植物生态学报 ›› 2025, Vol. 49 ›› Issue (7): 1119-1127.DOI: 10.17521/cjpe.2024.0234 cstr: 32100.14.cjpe.2024.0234
收稿日期:
2024-07-16
接受日期:
2024-12-10
出版日期:
2025-07-20
发布日期:
2025-01-20
通讯作者:
*陈凯, E-mail: kchen1985@163.com基金资助:
CHEN Kai1,2,*(), YANG Yan3, XU Ling1,2, JIANG Zhong-Hua2
Received:
2024-07-16
Accepted:
2024-12-10
Online:
2025-07-20
Published:
2025-01-20
Supported by:
摘要: 研究种子形态与萌发性状在山地生态系统的种内变异, 有助于揭示植物对环境变化的生态适应机制。该研究在滇西南高黎贡山沿2 180-3 451 m的海拔梯度采集13份球花报春(Primula denticulata)种子, 测定种子长、宽、宽/长、周长、面积、生物量、萌发最适温度(To)及最适温度下的萌发百分率(GP)、平均萌发时间(MGT)、萌发速率方差(VGR)和萌发同步性(GS), 并分析种子形态、萌发性状与海拔的关系。结果显示: (1)球花报春种子宽、面积和生物量随海拔上升显著增大, 但种子长、宽/长、周长随海拔变化不显著。(2) To随海拔上升显著降低; 最适温度下, MGT随海拔上升显著延长, GS则显著降低, 但GP、VGR与海拔的关系不显著。(3)海拔对种子宽、面积、生物量具有显著正效应, 形态性状变异引起MGT、GS沿海拔梯度变化。研究表明, 随着海拔上升, 球花报春种子生物量、宽度增加, 形态的改变导致其萌发时间延长、同步性降低, 暗示高海拔种子倾向于“多头下注”策略。
陈凯, 杨艳, 徐玲, 蒋忠华. 滇西南山地球花报春种子形态与萌发沿海拔梯度的变异. 植物生态学报, 2025, 49(7): 1119-1127. DOI: 10.17521/cjpe.2024.0234
CHEN Kai, YANG Yan, XU Ling, JIANG Zhong-Hua. Variations in seed morphology and germination of Primula denticulata along an elevational gradient in the mountains of southwestern Yunnan, China. Chinese Journal of Plant Ecology, 2025, 49(7): 1119-1127. DOI: 10.17521/cjpe.2024.0234
图1 滇西南山地球花报春种子形态性状随海拔的变异。所有变量都进行了z标准化。
Fig. 1 Variations in seed morphological traits of Primula denticulata along the elevation gradient in the mountains of southwestern Yunnan. All variables were z-standardized.
图2 滇西南山地球花报春种子萌发性状随海拔的变异。萌发率进行了反正弦转换, 其他变量进行了z标准化。
Fig. 2 Variations in seed germination traits of Primula denticulata along the elevation gradient in the mountains of southwestern Yunnan. Germination percentage was converted by arcsine, and other variables were z-standardized. GP, germination percentage; GS, germination synchronization; MGT, mean germination time; To, optimum germination temperature; VGR, variance in germination rate.
图3 滇西南山地球花报春种子性状的主成分分析的11个主轴(PC) (A)与样品在PC1-PC3上的排序(B)。
Fig. 3 The 11 principal axes (PC) of principal component analysis (PCA) (A) of Primula denticulata seed traits in the mountains of southwestern Yunnan and the ordering of the samples on PC 1, 2 and 3 (B).
