植物生态学报 ›› 2025, Vol. 49 ›› Issue (2): 308-319.DOI: 10.17521/cjpe.2023.0220 cstr: 32100.14.cjpe.2023.0220
殷斯1, 杨依婷1, 卢瑞玲1, 念蕊1, 郝转2,*(), 高永1,*(
)
收稿日期:
2023-08-01
接受日期:
2023-12-21
出版日期:
2025-02-20
发布日期:
2025-02-20
通讯作者:
*郝转: (710311029@qq.com);基金资助:
YIN Si1, YANG Yi-Ting1, LU Rui-Ling1, NIAN Rui1, HAO Zhuan2,*(), GAO Yong1,*(
)
Received:
2023-08-01
Accepted:
2023-12-21
Online:
2025-02-20
Published:
2025-02-20
Supported by:
摘要:
中国西南山区是重要的生物多样性热点地区, 复杂的地形地貌促进了种群的隔离分化, 形成了丰富的物种。魔芋属(Amorphophallus)植物是原产中国南方地区和中南半岛的重要经济作物, 物种和种群呈间断分布。魔芋属物种自然种群的种群动态历史和遗传分化机制有待深入研究。该研究以中国境内的滇魔芋(A. yunnanensis)自然种群为对象, 通过5个叶绿体DNA片段对16个种群进行了谱系地理学研究, 并分析了其遗传分化格局的形成机制。遗传变异分析表明, 滇魔芋各种群的遗传多样性较低(核苷酸多样性: 0.000 07-0.001 82), 且种群之间存在高水平的遗传分化(平均遗传分化指数为0.363)。系统发育分析结果显示, 滇魔芋呈显著的东西分化格局, 东部支系主要由贵州高原及邻近的湘西、桂北的种群组成, 而西部支系则由云南高原的种群组成。此外, 在东部支系发现了近期的种群扩张以及与西部种群的基因交流现象。基于滇魔芋的种群动态历史和显著的地理隔离模式, 推测山地与河流导致的隔离生境和冰期气候波动可能对滇魔芋的种群遗传分化具有重要作用。
殷斯, 杨依婷, 卢瑞玲, 念蕊, 郝转, 高永. 滇魔芋中国种群的谱系地理研究. 植物生态学报, 2025, 49(2): 308-319. DOI: 10.17521/cjpe.2023.0220
YIN Si, YANG Yi-Ting, LU Rui-Ling, NIAN Rui, HAO Zhuan, GAO Yong. Phylogeographic study of natural populations of Amorphophallus yunnanensis (Araceae) in China. Chinese Journal of Plant Ecology, 2025, 49(2): 308-319. DOI: 10.17521/cjpe.2023.0220
编号 No. | 种群编号 Population ID | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 采样点 Sample Site |
---|---|---|---|---|---|
1 | YSXS | 28.78° | 110.22° | 317 | 湖南永顺 Yongshun, Hunan |
2 | LDNR | 25.40° | 106.61° | 436 | 贵州罗甸 Luodian, Guizhou |
3 | WMNS | 25.16° | 106.25° | 726 | 贵州望谟 Wangmo, Guizhou |
4 | WMXY | 25.22° | 106.12° | 1 075 | 贵州望谟 Wangmo, Guizhou |
5 | WMZX | 24.98° | 106.12° | 432 | 贵州望谟 Wangmo, Guizhou |
6 | LYLZ | 24.28° | 106.67° | 396 | 广西凌云 Lingyun, Guangxi |
7 | FHG | 24.61° | 104.25° | 1 249 | 云南师宗 Shizong, Yunnan |
8 | SQG | 24.96° | 102.63° | 2 216 | 云南昆明 Kunming, Yunnan |
9 | FYND | 24.25° | 102.19° | 1 527 | 云南玉溪 Yuxi, Yunnan |
10 | BMGD | 22.66° | 101.16° | 1 680 | 云南普洱 Pu’er, Yunnan |
11 | LCYD | 24.24° | 99.58° | 1 329 | 云南临沧 Lincang, Yunnan |
12 | HHLC | 23.02° | 102.38° | 1 715 | 云南红河 Honghe, Yunnan |
13 | HDR | 21.95° | 100.41° | 1 177 | 云南西双版纳 Xishuangbanna, Yunnan |
14 | DSQ | 24.73° | 100.51° | 2 340 | 云南大理 Dali, Yunnan |
15 | JDXC | 24.26° | 101.05° | 1 754 | 云南景东 Jingdong, Yunnan |
16 | ZYHC | 23.96° | 100.96° | 1 897 | 云南镇沅 Zhenyuan, Yunnan |
表1 中国滇魔芋种群的采样点地理信息
Table 1 Geographic information of natural populations of Amorphophallus yunnanensis in China
编号 No. | 种群编号 Population ID | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 采样点 Sample Site |
---|---|---|---|---|---|
1 | YSXS | 28.78° | 110.22° | 317 | 湖南永顺 Yongshun, Hunan |
2 | LDNR | 25.40° | 106.61° | 436 | 贵州罗甸 Luodian, Guizhou |
3 | WMNS | 25.16° | 106.25° | 726 | 贵州望谟 Wangmo, Guizhou |
