植物生态学报 ›› 2011, Vol. 35 ›› Issue (5): 490-499.DOI: 10.3724/SP.J.1258.2011.00490
收稿日期:
2010-12-06
接受日期:
2011-01-28
出版日期:
2011-12-06
发布日期:
2011-06-07
通讯作者:
王立群
作者简介:
* E-mail: wanglq1007@163.comReceived:
2010-12-06
Accepted:
2011-01-28
Online:
2011-12-06
Published:
2011-06-07
Contact:
WANG Li-Qun
摘要:
对轻度、中度、重度和极度退化的草原群落中星毛委陵菜(Potentilla acaulis)根系构型参数及相应的土壤水分、容重和硬度等指标进行了分析, 以研究星毛委陵菜根系构型对草原退化的生态适应性。结果表明: 1)在以大针茅(Stipa grandis)为建群种的典型草原中, 随着退化程度的加剧, 星毛委陵菜在群落中的作用逐渐增强, 其根幅、根深、一级垂向根数、分蘖子株数和水平分蘖根长度显著增加; 2)根表面积、二级侧根长度、总根长和根分叉数4个根系构型参数是解释星毛委陵菜根系构型对草原退化生态适应的首选指标, 解释力依次减小, 累计贡献率为92.34%; 3)直径2 mm以下的根系对单株系星毛委陵菜的根表面积和总根长影响显著; 4)阔腰倒锥体三维根系构型是星毛委陵菜适应草原退化并使之成为建群种的优势构型。
周艳松, 王立群. 星毛委陵菜根系构型对草原退化的生态适应. 植物生态学报, 2011, 35(5): 490-499. DOI: 10.3724/SP.J.1258.2011.00490
ZHOU Yan-Song, WANG Li-Qun. Ecological adaptation of root architecture to grassland degradation in Potentilla acaulis. Chinese Journal of Plant Ecology, 2011, 35(5): 490-499. DOI: 10.3724/SP.J.1258.2011.00490
退化群落 Degraded community | 平均盖度 Average coverage (%) | 地上生物量 Aboveground biomass (g·m-2) | 建群种 Constructive species | 放牧率 Stocking rate (sheep·hm-2) |
---|---|---|---|---|
轻度退化 Light degradation (L) | 92.6 | 159.21 | 大针茅 Stipa grandis | 1.33 |
中度退化 Moderate degradation (M) | 93.0 | 81.00 | 大针茅 Stipa grandis | 4.00 |
重度退化 Heavy degradation (H) | 71.2 | 79.74 | 冷蒿 Artemisia frigida | 6.67 |
极度退化 Extreme degradation (E) | 67.7 | 57.02 | 星毛委陵菜 Potentilla acaulis | 8.00 |
表1 4个退化群落的各指标数据
Table 1 Data of each index of four degraded communities
退化群落 Degraded community | 平均盖度 Average coverage (%) | 地上生物量 Aboveground biomass (g·m-2) | 建群种 Constructive species | 放牧率 Stocking rate (sheep·hm-2) |
---|---|---|---|---|
轻度退化 Light degradation (L) | 92.6 | 159.21 | 大针茅 Stipa grandis | 1.33 |
中度退化 Moderate degradation (M) | 93.0 | 81.00 | 大针茅 Stipa grandis | 4.00 |
重度退化 Heavy degradation (H) | 71.2 | 79.74 | 冷蒿 Artemisia frigida | 6.67 |
极度退化 Extreme degradation (E) | 67.7 | 57.02 | 星毛委陵菜 Potentilla acaulis | 8.00 |
退化群落 Degraded community | 相对优势度 Relative dominance | 重要值 Important value | Simpson优势度指数 Simpson dominance index | Simpson多样性指数 Simpson diversity index | Pielou均匀度指数 Pielou evenness index |
---|---|---|---|---|---|
轻度退化 L | 0.039d | 0.102d | 0.180 | 0.820 | 0.864 |
中度退化 M | 0.042c | 0.122c | 0.129 | 0.871 | 0.913 |
重度退化 H | 0.044b | 0.142b | 0.182 | 0.818 | 0.861 |
极度退化 E | 0.123a | 0.444a | 0.146 | 0.854 | 0.893 |
表2 不同群落中星毛委陵菜的相对优势度、重要值及各群落指数比较