性状 Trait | PC1 | PC2 | PC3 |
---|---|---|---|
Length | 0.20 | -0.55 | 0.19 |
Width | 0.37 | -0.01 | -0.25 |
W/L | 0.17 | 0.45 | -0.43 |
Area | 0.40 | 0.11 | -0.08 |
Perimeter | 0.31 | -0.43 | 0.02 |
Biomass | 0.37 | 0.21 | -0.01 |
GP | 0.25 | -0.23 | -0.39 |
MGT | 0.36 | -0.08 | 0.28 |
VGR | 0.01 | -0.26 | -0.60 |
GS | -0.28 | -0.32 | -0.16 |
To | -0.37 | -0.14 | -0.32 |
表1 滇西南山地球花报春种子形态与萌发性状在主轴(PC) 1-3的载荷系数。
Table 1 Loading coefficients of Primula denticulata seed morphological and germination traits on principal axes 1, 2 and 3 of principal component (PC) analysis in the mountains of southwestern Yunnan
性状 Trait | PC1 | PC2 | PC3 |
---|---|---|---|
Length | 0.20 | -0.55 | 0.19 |
Width | 0.37 | -0.01 | -0.25 |
W/L | 0.17 | 0.45 | -0.43 |
Area | 0.40 | 0.11 | -0.08 |
Perimeter | 0.31 | -0.43 | 0.02 |
Biomass | 0.37 | 0.21 | -0.01 |
GP | 0.25 | -0.23 | -0.39 |
MGT | 0.36 | -0.08 | 0.28 |
VGR | 0.01 | -0.26 | -0.60 |
GS | -0.28 | -0.32 | -0.16 |
To | -0.37 | -0.14 | -0.32 |
图4 滇西南山地球花报春种子性状主轴(PC)1-3随海拔的变化。海拔进行了z标准化。
Fig. 4 Changes of principal axes (PC) 1, 2 and 3 of Primula denticulata seed traits along the elevation gradient in the mountains of southwestern Yunnan. Elevation was z-standardized.
图5 滇西南山地海拔对球花报春种子形态(A)、萌发同步性(B)与萌发平均时间(C)影响的结构方程模型。单向箭头表示回归, 双向箭头表示相关, 数值表示回归或相关系数, 数值大小与箭头的粗细相对应; 绿色代表正的回归效应或相关关系, 红色代表负的回归效应或相关关系。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 5 Structural equation models for the effects of elevation on Primula denticulata seed morphology (A), GS (B) and MGT (C) in the mountains of southwestern Yunnan. One-way arrows indicate regression, and two-way arrows indicate correlation. The regression or correlation coefficients were shown and represented by the thickness of the arrows. Green and red arrows represent positive and negative regression effects or correlations, respectively. *, ** and *** indicate p < 0.05, p < 0.01 and p < 0.001, respectively. GS, germination synchronization; MGT, mean germination time; To, optimum temperature.
[1] | Alejandra EV, Luciana GP (2015). Changes in resource-use strategy and phenotypic plasticity associated with selection for yield in wild species native to arid environments. Journal of Arid Environments, 113, 51-58. |
[2] |
Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl AN, Kreft H, Linder HP, Badgley C, Fjeldså J, Fritz SA, Rahbek C, Herman F, Hooghiemstra H, Hoorn C (2018). Geological and climatic influences on mountain biodiversity. Nature Geoscience, 11, 718-725.
DOI |
[3] | Baskin CC, Baskin JM (2014). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. 2nd ed. Elsevier, San Diego, USA. |
[4] |
Blalogoe JS, Odindo AO, DêêdiSogbohossou EO, Sibiya J, Achigan-Dako EG (2020). Origin-dependence of variation in seed morphology, mineral composition and germination percentage in Gynandropsis gynandra (L.) Briq. accessions from Africa and Asia. BMC Plant Biology, 20, 168. DOI: 10.1186/s12870-020-02364-w.
PMID |
[5] | Braun RC, Courtney LE, Patton AJ (2023). Seed morphology, germination, and seedling vigor characteristics of fine fescue taxa and other cool-season turfgrass species. Crop Science, 63, 1613-1627. |
[6] | Chen K, Chen ZH, HuangYY, Jiang ZH (2023). Elevation and phylogeny shape herbaceous seed dormancy in a biodiversity hotspot of southwest China. Ecology and Evolution, 13, e09986. DOI: 10.1002/ece3.9986. |
[7] |
Chen K, Liu Q, Chen ZH, Li ZL (2020). Soil temperature drives elevational patterns of reproductive allometry in a biodiversity hotspot. Plant Ecology, 221, 979-988.
