deleuze C, Houllier F (1997). A transport model for tree ring width. Silva Fennica, 31, 239-250. |
[4] |
Deleuze C, Houllier F (2002). A flexible radial increment taper equation derived from a process-based carbon partitioning model. Annals of Forest Science, 59, 141-154.
DOI URL |
[5] | Gao HZ (高红真), You LQ (尤立权), Wang C (王超) (2009). Study on individual biomass and productivity of Pinus tabulaeformis plantation in Yanshan mountain area. The Journal of Hebei Forestry Science and Technology (河北林业科技), (4), 7-9. (in Chinese with English abstract) |
[6] | Guo H (国红), Lei XD (雷相东), Letort V, Lu YC (陆元昌), de Reffye Ph (2009). A functional-structural model GreenLab for Pinus tabulaeformis. Chinese Journal of Plant Ecology (植物生态学报), 33, 950-957. (in Chinese with English abstract) |
[7] | Guo H, Letort V, Hong LX, Fourcaud T, Cournède PH, Lu YC, de Reffye Ph (2007). Adaptation of the Greenlab model for analyzing sink-source relationships in Chinese pine daplings. In: Fourcaud T, Zhang XP eds. Plant Growth Modeling and Applications PMA06. IEEE Computer Society, Los Alamitos, USA. 236-243. |
[8] |
Guo Y, Ma YT, Zhan ZG, Li BG, Dingkuhn M, Luquet D, de Reffye Ph (2006). Parameters optimization and field validation of the functional-structural model GreenLab for maize. Annals of Botany, 97, 217-230.
DOI URL PMID |
[9] | Houllier F, Leban JM, Colin F (1995). Linking growth modelling to timber quality assessment for Norway spruce. Forest Ecology and Management, 74, 91-102. |
[10] | Hu BG, de Reffye Ph, Zhao X, Yan HP, Kang MZ (2003). GreenLab: a new methodology towards plant functional- structure model-structural. In: Hu BG, Jaeger M eds. Plant Growth Modeling and Applications PMA03. Tsinghua University-Springer Press, Beijing. 21-35. |
[11] | Mitchell KJ (1975). Dynamics and simulated yield of Douglas-fir. Forest Science Monograph, 17, 39p. |
[12] | Perttunen J, Nikinmaa E, Lechowicz MJ, Sievänen R, Messierk C (2001). Application of the functional-structural tree model LIGNUM to sugar maple saplings (Acer saccharum Marsh) growing in forest gaps. Annals of Botany, 88, 471-481. |
[13] | Sievänen R, Nikinmaa E, Nygren P, Ozier-Lafontaine H, Perttunen J, Hakula H (2000). Components of functional- structural tree models. Annals of Forest Science, 57, 399-412. |
[14] | Sun SX (孙时轩) (1992). Silviculture (造林学). China Forestry Publishing House, Beijing. (in Chinese) |
[15] | Wang F (王峰) (2009). Modelling Functional-Structural Growth for Mongolian Scots Pine Trees (Pinus sylvestris var. mongolica) Using GreenLab Principle and Its Application (基于GreenLab原理的樟子松生长的功能-结构建模与应用). PhD dissertation, China Agriculture University, Beijing, 45-48. (in Chinese with English abstract) |
[16] |
Yan HP, Kang MZ, de Reffye Ph, Dingkuhn M (2004). A dynamic, architectural plant model simulating resource- dependent growth. Annals of Botany, 93, 591-602.
DOI URL PMID |
[1] | 肖迪, 王晓洁, 张凯, 何念鹏, 侯继华. 氮添加对山西太岳山天然油松林主要植物叶片性状的影响[J]. 植物生态学报, 2016, 40(7): 686-701. |
[2] | 张维康, 李贺, 王国宏. 北京西北部山地两个垂直样带内主要植被类型的群落特征[J]. 植物生态学报, 2013, 37(6): 566-570. |
[3] | 梁冬, 毛建丰, 赵伟, 周先清, 袁虎威, 王黎明, 邢芳倩, 王晓茹, 李悦. 高山松及其亲本种群在油松生境下的苗期性状[J]. 植物生态学报, 2013, 37(2): 150-163. |
[4] | 李善家, 张有福, 陈拓. 西北油松叶片δ13C特征与环境因子和叶片矿质元素的关系[J]. 植物生态学报, 2011, 35(6): 596-604. |
[5] | 高利霞, 毕润成, 闫明. 山西霍山油松林的物种多度分布格局[J]. 植物生态学报, 2011, 35(12): 1256-1270. |
[6] | 王华, 欧阳志云, 郑华, 王效科, 倪永明, 任玉芬. 北京绿化树种油松、雪松和刺槐树干液流的空间变异特征[J]. 植物生态学报, 2010, 34(8): 924-937. |
[7] | 刘莹, 王国梁, 刘国彬, 曲秋玲, 袁子成. 不同分类系统下油松幼苗根系特征的差异与联系[J]. 植物生态学报, 2010, 34(12): 1386-1393. |
[8] | 国红, 雷相东, VeroniqueLetort, 陆元昌, PhilippedeReffye. 基于GreenLab的油松结构-功能模型[J]. 植物生态学报, 2009, 33(5): 950-957. |
[9] | 张冬梅, 孙佩光, 沈熙环, 茹广欣. 油松种子园自由授粉与控制授粉种子父本分析[J]. 植物生态学报, 2009, 33(2): 302-310. |
[10] | 杨小林, 张希明, 李义玲, 李绍才, 孙海龙. 塔克拉玛干沙漠腹地3种植物根系构型 及其生境适应策略[J]. 植物生态学报, 2008, 32(6): 1268-1276. |
[11] | 何亚平, 费世民, 蒋俊明, 陈秀明, 张旭东, 何飞. 不同龄级划分方法对种群存活分析的影响——以水灾迹地油松和华山松种群生存分析为例[J]. 植物生态学报, 2008, 32(2): 448-455. |
[12] | 费世民, 何亚平, 陈秀明, 蒋俊明, 郭志华. 秦岭水灾迹地油松和华山松更新种群数量特征[J]. 植物生态学报, 2008, 32(1): 95-105. |
[13] | 黄艺, 彭博, 李婷, 梁振春. 外生菌根真菌对重金属铜镉污染土壤中油松生长和元素积累分布的影响[J]. 植物生态学报, 2007, 31(5): 923-929. |
[14] | 王华田, 马履一, 徐军亮. 油松人工林SPAC水势梯度时空变化规律及其对边材液流传输的影响[J]. 植物生态学报, 2004, 28(5): 637-643. |
[15] | 张冬梅, 李悦, 沈熙环, 周世良, 张春晓. 去劣疏伐对油松种子园交配系统及遗传多样性影响的研究[J]. 植物生态学报, 2001, 25(4): 483-487. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19