Table 2 Comparison of relative dominance, important value and community index of Potentilla acaulis in different communities
退化群落 Degraded community | 相对优势度 Relative dominance | 重要值 Important value | Simpson优势度指数 Simpson dominance index | Simpson多样性指数 Simpson diversity index | Pielou均匀度指数 Pielou evenness index |
---|---|---|---|---|---|
轻度退化 L | 0.039d | 0.102d | 0.180 | 0.820 | 0.864 |
中度退化 M | 0.042c | 0.122c | 0.129 | 0.871 | 0.913 |
重度退化 H | 0.044b | 0.142b | 0.182 | 0.818 | 0.861 |
极度退化 E | 0.123a | 0.444a | 0.146 | 0.854 | 0.893 |
退化群落 Degraded community | 冠幅(长×宽) Crown width (length × width) (cm2) | 根幅(长×宽) Root range (length × width) (cm2 ) | 根深 Root depth (cm· individual-1) | 一级垂向根条数 Number of first vertical root (No.· individual-1) | 分蘖子株数 Number of plant tillers (No.· individual-1) | 水平分蘖根长度 Length of horizontal root tillering (cm·individual-1) | 地下生物量 Underground biomass (g·individual-1) |
---|---|---|---|---|---|---|---|
轻度退化 L | 535.2c (23.1 × 23.1) | 1392.4c (37.3 × 37.3) | 48.2c | 10b | 3c | 2.0b | 0.6c |
中度退化 M | 341.6bc (18.5 × 18.5) | 1561.0c (39.5 × 39.5) | 54.2b | 29a | 6bc | 3.4a | 1.6b |
重度退化 H | 641.2b (25.3 × 25.3) | 2696.6b (51.9 × 51.9) | 52.8b | 33a | 9b | 2.6ab | 2.0ab |
极度退化 E | 1047.2a (32.4 × 32.4) | 3637.0a (60.3 × 60.3) | 58.6a | 39a | 14a | 3.3a | 2.8a |
表3 不同群落中星毛委陵菜冠幅、地下生物量、根幅、根深、一级垂向根条数、分蘖子株数和水平分蘖根长度的方差分析
Table 3 Analysis of variance on the crown width, underground biomass, root range, root depth, the number of first vertical root, the number of plant tillers and the length of horizontal root tillering of Potentilla acaulis in different communities
退化群落 Degraded community | 冠幅(长×宽) Crown width (length × width) (cm2) | 根幅(长×宽) Root range (length × width) (cm2 ) | 根深 Root depth (cm· individual-1) | 一级垂向根条数 Number of first vertical root (No.· individual-1) | 分蘖子株数 Number of plant tillers (No.· individual-1) | 水平分蘖根长度 Length of horizontal root tillering (cm·individual-1) | 地下生物量 Underground biomass (g·individual-1) |
---|---|---|---|---|---|---|---|
轻度退化 L | 535.2c (23.1 × 23.1) | 1392.4c (37.3 × 37.3) | 48.2c | 10b | 3c | 2.0b | 0.6c |
中度退化 M | 341.6bc (18.5 × 18.5) | 1561.0c (39.5 × 39.5) | 54.2b | 29a | 6bc | 3.4a | 1.6b |
重度退化 H | 641.2b (25.3 × 25.3) | 2696.6b (51.9 × 51.9) | 52.8b | 33a | 9b | 2.6ab | 2.0ab |
极度退化 E | 1047.2a (32.4 × 32.4) | 3637.0a (60.3 × 60.3) | 58.6a | 39a | 14a | 3.3a | 2.8a |
主成分 Principal component | 特征值 Eigen- value | 总变异度 Total variability (%) | 累积贡献率 Cumulative contribution rate (%) |
---|---|---|---|