4 | WMXY | 25.22° | 106.12° | 1 075 | 贵州望谟 Wangmo, Guizhou |
5 | WMZX | 24.98° | 106.12° | 432 | 贵州望谟 Wangmo, Guizhou |
6 | LYLZ | 24.28° | 106.67° | 396 | 广西凌云 Lingyun, Guangxi |
7 | FHG | 24.61° | 104.25° | 1 249 | 云南师宗 Shizong, Yunnan |
8 | SQG | 24.96° | 102.63° | 2 216 | 云南昆明 Kunming, Yunnan |
9 | FYND | 24.25° | 102.19° | 1 527 | 云南玉溪 Yuxi, Yunnan |
10 | BMGD | 22.66° | 101.16° | 1 680 | 云南普洱 Pu’er, Yunnan |
11 | LCYD | 24.24° | 99.58° | 1 329 | 云南临沧 Lincang, Yunnan |
12 | HHLC | 23.02° | 102.38° | 1 715 | 云南红河 Honghe, Yunnan |
13 | HDR | 21.95° | 100.41° | 1 177 | 云南西双版纳 Xishuangbanna, Yunnan |
14 | DSQ | 24.73° | 100.51° | 2 340 | 云南大理 Dali, Yunnan |
15 | JDXC | 24.26° | 101.05° | 1 754 | 云南景东 Jingdong, Yunnan |
16 | ZYHC | 23.96° | 100.96° | 1 897 | 云南镇沅 Zhenyuan, Yunnan |
图1 中国滇魔芋16个种群的单倍型地理分布图及遗传结构分析。A, 滇魔芋16个自然种群及2个支系的叶绿体DNA单倍型的地理分布。B, 滇魔芋叶绿体单倍型的neighbour-net树。C, STRUCTURE HARVESTER计算的ΔK值。D, 基于STRUCTURE的滇魔芋种群遗传结构。K, 遗传聚类数目。种群编号见表1。
Fig. 1 Geographic distributions of cpDNA haplotypes found in 16 sampled populations of Amorphophallus yunnanensis in China. A, Geographic locations of 16 sampled populations and distributions of cpDNA haplotypes within two phylogenetic branches. B, Neighbor-net haplotype tree for Amorphophallus yunnanensis based on cpDNA haplotypes. C, ΔK values of the posterior probability distribution estimated by STRUCTURE HARVESTER. D, Bar plot of population assign proportions to each genetic cluster at K = 2 and K = 3. K, the number of genetic clusters. Population ID see Table 1.
标记名称 Marker ID | 正向引物 Forward Primer (5′-3′) | 反向引物 Reverse Primer (5′-3′) | 退火温度 Annealing temperature (℃) |
---|---|---|---|
trnK-matK | CTTGCAGTTTTCATTGCACA | TTCACTTTTGGTCTCAACCC | 56 |
rbcL | ATGTCACAACAAACAGAAAC | TCCTTTTAGTAAAAGATTGGGCCGAG | 56 |
trnL | CGAAATCGGTAGACGCTACG | GGGGATAGAGGGACTTGAAC | 56 |
psaB | AAATATCACAAGTACCACCTCG | ACAATCGGATTACGCACCA | 56 |
rps2 | CTGGAATCGAAATATCTGC | GTATCAACGGTCAATCCTC | 56 |
表2 滇魔芋中国种群谱系研究所用cpDNA引物序列
Table 2 Sequences of cpDNA primers used in phylogeographic study Amorphophallus yunnanensis in China
标记名称 Marker ID | 正向引物 Forward Primer (5′-3′) | 反向引物 Reverse Primer (5′-3′) | 退火温度 Annealing temperature (℃) |
---|---|---|---|
trnK-matK | CTTGCAGTTTTCATTGCACA | TTCACTTTTGGTCTCAACCC | 56 |
rbcL | ATGTCACAACAAACAGAAAC | TCCTTTTAGTAAAAGATTGGGCCGAG | 56 |
trnL | CGAAATCGGTAGACGCTACG | GGGGATAGAGGGACTTGAAC | 56 |
psaB | AAATATCACAAGTACCACCTCG | ACAATCGGATTACGCACCA | 56 |
rps2 | CTGGAATCGAAATATCTGC | GTATCAACGGTCAATCCTC | 56 |
单倍型群组 Haplogroup | 种群编号 Population ID | 样本数 n | 单倍型 Haplotype | 单倍型多样性 Hd | 突变位点 S | 核苷酸多样性 π | Tajima’s D | Fu’s Fs |
---|---|---|---|---|---|---|---|---|
东部支系 East clade | 104 | 0.826 | 87 | 0.000 94 | -31.168* | -2.567* | ||
YSXS | 19 | H_17, 64, 65, 66, 67, 68, 69 | 0.538 | 9 | 0.000 29 | -1.999* | -2.533* | |