DOI |
[8] | Chen K, Yang Y, Xu L, Zhao YF, Zhang HY (2024). Variation patterns of Bombax ceiba seed size in Nujiang Dry-hot Valley. Ecological Science, 43(1), 88-93. |
[陈凯, 杨艳, 徐玲, 赵永福, 张宏玉 (2024). 怒江干热河谷木棉种子大小的变异格局. 生态科学, 43(1), 88-93.] | |
[9] | Dayrell RLC, Ott T, Horrocks T, Poschlod P (2023). Automated extraction of seed morphological traits from images. Methods in Ecology and Evolution, 14, 1708-1718. |
[10] |
Fernández-Pascual E, Carta A, Mondoni A, Cavieres LA, Rosbakh S, Venn S, Satyanti A, Guja L, Briceño VF, Vandelook F, Mattana E, Saatkamp A, Bu H, Sommerville K, Poschlod P, et al. (2021). The seed germination spectrum of alpine plants: a global meta-analysis. New Phytologist, 229, 3573-3586.
DOI PMID |
[11] | Fredrick C, Muthuri C, Ngamau K, Sinclair F (2015). Provenance variation in seed morphological characteristics, germination and early seedling growth of Faidherbia. Journal of Horticulture and Forestry, 7(5), 127-140. |
[12] | Ginwal HS, Phartyal SS, Rawat PS, Srivastava RL (2005). Seed source variation in morphology, germination and seedling growth of Jatropha curcas Linn. in Central India. Silvae Genetica, 54(2), 76-80. |
[13] |
Han C, Yang P (2015). Studies on the molecular mechanisms of seed germination. Proteomics, 15, 1671-1679.
DOI PMID |
[14] | Hao LF, Xu XY, Ji Y, Wang R, Wu DB, Li YY, Lin KJ (2024). Comparison of the dynamic morphological and physiological characteristics of twin seeds during the germination of field sandbur. Acta Prataculturae Sinica, 33(9), 40-50. |
[郝丽芬, 徐晓阳, 季玉, 王瑞, 吴德宝, 李宇宇, 林克剑 (2024). 长刺蒺藜草两异型种子形态和萌发过程的生理动态特征比较. 草业学报, 33(9), 40-50.]
DOI |
|
[15] | Huang ZY, Gutterman Y, Hu ZH, Zhang XS (2001). Seed germination in Artemisia sphaerocephala II. The influence of environmental factors. Acta Phytoecologica Sinica, 25, 240-246. |
[黄振英, Gutterman Y, 胡正海, 张新时 (2001). 白沙蒿种子萌发特性的研究II. 环境因素的影响. 植物生态学报, 25, 240-246.] | |
[16] | Jorge MHA, Ray DT (2005). Germination characterization of guayule seed by morphology, mass and, X-ray analysis. Industrial Crops and Products, 22(1), 59-63. |
[17] | Körner C (2007). The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution, 22, 569-574. |
[18] | Li FL, Pan Y, Wang CY, Zhu XY, Peng MC (2023). Seed germination property of Ageratina adenophora related to pappus features of its achenes. Ecological Science, 42(3), 46-52. |
[李富利, 潘燕, 王崇云, 朱晓媛, 彭明春 (2023). 紫茎泽兰瘦果冠毛特征与种子萌发特性的关系. 生态科学, 42(3), 46-52.] | |
[19] | Li H, Li R (2020). Plant Resources and Floristic Geography of Gaoligong Mountains. Hubei Science and Technology Press, Wuhan. |
[李恒, 李嵘 (2020). 高黎贡山植物资源与区系地理. 湖北科学技术出版社, 武汉.] | |
[20] | Li XQ, Zhu HY, He YD, Ochola AC, Qiong L, Yang CF (2024a). Mother-reliant or self-reliant: the germination strategy of seeds in a species-rich alpine meadow is associated with the existence of pericarps. Annals of Botany, 134, 485-490. |
[21] | Li Z, Ma Y, Liu Y, Wang Y, Wang X (2024b). Geographical patterns and environmental influencing factors of variations in Asterothamnus centraliasiaticus seed traits on Qinghai-Tibetan Plateau. Frontiers in Plant Science, 15, 1366512. DOI: 10.3389/fpls.2024.1366512. |
[22] | Norden N, Daws MI, Antoine C, Gonzalez MA, Garwood NC, Chave J (2009). The relationship between seed mass and mean time to germination for 1037 tree species across five tropical forests. Functional Ecology, 23, 203-210. |
[23] | Qi W, Bu H, Cornelissen JHC, Zhang C, Guo S, Wang J, Zhou X, Li W, Du G (2015). Untangling interacting mechanisms of seed mass variation with elevation: insights from the comparison of inter-specific and intra-specific studies on eastern Tibetan angiosperm species. Plant Ecology, 216, 283-292. |
[24] | Ranal MA, de Santana DG (2006). How and why to measure the germination process. Brazilian Journal of Botany, 29, 1-11. |
[25] |
Saatkamp A, Cochrane A, Commander L, Guja LK, Jimenez-Alfaro B, Larson J, Nicotra A, Poschlod P, Silveira FAO, Cross AT, Dalziell EL, Dickie J, Erickson TE, Fidelis A, Fuchs A, et al. (2019). A research agenda for seed-trait functional ecology. New Phytologist, 221, 1764-1775.