根表面积 Root surface area (cm2) | 10.07 | 62.94 | 62.94 |
二级侧根长度 Length of secondary lateral root (cm) | 2.06 | 12.85 | 75.79 |
总根长 Length of total root (cm) | 1.60 | 10.02 | 85.81 |
根分叉数 Number of furcation | 1.04 | 6.53 | 92.34 |
表4 根系构型参数的主成分分析
Table 4 Principal component analysis on the root architecture parameter
主成分 Principal component | 特征值 Eigen- value | 总变异度 Total variability (%) | 累积贡献率 Cumulative contribution rate (%) |
---|---|---|---|
根表面积 Root surface area (cm2) | 10.07 | 62.94 | 62.94 |
二级侧根长度 Length of secondary lateral root (cm) | 2.06 | 12.85 | 75.79 |
总根长 Length of total root (cm) | 1.60 | 10.02 | 85.81 |
根分叉数 Number of furcation | 1.04 | 6.53 | 92.34 |
主成分 Principal component | 根长 Root length (cm) | 根表面积 Root surface area (cm2) | |||||
---|---|---|---|---|---|---|---|
特征值 Eigenvalue | 总变异度 Total variability (%) | 累积贡献率 Cumulative contribution rate (%) | 特征值 Eigenvalue | 总变异度 Total variability (%) | 累积贡献率 Cumulative contribution rate (%) | ||
0.5 mm < d ≤ 1.0 mm | 8.29 | 55.24 | 55.24 | 8.21 | 54.73 | 54.73 | |
1.0 mm < d ≤ 1.5 mm | 2.79 | 18.62 | 73.85 | 2.74 | 18.28 | 73.01 | |
1.5 mm < d ≤ 2.0 mm | 1.24 | 8.25 | 82.10 | 1.28 | 8.55 | 81.56 |
表5 不同根径(d)级别下根长和根表面积各参数的主成分分析
Table 5 Principal component analysis on the parameters of root length and root surface area in different level of root diameter (d)
主成分 Principal component | 根长 Root length (cm) | 根表面积 Root surface area (cm2) | |||||
---|---|---|---|---|---|---|---|
特征值 Eigenvalue | 总变异度 Total variability (%) | 累积贡献率 Cumulative contribution rate (%) | 特征值 Eigenvalue | 总变异度 Total variability (%) | 累积贡献率 Cumulative contribution rate (%) | ||
0.5 mm < d ≤ 1.0 mm | 8.29 | 55.24 | 55.24 | 8.21 | 54.73 | 54.73 | |
1.0 mm < d ≤ 1.5 mm | 2.79 | 18.62 | 73.85 | 2.74 | 18.28 | 73.01 | |
1.5 mm < d ≤ 2.0 mm | 1.24 | 8.25 | 82.10 | 1.28 | 8.55 | 81.56 |
土层深度 Soil depth (cm) | 土壤含水量 Soil water content (%) | 土壤容重 Soil bulk density (g·cm-3) | ||||||
---|---|---|---|---|---|---|---|---|
L | M | H | E | L | M | H | E | |
0-10 | 2.76b | 1.87d | 1.66b | 1.61c | 1.63a | 1.91a | 1.72c | 1.88a |
10-20 | 3.03b | 2.46ab | 2.04b | 1.64c | 1.79a | 1.92a | 1.76abc | 1.87a |
20-30 | 2.83b | 2.16c | 1.88b | 1.72c | 1.84a | 1.89a | 1.78ab | 1.83b |
30-40 | 2.90b | 2.36bc | 2.89a | 1.73c | 1.82a | 1.91a | 1.81a | 1.83b |
40-50 | 3.06b | 2.56ab | 2.78a | 1.87b | 1.78a | 1.88a | 1.75bc | 1.84b |
50-60 | 4.13a | 2.66a | 2.80a | 2.06a | 1.74a | 1.91a | 1.73bc | 1.81b |