LDNR | 12 | H_17, 20, 21, 22, 23, 50 | 0.818 | 40 | 0.001 82 | 1.968* | -2.153* | |
WMNS | 8 | H_17, 18, 19, 20 | 0.643 | 6 | 0.000 39 | -0.422 | -1.640 | |
WMXY | 14 | H_16, 17, 24, 25, 26, 27, 28, 29, 30 | 0.835 | 15 | 0.000 72 | -3.436* | -1.836* | |
WMZX | 9 | H_17, 58, 59, 60 | 0.643 | 16 | 0.001 55 | 2.661 | -0.172 | |
LYLZ | 7 | H_17, 51, 52 | 0.524 | 1 | 0.000 07 | -0.095 | -1.006 | |
FHG | 7 | H_12, 53, 54, 55, 56, 57 | 0.857 | 5 | 0.000 54 | -1.447 | 0.132 | |
SQG | 5 | H_12, 61, 62, 63 | 0.900 | 3 | 0.000 31 | -1.938 | -1.048 | |
FYND | 5 | H_12, 13, 14, 15 | 0.900 | 5 | 0.000 62 | -0.701 | 0.000 | |
BMGD | 8 | H_1, 2 | 0.250 | 4 | 0.000 26 | -1.535 | 1.946 | |
LCYD | 10 | H_45, 46, 47, 48, 49 | 0.756 | 10 | 0.000 59 | -0.318 | -1.590 | |
西部支系 West clade | 36 | 0.887 | 27 | 0.000 96 | -12.337* | -1.503 | ||
HHLC | 8 | H_31, 32, 33, 34, 35, 36 | 0.929 | 12 | 0.000 78 | -1.609 | -0.665 | |
HDR | 6 | H_3, 4, 5, 6, 37, 38 | 1.000 | 11 | 0.001 07 | -2.552 | -0.859 | |
DSQ | 8 | H_7, 8, 9, 10, 11 | 0.786 | 5 | 0.000 32 | -2.238 | -1.595 | |
JDXC | 7 | H_9, 39, 40, 41, 42, 43, 44 | 1.000 | 4 | 0.000 42 | -0.538 | -0.040 | |
ZYHC | 7 | H_9, 11, 70, 71 | 0.714 | 2 | 0.000 20 | -0.438 | -0.275 |
表3 中国16个滇魔芋自然种群的cpDNA遗传多样性
Table 3 Genetic diversity of the 16 populations of Amorphophallus yunnanensis in China based on cpDNA data
单倍型群组 Haplogroup | 种群编号 Population ID | 样本数 n | 单倍型 Haplotype | 单倍型多样性 Hd | 突变位点 S | 核苷酸多样性 π | Tajima’s D | Fu’s Fs |
---|---|---|---|---|---|---|---|---|
东部支系 East clade | 104 | 0.826 | 87 | 0.000 94 | -31.168* | -2.567* | ||
YSXS | 19 | H_17, 64, 65, 66, 67, 68, 69 | 0.538 | 9 | 0.000 29 | -1.999* | -2.533* | |
LDNR | 12 | H_17, 20, 21, 22, 23, 50 | 0.818 | 40 | 0.001 82 | 1.968* | -2.153* | |
WMNS | 8 | H_17, 18, 19, 20 | 0.643 | 6 | 0.000 39 | -0.422 | -1.640 | |
WMXY | 14 | H_16, 17, 24, 25, 26, 27, 28, 29, 30 | 0.835 | 15 | 0.000 72 | -3.436* | -1.836* | |
WMZX | 9 | H_17, 58, 59, 60 | 0.643 | 16 | 0.001 55 | 2.661 | -0.172 | |
LYLZ | 7 | H_17, 51, 52 | 0.524 | 1 | 0.000 07 | -0.095 | -1.006 | |
FHG | 7 | H_12, 53, 54, 55, 56, 57 | 0.857 | 5 | 0.000 54 | -1.447 | 0.132 | |
SQG | 5 | H_12, 61, 62, 63 | 0.900 | 3 | 0.000 31 | -1.938 | -1.048 | |
FYND | 5 | H_12, 13, 14, 15 | 0.900 | 5 | 0.000 62 | -0.701 | 0.000 | |
BMGD | 8 | H_1, 2 | 0.250 | 4 | 0.000 26 | -1.535 | 1.946 | |
LCYD | 10 | H_45, 46, 47, 48, 49 | 0.756 | 10 | 0.000 59 | -0.318 | -1.590 | |
西部支系 West clade | 36 | 0.887 | 27 | 0.000 96 | -12.337* | -1.503 | ||
HHLC | 8 | H_31, 32, 33, 34, 35, 36 | 0.929 | 12 | 0.000 78 | -1.609 | -0.665 | |
HDR | 6 | H_3, 4, 5, 6, 37, 38 | 1.000 | 11 | 0.001 07 | -2.552 | -0.859 | |
DSQ | 8 | H_7, 8, 9, 10, 11 | 0.786 | 5 | 0.000 32 | -2.238 | -1.595 | |
JDXC | 7 | H_9, 39, 40, 41, 42, 43, 44 | 1.000 | 4 | 0.000 42 | -0.538 | -0.040 | |
