植物生态学报 ›› 2007, Vol. 31 ›› Issue (5): 923-929.DOI: 10.17521/cjpe.2007.0117
收稿日期:
2005-07-06
接受日期:
2007-03-26
出版日期:
2007-07-06
发布日期:
2007-09-30
作者简介:
E-mail: yhuang@pku.edu.cn
基金资助:
HUANG Yi(), PENG Bo, LI Ting, LIANG Zhen-Chun
Received:
2005-07-06
Accepted:
2007-03-26
Online:
2007-07-06
Published:
2007-09-30
摘要:
该实验选取处于生长期的油松(Pinus tabulaeformis)幼苗,研究土壤Cu、Cd胁迫条件下,美味牛肝菌(Boletus edulis)单独接种、红绒盖牛肝菌(Xerocomus chrysenteron)与美味牛肝菌混合接种处理,对油松幼苗的生长和重金属积累分布状况的影响,探讨不同接种对油松抗性的影响。研究发现,菌根接种不仅促进寄主油松的生长发育和生物量积累,而且显著降低油松体内的重金属积累浓度,减少重金属由根部向植物茎叶部分的转运。与单一接种相比,混合接种可以更加有效地缓解重金属对寄主的生物毒性,减少土壤中重金属元素向油松体内的转运。这种优势在高浓度的重金属胁迫环境下尤为明显。该实验中,在3 mg·kg-1 Cd胁迫下,混合菌根油松的茎叶和根部Cd浓度仅为未接种对照的59.1%和70.7%,比单一菌根降低了11.3%和18.1%,而混合菌根植物的茎叶和根部生物量干重则分别为未接种对照的1.14和1.20倍,单一菌根为未接种对照的1.18和1.17倍。在400 mg·kg-1Cu胁迫下,混合菌根植物茎叶和根部的干重分别是未接种植株的1.01和1.09倍,而混合菌根植物茎叶和根部的Cu浓度仅为未接种植株的61.8%和79.6%,比Boletus edulis菌根植物的Cu积累浓度下降了0.7%和3.8%。
黄艺, 彭博, 李婷, 梁振春. 外生菌根真菌对重金属铜镉污染土壤中油松生长和元素积累分布的影响. 植物生态学报, 2007, 31(5): 923-929. DOI: 10.17521/cjpe.2007.0117
HUANG Yi, PENG Bo, LI Ting, LIANG Zhen-Chun. GROWTH AND ELEMENT ACCUMULATION OF PINUS TABULAEFORMIS SEEDLINGS INFLUENCED BY INOCULATION OF ECTOMYCORRHIZAL FUNGI IN Cu AND Cd CONTAMINATED SOIL. Chinese Journal of Plant Ecology, 2007, 31(5): 923-929. DOI: 10.17521/cjpe.2007.0117
土壤类型 Soil type | pH值 pH value (1∶2.5) | 总有机碳 Total organic carbon (%) | 全氮 Total N (%) | 全磷 Total P (%) | 土壤中金属本底含量 Heavy metal concentrations in soil | |||||
---|---|---|---|---|---|---|---|---|---|---|
Cu (mg·kg-1) | Cd (mg·kg-1) | |||||||||
褐土 Brown soil | 7.5 | 1.668 3 | 0.093 8 | 0.267 6 | 25 | 0.064 |
表1 供试土壤基本理化性质
Table 1 General soil characteristics of the soils used in the experiment
土壤类型 Soil type | pH值 pH value (1∶2.5) | 总有机碳 Total organic carbon (%) | 全氮 Total N (%) | 全磷 Total P (%) | 土壤中金属本底含量 Heavy metal concentrations in soil | |||||
---|---|---|---|---|---|---|---|---|---|---|
Cu (mg·kg-1) | Cd (mg·kg-1) | |||||||||
褐土 Brown soil | 7.5 | 1.668 3 | 0.093 8 | 0.267 6 | 25 | 0.064 |
图1 不同土壤Cu、Cd处理浓度下接种差异对油松生物量干重的影响 B.e: 美味牛肝菌 Boletus edulis X.c: 红绒盖牛肝菌 Xerocomus chrysenteron *和**分别表示接种处理与未接种处理之间在5%和1%的显著性水平下有差异 * and ** indicate 5% and 1% significant differences between inoculated and uninoculated ectomycorrhizal fungus respectively
Fig.1 Effect of ectomycorrhizal infection on the dry weight of biomass under different Cu and Cd treatments
图2 不同重金属胁迫条件下接种差异对油松根茎比的影响 B.e、X.c: 见图1 See Fig. 1
Fig.2 The root/shoot ratio of Pinus tabulaeformis seedling influenced by ectomycorrhizal infection under different heavy metal treatments
重金属 Metal | 部位 Section | 变量 Source of variation | 自由度 df | 方差 MS | F值 F-value | p值 p-value |
---|---|---|---|---|---|---|
铜Cu | 茎叶Shoot | 铜Cu | 2 | 0.000 04 | 1.80 | 0.180 |
接种Infection status | 3 | 0.000 14 | 7.12 | 0.001 | ||
铜与接种Cu & infection | 6 | 0.000 09 | 4.44 | 0.002 | ||
根部Root | 铜Cu | 2 | 0.016 74 | 8.02 | 0.001 | |
接种Infection status | 3 | 1.191 29 | 570.83 | <0.001 | ||
铜与接种Cu & infection | 6 | 0.007 58 | 3.63 | 0.006 | ||
镉Cd | 茎叶Shoot | 镉Cd | 2 | 0.019 12 | 21.95 | <0.001 |
接种Infection status | 3 | 0.107 06 | 122.91 | <0.001 | ||