平均值 Mean | 3.12a | 2.35b | 2.34bc | 1.77c | 1.77c | 1.91a | 1.76c | 1.84b |
表6 不同群落中各土层深度土壤含水量和土壤容重平均值比较
Table 6 Comparison of mean soil water content and soil bulk density among different soil layer in different communities
土层深度 Soil depth (cm) | 土壤含水量 Soil water content (%) | 土壤容重 Soil bulk density (g·cm-3) | ||||||
---|---|---|---|---|---|---|---|---|
L | M | H | E | L | M | H | E | |
0-10 | 2.76b | 1.87d | 1.66b | 1.61c | 1.63a | 1.91a | 1.72c | 1.88a |
10-20 | 3.03b | 2.46ab | 2.04b | 1.64c | 1.79a | 1.92a | 1.76abc | 1.87a |
20-30 | 2.83b | 2.16c | 1.88b | 1.72c | 1.84a | 1.89a | 1.78ab | 1.83b |
30-40 | 2.90b | 2.36bc | 2.89a | 1.73c | 1.82a | 1.91a | 1.81a | 1.83b |
40-50 | 3.06b | 2.56ab | 2.78a | 1.87b | 1.78a | 1.88a | 1.75bc | 1.84b |
50-60 | 4.13a | 2.66a | 2.80a | 2.06a | 1.74a | 1.91a | 1.73bc | 1.81b |
平均值 Mean | 3.12a | 2.35b | 2.34bc | 1.77c | 1.77c | 1.91a | 1.76c | 1.84b |
图1 4个群落各层的土壤硬度图。横轴, 水平方向到冠幅中垂线的距离(cm); 纵轴, 垂直方向到土壤表面的距离(cm); 黑色圆点直径代表土壤硬度值(kg·cm-2)。
Fig. 1 Figure of soil hardness value of different soil layers in four communities. Horizontal axis, horizontal distance from the perpendicular bisector of crown width (cm); vertical axis, vertical distance from soil surface (cm); diameter of black round represents the value of soil hardness (kg·cm-2).
图2 星毛委陵菜的阔腰倒锥体三维根系构型图。图中黑点密度代表土壤含水量。
Fig. 2 Figure of three-dimension root architecture of broad-waist-inverted centrum of Potentilla acaulis. Density of black dot represents soil water content.
[1] |
Bates TR, Lynch JP (2000). Plant growth and phosphorus accumulation of wild-type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). American Journal of Botany, 87, 958-963.
URL PMID |
[2] |
Berndtsson R, Chen HS (1994). Variability of soil water content along a transect in a desert area. Journal of Arid Environments, 27, 127-139.
DOI URL |
[3] | Böhm W (1979). Methods of studying root systems. In: Billing WD, Golley F, Lange OL, Olson JS eds. Ecological Studies. Springer, Berlin, 188. |
[4] | Chen SH (陈世鍠), Hua YS (华永胜) (1991). Preliminary research on creeping-rooted plant of grassland. Journal of Grassland Inner Mongolia (内蒙古草业), 1, 25-28. (in Chinese) |
[5] | Chen SH (陈世鍠), Zhang H (张昊), Wang LQ (王立群), Zhan BL (占布拉), Zhao ML (赵萌丽) (2001). Plant Roots of Grassland in Northern China (中国北方草地植物根系). Jilin University Press, Changchun. (in Chinese) |
[6] |
Cheng YF, Dai XH, Zhao YD (2007). Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. The Plant Cell, 19, 2430-2439.