ZYHC | 7 | H_9, 11, 70, 71 | 0.714 | 2 | 0.000 20 | -0.438 | -0.275 |
种群编号 Population ID | BMGD | FYND | WMNS | LDNR | WMXY | LCYD | LYLZ | FHG | WMZX | SQG | YSXS | HDR | DSQ | HHLC | JDXC | ZYHC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BMGD | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | |
FYND | 0.386 | * | * | * | * | * | NS | * | NS | * | * | * | * | * | * | |
WMNS | 0.686 | 0.517 | NS | NS | * | NS | * | NS | * | NS | * | * | * | * | * | |
LDNR | 0.379 | 0.232 | -0.011 | * | * | NS | * | NS | * | * | * | * | * | * | * | |
WMXY | 0.556 | 0.385 | 0.034 | 0.027 | * | NS | * | * | * | * | * | * | * | * | * | |
LCYD | 0.446 | 0.216 | 0.538 | 0.346 | 0.481 | * | * | * | * | * | * | * | * | * | * | |
LYLZ | 0.762 | 0.584 | -0.008 | -0.025 | 0.038 | 0.565 | * | NS | * | NS | * | * | * | * | * | |
FHG | 0.381 | -0.085 | 0.509 | 0.273 | 0.396 | 0.258 | 0.560 | * | NS | * | * | * | * | * | * | |
WMZX | 0.466 | 0.321 | 0.071 | 0.053 | 0.115 | 0.423 | 0.062 | 0.349 | * | * | * | * | * | * | * | |
SQG | 0.448 | 0.018 | 0.588 | 0.233 | 0.409 | 0.246 | 0.711 | 0.005 | 0.323 | * | * | * | * | * | * | |
YSXS | 0.641 | 0.506 | 0.008 | 0.046 | 0.062 | 0.563 | -0.022 | 0.507 | 0.135 | 0.531 | * | * | * | * | * | |
HDR | 0.484 | 0.152 | 0.550 | 0.349 | 0.471 | 0.380 | 0.580 | 0.188 | 0.408 | 0.271 | 0.584 | * | * | * | * | |
DSQ | 0.615 | 0.366 | 0.686 | 0.372 | 0.553 | 0.437 | 0.762 | 0.368 | 0.466 | 0.448 | 0.639 | 0.472 | * | NS | NS | |
HHLC | 0.465 | 0.143 | 0.538 | 0.353 | 0.464 | 0.369 | 0.563 | 0.180 | 0.419 | 0.253 | 0.571 | 0.277 | 0.452 | * | * | |
JDXC | 0.472 | 0.159 | 0.552 | 0.334 | 0.468 | 0.354 | 0.588 | 0.188 | 0.406 | 0.249 | 0.574 | 0.299 | 0.042 | 0.298 | NS | |
ZYHC | 0.514 | 0.281 | 0.595 | 0.334 | 0.506 | 0.375 | 0.646 | 0.310 | 0.419 | 0.318 | 0.599 | 0.411 | -0.005 | 0.385 | 0.034 |
表4 基于cpDNA的滇魔芋种群两两遗传分化值(FST)
Table 4 Genetic differentiation (pairwise FST) among populations of Amorphophallus yunnanensis based on cpDNA data
种群编号 Population ID | BMGD | FYND | WMNS | LDNR | WMXY | LCYD | LYLZ | FHG | WMZX | SQG | YSXS | HDR | DSQ | HHLC | JDXC | ZYHC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BMGD | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | |
FYND | 0.386 | * | * | * | * | * | NS | * | NS | * | * | * | * | * | * | |
WMNS | 0.686 | 0.517 | NS | NS | * | NS | * | NS | * | NS | * | * | * | * | * | |
LDNR | 0.379 | 0.232 | -0.011 | * | * | NS | * | NS | * | * | * | * | * | * | * | |
WMXY | 0.556 | 0.385 | 0.034 | 0.027 | * | NS | * | * | * | * | * | * | * | * | * | |
LCYD | 0.446 | 0.216 | 0.538 | 0.346 | 0.481 | * | * | * | * | * | * | * | * | * | * | |
LYLZ | 0.762 | 0.584 | -0.008 | -0.025 | 0.038 | 0.565 | * | NS | * | NS | * | * | * | * | * | |