镉与接种Cd & infection | 6 | 0.002 89 | 3.32 | 0.011 | ||
根部Root | 镉Cd | 2 | 2.349 90 | 10.79 | <0.001 | |
接种Infection status | 3 | 54.125 08 | 248.49 | <0.001 | ||
镉与接种Cd & infection | 6 | 0.550 28 | 2.53 | 0.038 |
表2 Cu、Cd处理和接种差异对油松积累浓度的影响
Table 2 The effects of heavy metal treatments and inoculation on accumulated concentration in seedlings
重金属 Metal | 部位 Section | 变量 Source of variation | 自由度 df | 方差 MS | F值 F-value | p值 p-value |
---|---|---|---|---|---|---|
铜Cu | 茎叶Shoot | 铜Cu | 2 | 0.000 04 | 1.80 | 0.180 |
接种Infection status | 3 | 0.000 14 | 7.12 | 0.001 | ||
铜与接种Cu & infection | 6 | 0.000 09 | 4.44 | 0.002 | ||
根部Root | 铜Cu | 2 | 0.016 74 | 8.02 | 0.001 | |
接种Infection status | 3 | 1.191 29 | 570.83 | <0.001 | ||
铜与接种Cu & infection | 6 | 0.007 58 | 3.63 | 0.006 | ||
镉Cd | 茎叶Shoot | 镉Cd | 2 | 0.019 12 | 21.95 | <0.001 |
接种Infection status | 3 | 0.107 06 | 122.91 | <0.001 | ||
镉与接种Cd & infection | 6 | 0.002 89 | 3.32 | 0.011 | ||
根部Root | 镉Cd | 2 | 2.349 90 | 10.79 | <0.001 | |
接种Infection status | 3 | 54.125 08 | 248.49 | <0.001 | ||
镉与接种Cd & infection | 6 | 0.550 28 | 2.53 | 0.038 |
[1] | Aguillon R, Garbaye J (1990). Some aspects of a double symbiosis with ectomycorrhizal and VAM fungi. Agriculture, Ecosystem and Environment, 29,263-266. |
[2] | Bucking H, Heyser W (1994). The effect of ectomycorrhizal fungi on Zn uptake and distribution in seedlings of Pinus sylvestris L. Plant and Soil, 167,203-212. |
[3] | Chen YL (陈应龙), Gong MQ (弓明钦), Wang FZ (王凤珍), Chen Y (陈羽) (1998a). Study on mycorrhizal physiology of Eucalyptus urophylla coinoculated with ECM and VAM fungi. Forest Research (林业科学研究), 11,237-242. (in Chinese with English abstract) |
[4] | Chen YL (陈应龙), Gong MQ (弓明钦), Wang FZ (王凤珍), Chen Y (陈羽) (1998b). Effects of ECM and VAM fungi combined inoculation on the growth of Eucalyptus urophylla. Scientia Silvae Sinicae (林业科学), 11,481-487. (in Chinese with English abstract) |
[5] | Colpaert JV, Van Assche JA (1992). Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant and Soil, 143,201-211. |
[6] | Colpaert JV, Vannasche JA (1993). The effect of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytologist, 123,325-333. |
[7] | Fleming MV (1985). Experimental study of sequences of ectomycorrhizal fungi on birch (Betula sp.) seedling root systems. Soil Biology and Biochemistry, 17,591-600. |
[8] | Godbold DL, Jentschke G, Winter S, Marschner P (1998). Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere, 36,757-762. |
[9] | Hervey AE, Jurgensen MF, Larsen MJ (1980). Clearcut harvesting and ectomycorrhizae: survival of activity on residual roots and influence on a bordering forest stand in western Montana. Canadian Journal of Forest Research, 10,300-303. |
[10] |
Jentschke G, Winter S, Godbold DL (1999). Ectomycorrhizas and cadmium toxicity in Norway spruce seedlings. Tree Physiology, 19,23-30.
URL PMID |
[11] | Jentschke G, Godbold DL (2000). Metal toxicity and ectomycorrhizas. Physiologia Plantarum, 109,107-116. |
[12] |
Khan AG, Kuek C, Chaudhry TM (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41,197-207.