DOI URL PMID |
[7] | Coppin NJ, Richards IJ (1990). Use of Vegetation in Civil Engineering. CIRIA, Butterworths. |
[8] | Coutts MP (1983). Root architecture and tree stability. Plant and Soil, 71, 171-188. |
[9] |
Danjon F, Bert D, Godin C, Trichet P (1999). Structural root architecture of 5-year-old Pinus pinaster measured by 3D digitising and analysed with AMAPmod. Plant and Soil, 217, 49-63.
DOI URL |
[10] | Dong M (董鸣) (1996). Clonal growth in plants in relation to resource heterogeneity: foraging behavior. Acta Botanica Sinica (植物学报), 38, 828-835. (in Chinese with English abstract) |
[11] | Drexhage M, Chauvière M, Colin F, Nielsen CNN (1999). Development of structural root architecture and allometry of Quercus petraea. Canadian Journal of Forest Research, 29, 600-608. |
[12] | Feng X (冯秀), Tong C (仝川), Zhang L (张鲁), Miao BL (苗百岭), Ding Y (丁勇), Zhang YM (张远鸣) (2006). Assessment on grassland degradation at regional-scale in the Baiyinxile Ranch, Inner Mongolia. Journal of Natural Resources (自然资源学报), 21, 575-583. (in Chinese with English abstract) |
[13] | Gupta SC, Sharma PP, DeFranchi SA (1989). Compaction effects on soil structure. Advances in Agronomy, 42, 311-338. |
[14] | Henderson R, Ford ED, Renshaw E (1983). Morphology of the structural root system of Sitka spruce 2. Computer simulation of rooting pattern. Forestry, 56, 137-153. |
[15] | Jin Y (晋瑜), Pan CD (潘存德), Wang M (王梅), Wan M (万猛) (2005). Plant community species diversity and comparison of its indices in arid desert land. Arid Land Geography (干旱区地理), 28, 113-119. (in Chinese with English abstract) |
[16] |
Leyser O (2006). Dynamic integration of auxin transport and signaling. Current Biology, 16, R424-R433.
URL PMID |
[17] | Li DS (李德生), Liu WB (刘文彬), Xu MN (许慕农) (1993). A study on water and soil conversation benefits of vegetation in limestone mountain area. Journal of Soil and Water Conservation (水土保持学报), 7(2), 57-62. (in Chinese with English abstract) |
[18] | Li JH (李金花), Li ZQ (李镇清) (2002). Clonal morphological plasticity and biomass allocation pattern of Artemisia frigida and Potentilla acaulis under different grazing intensity. Acta Phytoecologica Sinica (植物生态学报), 26, 435-440. (in Chinese with English abstract) |
[19] | Li YH (李永宏) (1994). Research on the grazing degradation model of the main steppe rangelands in Inner Mongolia and some considerations for the establishment of a computerized rangeland monitoring system. Acta Phytoecolo- gica Sinica (植物生态学报), 18, 68-79. (in Chinese with English abstract) |
[20] | Liu DH (刘定辉), Li Y (李勇) (2003). Mechanism of plant roots improving resistance of soil to concentrated flow erosion. Journal of Soil and Water Conservation (水土保持学报), 17(3), 34-37. (in Chinese with English abstract) |
[21] | Liu WG (刘晚苟), Shan L (山仑) (2003). Effect of soil bulk density on maize growth under different water regimes. Chinese Journal of Applied Ecology (应用生态学报), 14, 1906-1910. (in Chinese with English abstract) |
[22] |
Lynch J (1995). Root architecture and plant productivity. Plant Physiology, 109, 7-13.
DOI URL PMID |
[23] | Mao QZ (毛齐正), Yang XT (杨喜田), Miao L (苗蕾) (2008). The ecological roles and influencing factors of plant root architecture. Henan Science (河南科学), 26, 172-176. (in Chinese with English abstract) |
[24] | McMinn RG (1963). Characteristics of Douglas-fir root systems. Canadian Journal of Botany, 41, 105-122. |
[25] |
Mouchel CF, Briggs GC, Hardtke CS (2004). Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Development, 18, 700-714.