FHG | 0.381 | -0.085 | 0.509 | 0.273 | 0.396 | 0.258 | 0.560 | * | NS | * | * | * | * | * | * | |
WMZX | 0.466 | 0.321 | 0.071 | 0.053 | 0.115 | 0.423 | 0.062 | 0.349 | * | * | * | * | * | * | * | |
SQG | 0.448 | 0.018 | 0.588 | 0.233 | 0.409 | 0.246 | 0.711 | 0.005 | 0.323 | * | * | * | * | * | * | |
YSXS | 0.641 | 0.506 | 0.008 | 0.046 | 0.062 | 0.563 | -0.022 | 0.507 | 0.135 | 0.531 | * | * | * | * | * | |
HDR | 0.484 | 0.152 | 0.550 | 0.349 | 0.471 | 0.380 | 0.580 | 0.188 | 0.408 | 0.271 | 0.584 | * | * | * | * | |
DSQ | 0.615 | 0.366 | 0.686 | 0.372 | 0.553 | 0.437 | 0.762 | 0.368 | 0.466 | 0.448 | 0.639 | 0.472 | * | NS | NS | |
HHLC | 0.465 | 0.143 | 0.538 | 0.353 | 0.464 | 0.369 | 0.563 | 0.180 | 0.419 | 0.253 | 0.571 | 0.277 | 0.452 | * | * | |
JDXC | 0.472 | 0.159 | 0.552 | 0.334 | 0.468 | 0.354 | 0.588 | 0.188 | 0.406 | 0.249 | 0.574 | 0.299 | 0.042 | 0.298 | NS | |
ZYHC | 0.514 | 0.281 | 0.595 | 0.334 | 0.506 | 0.375 | 0.646 | 0.310 | 0.419 | 0.318 | 0.599 | 0.411 | -0.005 | 0.385 | 0.034 |
图2 BEAST软件构建的滇魔芋的单倍型(H)系统发育树。各节点数字为推断的分化时间, 节点颜色深浅代表后验概率。标尺代表每位点5个替换。种群编号见表1。
Fig. 2 Phylogenetic inference for the relationships between haplotypes of Amorphophallus yunnanensis based on Bayesian analysis. Posterior probabilities, divergence times, and confidence intervals are shown at each node. Scale bar indicates five substitution per site. Population ID see Table 1.
图3 中国西南地区滇魔芋叶绿体单倍型(H)的Network关系图。圆圈大小代表该单倍型的样本数量。
Fig. 3 Median-joining network for the cpDNA haplotypes (H) of Amorphophallus yunnanensis in Southwestern China. The size of each circle is proportional to the individual number of the haplotype.
方差来源 Source of variation | 自由度 df | 平方和 Sum of squares | 方差组分 Variance components | 方差比例 Percentage of variation (%) | F-statistics | p |
---|---|---|---|---|---|---|
支系间 Between two clades | 1 | 39.526 | 0.594 22 | 20.24 | FCT = 0.202 | <0.001 |
种群间 Among populations | 14 | 112.735 | 0.743 17 | 25.32 | FSC = 0.317 | <0.001 |
种群内 Within populations | 124 | 198.181 | 1.598 24 | 54.44 | FST = 0.456 | <0.001 |
表5 基于cpDNA的滇魔芋种群分子方差分析(AMOVA)
Table 5 Analysis of molecular variance (AMOVA) of Amorphophallus yunnanensis populations based on cpDNA sequences
方差来源 Source of variation | 自由度 df | 平方和 Sum of squares | 方差组分 Variance components | 方差比例 Percentage of variation (%) | F-statistics | p |
---|---|---|---|---|---|---|
支系间 Between two clades | 1 | 39.526 | 0.594 22 | 20.24 | FCT = 0.202 | <0.001 |
种群间 Among populations | 14 | 112.735 | 0.743 17 | 25.32 | FSC = 0.317 | <0.001 |
种群内 Within populations | 124 | 198.181 | 1.598 24 | 54.44 | FST = 0.456 | <0.001 |
图4 Mantel test检验滇魔芋种群的遗传距离(FST)与地理距离(GD)的相关性。
Fig. 4 Relationship between the genetic distance (FST) and geographic distance (GD) of Amorphophallus yunnanensis evaluated using Mantel tests.