DOI PMID |
[26] | Sheikh AH, Matin MA (2007). Seed morphology and germination studies of Dalbergia sissoo Roxb. at nursery stage in Bangladesh. Research Journal of Agricultural and Food Sciences, 3(1), 35-39. |
[27] | Silva VN, Cicero SM, Bennett M (2012). Relationship between eggplant seed morphology and germination. Revista Brasileira de Sementes, 34, 597-604. |
[28] | Trias-Blasi A, Vorontsova M (2015). Plant identification is key to conservation. Nature, 521, 161. DOI: 10.1038/521161c. |
[29] | van Mölken T, Jorritsma-Wienk LD, van Hoek PHW, de Kroon H (2005). Only seed size matters for germination in different populations of the dimorphic Tragopogon pratensis subsp. pratensis (Asteraceae). American Journal of Botany, 92, 432-437. |
[30] |
Vandelook F, Newton RJ, Bobon N, Bohley K, Kadereit G (2021). Evolution and ecology of seed internal morphology in relation to germination characteristics in Amaranthaceae. Annals of Botany, 127, 799-811.
DOI PMID |
[31] | Wang X, Alvarez M, Donohue K, Ge W, Cao Y, Liu K, Du G, Bu H (2021). Elevation filters seed traits and germination strategies in the eastern Tibetan Plateau. Ecography, 44, 242-254. |
[32] | Wang X, Ge W, Zhang M, Fernández-Pascual E, Moles A, Saatkamp A, Rosbakh S, Bu H, Panahi P, Ma M (2024a). Large and non-spherical seeds are less likely to form a persistent soil seed bank. Proceedings of the Royal Society B: Biological Sciences, 291, 20232764. DOI: 10.1098/rspb.2023.2764. |
[33] | Wang X, Zhou X, Zhang M, Ge W, Yang G, Zhou H, Ma L, Liu K, Qi W, Bu H (2024b). Influence of seed mass and shape on light plasticity of germination of alpine plants on the Tibetan Plateau: the role of photoblastic taxa, dispersal ability, and life history. Global Ecology and Conservation, 51, e02896. DOI: 10.1016/j.gecco.2024.e02896. |
[34] | Wang Z, Tang Z, Fang J (2007). Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and Distributions, 13, 845-854. |
[35] | Wei SL, Wang WQ, Qin SY, Liu CL, Zhang ZY, Di M (2008). Study on geographical variation of morphologic and germination characteristic of different Glycyrrhiza uralensis provenance seeds. China Journal of Chinese Material Medical, 33, 869-873. |
[魏胜利, 王文全, 秦淑英, 刘长利, 张兆英, 邸明 (2008). 甘草种源种子形态与萌发特性的地理变异研究. 中国中药杂志, 33, 869-873.] | |
[36] | Wu PP, Sun B, Luo SX, Chen L, Yan WM (2017). Variation of seed morphology and seedling growth among different provenances and families of Acer tutcheri. Forest Research, 30, 1015-1021. |