URL PMID |
[26] | Norris JE, Stokes A, Mickovski SB, Cammeraat E, van Beek R, Nicoll BC, Achim A (2008). Slope Stability and Erosion Control: Ecotechnological Solutions. Springer Dordrecht. |
[27] | Oppelt AL, Kurth W, Dzierzon H, Jentschke G, Godbold DL (2000). Structure and fractal dimensions of root systems of four co-occurring fruit tree species from Botswana. Annals of Forest Science, 57, 463-475. |
[28] | Pagès L (1999a). Root system architecture: from its representation to the study of its elaboration. Agronomie, 19, 295-304. |
[29] | Pagès L (1999b). Why model root system architecture? In: Stokes A ed. Developments in Plant and Soil Sciences. Kluwer, Dordrecht. 187-194. |
[30] | Pagès L (2002). Modelling root system architecture. In: Weisel Y, Eshel A, Kafkafi U eds. Plant Roots: The Hidden Half 3rd edn. Marcel Dekker, New York. 175-186. |
[31] | Pagès L, Asseng S, Pellerin S, Diggle A (2000). Modelling root system growth and architecture. In: Smit AL ed. Root Methods: A Handbook. Springer, Berlin. 113-146. |
[32] | Song YC (宋永昌) (2001). Vegetation Ecology (植被生态学). East China Normal University Press, Shanghai, 47-51. (in Chinese) |
[33] |
Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell, 17, 616-627.
DOI URL PMID |
[34] | Sun RY (孙儒泳), Li B (李博), Zhuge Y (诸葛阳), Shang YC (尚玉昌) (1993). General Ecology (普通生态学). China Higher Education Press, Beijing, 135-137. (in Chinese) |
[35] | Tsakaldimi M, Tsitsoni T, Ganatsas P, Zagas T (2009). A comparison of root architecture and shoot morphology between naturally regenerated and container-grown seedlings of Quercus ilex. Plant and Soil, 324, 103-113. |
[36] | Wang K (王库) (2001). Effects of plant roots on soil anti- erosion. Soil and Environmental Sciences (土壤与环境), 10, 250-252. (in Chinese with English abstract) |
[37] | Wang LQ (王立群), Chen SH (陈世鍠) (2003). Study on the principle of dividing root system type of lawn plant. Journal of Inner Mongolia Agricultural University (内蒙古农业大学学报), 24(3), 11-13. (in Chinese with English abstract) |
[38] | Wang SP (汪诗平), Li YH (李永宏) (1999). Degradation mechanism of typical grassland in Inner Mongolia. Chinese Journal of Applied Ecology (应用生态学报), 10, 437-441. (in Chinese with English abstract) |
[39] | Wu Y (吴彦), Liu SQ (刘世全), Wang JX (王金锡) (1997). Effect of plant root system on soil anti-erosion. Chinese Journal of Applications and Environmental Biology (应用与环境生物学报), 3, 119-124. (in Chinese with English abstract) |