图5 基于贝叶斯天际线预测滇魔芋两个支系的种群动态历史。
Fig. 5 Bayesian skyline plots of the predicted effective population sizes of the two clades of Amorphophallus yunnanensis.
图6 基于生态位模拟的滇魔芋在末次间冰期(LIG, A)、末次盛冰期(LGM, B)、中全新世(MH, C)和当前(D)的生境适宜性。
Fig. 6 Geographic patterns in the habitat suitability of Amorphophallus yunnanensis during the last interglacial (LIG, A), the last glacial maximum (LGM, B), the mid-Holocene (MH, C), and at present (D) evaluated using MaxEnt.
[1] | Bai LW, Niu Y, Liu HL, Zhang SL (2016). The germplasms and breeding progress of Amorphophallus. South China Agriculture, 10(4), 48-52. |
[白立伟, 牛义, 刘海利, 张盛林 (2016). 魔芋种质资源及育种研究进展. 南方农业, 10(4), 48-52.] | |
[2] | Chen SY, Wang JX (2017). Progress in research on tectonic uplift in Yunnan-Guizhou Plateau. Yunnan Geographic Environment Research, 29(3), 23-29. |
[陈思宇, 王嘉学 (2017). 云贵高原隆升研究进展. 云南地理环境研究, 29(3), 23-29.] | |
[3] | Deng J, Fu R, Compton SG, Liu M, Wang Q, Yuan C, Zhang L, Chen Y (2020). Sky islands as foci for divergence of fig trees and their pollinators in southwest China. Molecular Ecology, 29, 762-782. |
[4] |
Drummond AJ, Suchard MA, Xie D, Rambaut A (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969-1973.
DOI PMID |
[5] |
Evanno G, Regnaut S, Goudet J (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620.
DOI PMID |
[6] |
Excoffier L, Lischer HEL (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567.
DOI PMID |
[7] | Gao Y (2022). Development of SSR markers for molecular identification of Amorphophallus species. Jounal of Qujing Normal University, 41(3), 46-52. |
[高永 (2022). 魔芋种间分子鉴定的SSR标记开发. 曲靖师范学院学报, 41(3), 46-52.] | |
[8] | Gao Y, Yin S, Yang HX, Wu LF, Yan YH (2018). Genetic diversity and phylogenetic relationships of seven Amorphophallus species in southwestern China revealed by chloroplast DNA sequences. Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis, 29, 679-686. |
[9] | Gong X, Xie SF, Xia ZR, Wang AX, Tong LT (2023). Study on the effects of adding konjac refined flour on the quality of fresh wet rice noodle. Food & Machinery, 39(7), 186-192. |
[龚雪, 解松峰, 夏曾润, 王爱霞, 佟立涛 (2023). 魔芋精粉对鲜湿米粉品质的影响. 食品与机械, 39(7), 186-192.] | |
[10] | Han F, Lamichhaney S, Grant BR, Grant PR, Andersson L, Webster MT (2017). Gene flow, ancient polymorphism, and ecological adaptation shape the genomic landscape of divergence among Darwin’s finches. Genome Research, 27, 1004-1015. |
[11] | He K, Jiang XL (2014). Sky Islands of southwest China. I: an overview of phylogeographic patterns. Chinese Science Bulletin, 59, 585-597. |
[12] |
Ho SYW, Shapiro B (2011). Skyline-plot methods for estimating demographic history from nucleotide sequences. Molecular Ecology Resources, 11, 423-434.
DOI PMID |
[13] | Hu HY, Yang YZ, Li A, Zheng ZY, Zhang J, Liu JQ (2022). Genomic divergence of Stellera chamaejasme through local selection across the Qinghai-Tibet Plateau and Northern China. Molecular Ecology, 31, 4782-4796. |
[14] |
Huson DH (1998). SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics, 14, 68-73.
PMID |
[15] |
Hutchison DW, Templeton AR (1999). Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53, 1898-1914.