[吴培培, 孙冰, 罗水兴, 陈雷, 闫玮明 (2017). 岭南槭不同种源家系种子形态和幼苗生长变异. 林业科学研究, 30, 1015-1021.] | |
[37] | Yu XX (2022). Variation of Seed Morphological Traits and Its’s Adaptability to the Environment at a Regional Scale. Master degree dissertation, Shanxi Normal University, Linfen, Shanxi. |
[于小霞 (2022). 区域尺度上种子形态性状的变异规律及对环境的适应性. 硕士学位论文, 山西师范大学, 山西临汾.] | |
[38] | Zhang W, Zhao J, Xue L, Dai H, Lei J (2023). Seed morphology and germination of native Tulipa species. Agriculture, 13, 466. DOI: 10.3390/agriculture13020466. |
[39] | Zhao M (2019). Study on the Relationship Between Seed Functional Traits and Germination in Songnen Grassland. Master degree dissertation, Northeast Normal University, Changchun. |
[赵明 (2019). 松嫩草原植物种子功能性状与萌发关系研究. 硕士学位论文, 东北师范大学, 长春.] | |
[40] | Zhu J, Liu M, Xin Z, Zhao Y, Liu Z (2016). Which factors have stronger explanatory power for primary wind dispersal distance of winged diaspores: the case of Zygophyllum xanthoxylon (Zygophyllaceae). Journal of Plant Ecology, 9, 346-356. |
[1] | 童金莲, 张博纳, 汤璐瑶, 叶琳峰, 李姝雯, 谢江波, 李彦, 王忠媛. C4植物狗尾草功能性状网络沿降水梯度带的区域分异规律[J]. 植物生态学报, 2025, 49(预发表): 1-. |
[2] | 韦鑫, 江蓝, 郑晨成, 朱静, 陈博, 李文周, 赖淑瑜, 刘金福, 何中声. 戴云山海拔梯度木本植物性系统分布特征及其影响因素[J]. 植物生态学报, 2025, 49(预发表): 0-. |
[3] | 张静 陈洁 李艳朋 盘李军 许涵 李意德 何海生. 南亚热带针阔混交人工林植物生物量比较及其影响因子分析[J]. 植物生态学报, 2025, 49(化学计量与功能性状): 0-0. |
[4] | 戴丽君, 向玲艺, 蹇陈, 王晓锋. 三峡回水扰动增强了入库小流域河岸带典型草本植物功能性状的局域分化[J]. 植物生态学报, 2025, 49(化学计量与功能性状): 1-. |
[5] | 郑子仪, 陈江慧, 刘慧颖. 气候变暖增加了青藏高原高寒草甸优势物种的根系分泌速率[J]. , 2025, 49(地上地下生态过程关联): 0-. |
[6] | 逯子佳, 王天瑞, 郑斯斯, 孟宏虎, 曹建国, Gregor Kozlowski, 宋以刚. 孑遗植物湖北枫杨的环境适应性遗传变异与遗传脆弱性[J]. , 2025, 49(濒危植物的保护与恢复): 0-. |
[7] | 张箫荻, 王晓霞, 章毓文, 侯靖雨, 石骁鹏, 和璐璐, 刘亚栋, 薛柳, 何宝华, 段劼. 北京山区三种林下灌木水力结构、叶片功能性状及其环境适应策略[J]. 植物生态学报, 2025, 49(7): 1128-1143. |
[8] | 崔冬晴, 田晨, 宋慧敏, 鲁小名, 萨其日, 徐国庆, 杨培志, 白永飞, 田建卿. 典型草原优势植物根际细菌群落多样性和功能群组成对长期放牧的响应机制[J]. 植物生态学报, 2025, 49(7): 1163-1176. |
[9] | 宋垚彬, 董鸣, 于飞海, 叶学华, 刘建. 克隆植物生态学: 响应与效应[J]. 植物生态学报, 2025, 49(7): 999-1037. |
[10] | 马富龙, 王雨晴, 郝瑜, 段继超, 刘霏霏, 席琳乔, 韩路. 海拔梯度对昆仑山北坡中部草原植物与土壤微生物群落结构与多样性的影响[J]. 植物生态学报, 2025, 49(5): 732-747. |
[11] | 杜英杰, 范爱连, 王雪, 闫晓俊, 陈廷廷, 贾林巧, 姜琦, 陈光水. 亚热带天然常绿阔叶林乔木树种与林下灌木树种根-叶功能性状协调性及差异[J]. 植物生态学报, 2025, 49(4): 585-595. |
[12] | 李梦琦, 苗灵凤, 李大东, 龙奕帆, 叶冰冰, 杨帆. 海南东寨港红树林植物细根功能性状对不同潮位沉积物养分变化的响应[J]. 植物生态学报, 2025, 49(4): 552-561. |
[13] | 李姝雯, 汤璐瑶, 张博纳, 叶琳峰, 童金莲, 谢江波, 李彦, 王忠媛. 降水梯度带榆树枝叶协作关系的区域分异规律[J]. 植物生态学报, 2025, 49(2): 282-294. |
[14] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[15] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19