[40] | Yu XZ (于向芝), He X (贺晓), Zhang T (张韬), Wang W (王炜) (2007). Response of leaf structures of 8 plants to grazing prohibition in degraded grassland of Inner Mongolia. Acta Ecologica Sinica (生态学报), 27, 1638-1645. (in Chinese with English abstract) |
[41] | Zhang TH (张铜会), Zhao HL (赵哈林), Toshiya O (大黑俊哉), Yasuhito S (白户康人) (2003). Soil characteristics and spatial pattern of vegetation after successive grazing in Horqin Sandy Land, Inner Mongolia. Journal of Arid Land Resources and Environment (干旱区资源与环境), 17(4), 117-121. (in Chinese with English abstract) |
[42] | Zhao W (赵玮), Zhang TH (张铜会), Liu XP (刘新平), Wang SK (王少昆), Luo YY (罗亚勇) (2008). Spatiotemporal variation of soil moisture and its relations with Artemisia halodendron root water content as affected by rainfall. Chinese Journal of Ecology (生态学杂志), 27, 151-156. (in Chinese with English abstract) |
[43] | Zhao XY (赵雪艳), Wang SP (汪诗平) (2009). Responses of the anatomical characteristics of plant leaf to long-term grazing under different stocking rates in Inner Mongolia steppe. Acta Ecologica Sinica (生态学报), 29, 2906-2918. (in Chinese with English abstract) |
[1] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[2] | 白天道, 余春兰, 甘泽朝, 赖海荣, 杨隐超, 黄厚宸, 蒋维昕. 细叶云南松种实性状变异与地理气象因子的关联[J]. 植物生态学报, 2020, 44(12): 1224-1235. |
[3] | 祝维, 余立璇, 赵德海, 贾黎明. 基于根系发育分级的砂壤土下成熟林木根系构型分析[J]. 植物生态学报, 2019, 43(2): 119-130. |
[4] | 吴毅, 刘文耀, 宋亮, 陈曦, 卢华正, 李苏, 石贤萌. 基于林冠塔吊的附生植物生态学研究进展[J]. 植物生态学报, 2016, 40(5): 508-522. |
[5] | 周晓旋, 蔡玲玲, 傅梅萍, 洪礼伟, 沈英嘉, 李庆顺. 红树植物胎生现象研究进展[J]. 植物生态学报, 2016, 40(12): 1328-1343. |
[6] | 宋清华, 赵成章, 史元春, 杜晶, 王继伟, 陈静. 高寒草地甘肃臭草根系分形结构的坡向差异性[J]. 植物生态学报, 2015, 39(8): 816-824. |
[7] | 宋清华, 赵成章, 史元春, 杜晶, 王继伟, 陈静. 不同坡向甘肃臭草根系分叉数和连接长度的权衡关系[J]. 植物生态学报, 2015, 39(6): 577-585. |
[8] | 郑慧玲, 赵成章, 徐婷, 段贝贝, 韩玲, 冯威. 红砂根系分叉数和分支角度权衡关系的坡向差异[J]. 植物生态学报, 2015, 39(11): 1062-1070. |
[9] | 郭京衡, 曾凡江, 李尝君, 张波. 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略[J]. 植物生态学报, 2014, 38(1): 36-44. |
[10] | 覃凤飞,李强,崔棹茗,李洪萍,杨智然. 越冬期遮阴条件下3个不同秋眠型紫花苜蓿品种叶片解剖结构与其光生态适应性[J]. 植物生态学报, 2012, 36(4): 333-345. |
[11] | 吉乃提汗·马木提, 谭敦炎, 成小军. 一年生短命植物疏齿千里光果实异形性的生态学意义[J]. 植物生态学报, 2011, 35(6): 663-671. |
[12] | 谭敦炎, 张洋, 王爱波. 被子植物地下结实和地上/下两型结实的生态适应意义[J]. 植物生态学报, 2010, 34(1): 72-88. |
[13] | 杨小林, 张希明, 李义玲, 李绍才, 孙海龙. 塔克拉玛干沙漠腹地3种植物根系构型 及其生境适应策略[J]. 植物生态学报, 2008, 32(6): 1268-1276. |
[14] | 刘晓风, 谭敦炎. 24种十字花科短命植物的扩散体特征与扩散对策[J]. 植物生态学报, 2007, 31(6): 1019-1027. |
[15] | 蔡颖, 关保华, 安树青, 申瑞玲, 蒋金辉, 董蕾. 克隆植物乌菱对底泥磷含量及植株密度的表型可塑性响应[J]. 植物生态学报, 2007, 31(4): 599-606. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19