DOI PMID |
[16] | Ju MM, Fu Y, Zhao GF, He CZ, Li ZH, Tian B (2018). Effects of the Tanaka Line on the genetic structure of Bombax ceiba (Malvaceae) in dry-hot valley areas of southwest China. Ecology and Evolution, 8, 3599-3608. |
[17] |
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587-589.
DOI PMID |
[18] |
Kumar S, Stecher G, Tamura K (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.
DOI PMID |
[19] | Li H, Hetterscheid WLA (2010). Amorphophallus//Editorial Committee of Flora of China. Flora of China: Vol. 36. Science Press, Beijing. 23-33. |
[20] | Li H, Long CL (1998). Taxonomy of Amorphophallus in China. Acta Botanica Yunnanica, 20(2), 167-170. |
[李恒, 龙春林 (1998). 中国磨芋属的分类问题. 云南植物研究, 20(2), 167-170.] | |
[21] |
Librado P, Rozas J (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451-1452.
DOI PMID |
[22] | Liu W, Xie J, Zhou H, Kong H, Hao G, Fritsch PW, Gong W (2021). Population dynamics linked to glacial cycles in Cercis chuniana F. P. Metcalf (Fabaceae) endemic to the montane regions of subtropical China. Evolutionary Applications, 14, 2647-2663. |
[23] | López-Pujol J, Zhang F, Sun H, Ying T, Ge S (2011). Centres of plant endemism in China: places for survival or for speciation? Journal of Biogeography, 38, 1267-1280. |
[24] | Meng FJ, Liu L, Peng M, Wang ZK, Wang C, Zhao YY (2015). Genetic diversity and population structure analysis in wild strawberry (Fragaria nubicola L.) from Motuo in Tibet Plateau based on simple sequence repeats (SSRs). Biochemical Systematics and Ecology, 63, 113-118. |
[25] | Moritz C (1994). Defining ‘evolutionarily significant units’ for conservation. Trends in Ecology & Evolution, 9, 373-375. |
[26] |
Nauheimer L, Metzler D, Renner SS (2012). Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils. New Phytologist, 195, 938-950.
DOI PMID |
[27] | Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268-274. |
[28] | Niu Y, Zhang SL, Wang ZM, Li C, Sun YH (2005). Research and utilization of konjac (Amorphophallus) resources in China. Journal of Southwest Agricultural University (Natural Science Edition), 27, 634-638. |
[牛义, 张盛林, 王志敏, 李川, 孙远航 (2005). 中国魔芋资源的研究与利用. 西南农业大学学报(自然科学版), 27, 634-638.] | |
[29] |
Orsini L, Vanoverbeke J, Swillen I, Mergeay J, de Meester L (2013). Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molecular Ecology, 22, 5983-5999.
DOI PMID |
[30] | Pan C (2012). The Development of Microsatellite Loci in Amorphophallus konjac and Genetic Structure in Amorphophallus. PhD dissertation, Wuhan University, Wuhan. |
[潘程 (2012). 花魔芋微卫星标记开发及魔芋属植物遗传结构研究. 博士学位论文, 武汉大学, 武汉.] | |
[31] |
Peakall R, Smouse PE (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics, 28, 2537-2539.
PMID |
[32] | Phillips SJ, Anderson RP, Schapire RE (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. |
[33] | Pouchon C, Gauthier J, Pitteloud C, Claudel C, Alvarez N (2023). Phylogenomic study of Amorphophallus (Alismatales; Araceae): When plastid DNA gene sequences help to resolve the backbone subgeneric delineation. Journal of Systematics and Evolution, 61, 64-79. |
[34] |
Pritchard JK, Stephens M, Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
DOI PMID |
[35] |
Prunier R, Holsinger KE (2010). Was it an explosion? Using population genetics to explore the dynamics of a recent radiation within Protea (Proteaceae L.). Molecular Ecology, 19, 3968-3980.
DOI PMID |
[36] | Ren PY, Pan MQ (2013). Population genetic structure of five Amorphophallus species from the south of Yunnan Province by inter-simple sequences (ISSR) markers. Journal of Wuhan University (Natural Science Edition), 59(1), 99-104. |
[任盘宇, 潘明清 (2013). 云南南部5种魔芋属植物居群遗传结构的ISSR分析. 武汉大学学报(理学版), 59(1), 99-104.] | |
[37] |
Simmons MP, Ochoterena H (2000). Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology, 49, 369-381.