URL PMID |
[13] | Kottke I, Guttenberger M, Hammpp R, Oberwinkler F (1987). An in vitro method for establishing mycorrhizae on coniferous tree seedlings. Trees, 1,191-194. |
[14] | Krupa P, Piotrowska-Seget Z (2003). Positive aspects of interaction between plants and mycorrhizal fungi originating from soils polluted with cadmium. Polish Journal of Environmental Studies, 12,723-726. |
[15] | Lapeyrie FF, Chilvers GA (1985). An endomycorrhizal-ectomycorrhiza succession associated with enhanced growth by Eucalyptus dumosa seedlings planted in a calcareous soil. New Phytologist, 100,93-104. |
[16] | Marschner P, Godbold DL, Jentschke G (1996). Dynamics of lead accumulation in mycorrhizal and non-mycorrhizal Norway spruce (Picea abies (L.) Kaarst). Plant and Soil, 178,239-245. |
[17] | Marx DH, Ruehle JL, Cordell CE (1991). Methods for studying nursery and field response of trees to specific ectomycorrhiza. In: Norris JR, Read DJ, Varma AKeds. Techniques for the Study of Mycorrhiza. (Methods in Microbiology, Vol.23). Academic Press, London,384-411. |
[18] | Parlade J, Alvarez IF (1993). Coinoculation of aseptically grown Douglas-fir with pairs of ectomycorrhizal fungi. Mycorrhiza, 3,93-96. |
[19] | Patra J, Lenka M, Panda BB (1994). Tolerance and co-tolerance of the grass Chtoris barbata Sw to mercury, cadmium and zinc. New Phytologist, 128,165-171. |
[20] | Reddy MS, Natarajan K (1997). Coinoculation efficacy of ectomycorrhizal fungi on Pinus patula seedlings in a nursery. Mycorrhiza, 7,133-138. |
[21] | Tichelen KKV, Colpaert JV, Vangronsveld J (2001). Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytologist, 150,203-213. |
[22] | Timonen S, Tammi H, Sen R (1997). Characterization of the host genotype and fungal diversity in Scots pine ectomycorrhiza from natural hummus microcosms using isozyme and PCR-RFLP analyses. New Phytologist, 135,313-323. |
[23] | Yang CX (杨春香), Lin XJ (林新坚), Lin YX (林跃鑫) (2004). Effects of cadmium on the mycelium growth of Agaricus blazei Murill. Edible Fungi of China (中国食用菌), 23(4),36-38. (in Chinese with English abstract) |
[24] | Zhao Z (赵忠), Liu XP (刘西平), Wang ZH (王真辉) (1997). Effects of association among ecto- and VA-mycorrhizae on photosynthesis and transpiration by Populus tomentosa. Journal of Northwest Forestry College (西北林学院学报), 12(3),63-68. (in Chinese with English abstract) |
[1] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[2] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[3] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[4] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[5] | 单婷婷, 陈彤垚, 陈晓梅, 郭顺星, 王爱荣. 菌根真菌与兰科植物氮营养关系的研究进展[J]. 植物生态学报, 2022, 46(5): 516-528. |
[6] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[7] | 陈良华, 赖娟, 胡相伟, 杨万勤, 张健, 王小军, 谭灵杰. 接种丛枝菌根真菌对受镉胁迫美洲黑杨雌、雄株光合生理的影响[J]. 植物生态学报, 2017, 41(4): 480-488. |
[8] | 肖迪, 王晓洁, 张凯, 何念鹏, 侯继华. 氮添加对山西太岳山天然油松林主要植物叶片性状的影响[J]. 植物生态学报, 2016, 40(7): 686-701. |
[9] | 熊淑萍,张娟娟,杨阳,刘娟,王晓航,吴延鹏,马新明. 不同冬小麦品种在3种质地土壤中氮代谢特征及利用效率分析[J]. 植物生态学报, 2013, 37(7): 601-610. |
[10] | 张维康, 李贺, 王国宏. 北京西北部山地两个垂直样带内主要植被类型的群落特征[J]. 植物生态学报, 2013, 37(6): 566-570. |
[11] | 梁冬, 毛建丰, 赵伟, 周先清, 袁虎威, 王黎明, 邢芳倩, 王晓茹, 李悦. 高山松及其亲本种群在油松生境下的苗期性状[J]. 植物生态学报, 2013, 37(2): 150-163. |
[12] | 王海翠, 胡林林, 李敏, 陈为峰, 王莹, 周佳佳. 多环芳烃(PAHs)对油菜生长的影响及其积累效应[J]. 植物生态学报, 2013, 37(12): 1123-1131. |
[13] | 丁继军,潘远智,李丽,刘柿良,崔明峰,高佩刚. 外源谷胱甘肽对石竹幼苗镉毒害的缓解效应[J]. 植物生态学报, 2013, 37(10): 950-960. |
[14] | 张呈祥, 陈为峰. 美人蕉对镉的胁迫反应及积累特性[J]. 植物生态学报, 2012, 36(7): 690-696. |
[15] | 沈章军, 孙庆业, 田胜尼. 铜尾矿自然定居白茅对体内氮磷的适时分配及叶片氮磷代谢调节酶活性动态[J]. 植物生态学报, 2012, 36(2): 159-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19