PMID |
[38] | Stokstad E (2020). Mountains and monsoons created Tibetan biodiversity. Science, 369, 493. DOI: 10.1126/science.369.6503.493. |
[39] | Sun H, Wang XP, Fan DY, Sun OJ (2022). Contrasting vegetation response to climate change between two monsoon regions in Southwest China: the roles of climate condition and vegetation height. Science of the Total Environment, 802, 149643. DOI: 10.1016/j.scitotenv.2021.149643. |
[40] | Teng CZ, Diao Y, Chang FHS, Xie SQ, Han YH, Hu ZL (2006). ISSR analyses of relative relationships among germplasm resources of Amorphophallus blume from Yunnan Province. Anhui Agricultural Science Bulletin, 12(11), 54-56. |
[滕彩珠, 刁英, 常福浩森, 谢世清, 韩永华, 胡中立 (2006). 云南魔芋种质资源亲缘关系的ISSR分析. 安徽农学通报, 12(11), 54-56.] | |
[41] | Wambulwa MC, Luo YH, Zhu GF, Milne R, Wachira FN, Wu ZY, Wang H, Gao LM, Li DZ, Liu J (2022). Determinants of genetic structure in a highly heterogeneous landscape in southwest China. Frontiers in Plant Science, 13, 779989. DOI: 10.3389/fpls.2022.779989. |
[42] | Wang B, Mao JF, Zhao W, Wang XR (2013). Impact of geography and climate on the genetic differentiation of the subtropical pine Pinus yunnanensis. PLoS ONE, 8, e67345. DOI: 10.1371/journal.pone.0067345. |
[43] | Wang BS, Mojica JP, Perera N, Lee CR, Lovell JT, Sharma A, Adam C, Lipzen A, Barry K, Rokhsar DS, Schmutz J, Mitchell-Olds T (2019). Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biology, 20, 126. DOI: 10.1186/s13059-019-1729-9. |
[44] | Yin S, Chu H, Zhang Y, Lu F, Gao Y (2021) Population genetic diversity and genetic structure of Amorphophallus yunnanensis in Southwestern China and its conservation implication. Taiwania, 66, 126-134. |
[45] | Yin S, Hao Z, Lu FD, Gao Y (2023). Genetic diversity of six Amorphophallus species in Southwest China based on cpDNA sequences. Guihaia, 43, 2042-2051. |
[殷斯, 郝转, 陆飞东, 高永 (2023). 西南地区六种魔芋属植物基于cpDNA序列的遗传多样性研究. 广西植物, 43, 2042-2051.] | |
[46] | Zang RG, Dong M, Li JQ, Chen XY, Zeng SJ, Jiang MX, Li ZQ, Huang JH (2016). Conservation and restoration for typical critically endangered wild plants with extremely small population. Acta Ecologica Sinica, 36, 7130-7135. |
[臧润国, 董鸣, 李俊清, 陈小勇, 曾宋君, 江明喜, 李镇清, 黄继红 (2016). 典型极小种群野生植物保护与恢复技术研究. 生态学报, 36, 7130-7135.] | |
[47] | Zhang TC, Comes HP, Sun H (2011). Chloroplast phylogeography of Terminalia franchetii (Combretaceae) from the eastern Sino-Himalayan region and its correlation with historical river capture events. Molecular Phylogenetics and Evolution, 60, 1-12. |
[1] | 张宏祥, 闻志彬, 王茜. 新疆野苹果种群遗传结构及其环境适应性[J]. 植物生态学报, 2022, 46(9): 1098-1108. |
[2] | 王春成, 马松梅, 张丹, 王绍明. 柴达木野生黑果枸杞的空间遗传结构[J]. 植物生态学报, 2020, 44(6): 661-668. |
[3] | 叶俊伟, 张阳, 王晓娟. 中国-日本植物区系中的谱系地理间断及其形成机制[J]. 植物生态学报, 2017, 41(9): 1003-1019. |
[4] | 张利锐, 彭艳玲, 任广朋, 周永锋, 李忠虎, 刘建全. 马尾松和黄山松两个核基因位点的群体遗传多样性和种间分化[J]. 植物生态学报, 2011, 35(5): 531-538. |
[5] | 程凯, 孙坤, 温红艳, 张敏, 贾东瑞, 刘建全. 江孜沙棘和云南沙棘之间谱系分化和亲缘地理[J]. 植物生态学报, 2009, 33(1): 1-11. |
[6] | 陈良华, 胡庭兴, 张帆, 李国和. 用AFLP技术分析四川核桃资源的遗传多样性[J]. 植物生态学报, 2008, 32(6): 1362-1372. |
[7] | 王英, 康明, 黄宏文. 用分子标记揭示植物随机大居群中亚居群的遗传结构——茅栗自然居群空间遗传结构的SSR分析[J]. 植物生态学报, 2006, 30(1): 147-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19