植物生态学报 ›› 2016, Vol. 40 ›› Issue (3): 246-254.DOI: 10.17521/cjpe.2015.0377
收稿日期:
2015-10-20
修回日期:
2016-02-19
出版日期:
2016-03-10
发布日期:
2016-03-25
基金资助:
Chen-Song HAO, Qing-Kai WANG, Xiao-Ling SUN()
Received:
2015-10-20
Revised:
2016-02-19
Online:
2016-03-10
Published:
2016-03-25
摘要:
自然界中植物生长所需资源通常呈异质性分布, 具有发达匍匐茎的野牛草(Buchloe dactyloides)在蔓延过程中相连克隆分株常生活在异质性的光环境中。有研究证明, 在异质性光条件下, 植株幼叶的叶片解剖结构受成熟叶所处光照条件的影响, 而异质性光条件下克隆分株的叶片形态解剖结构是否也受相连分株所处光照条件的影响则未见报道。通过设置高光(全光照)和低光(遮阴)两个水平, 对由匍匐茎相连的野牛草克隆分株施以同质和异质性光处理, 研究了异质性光对野牛草叶片解剖结构的影响。结果发现: 在异质性光环境中, 遮阴的野牛草克隆分株的主脉直径、维管束鞘细胞个数、叶片厚度以及近轴侧和远轴侧叶肉细胞的厚度均显著降低; 同质性的低光处理对这些指标则没有显著影响。在异质性光处理下, 未遮阴姊株近轴侧和远轴侧叶肉细胞的厚度以及远轴侧的气孔大小显著增加, 而未遮阴的妹株近轴侧和远轴侧叶肉细胞的厚度、气孔密度和气孔大小、叶片厚度和维管束鞘细胞个数则会降低。同质高光处理下克隆分株近轴侧和远轴侧的气孔密度和气孔大小显著高于同质低光。野牛草克隆分株近轴侧和远轴侧叶肉细胞的厚度、气孔密度和气孔大小受相连分株所处光照条件的显著影响。该研究结果表明: 未遮阴的姊株因为与遮阴的妹株相连而显著受益, 而未遮阴的妹株则因为与遮阴的姊株相连而损耗严重; 在异质性光处理下, 遮阴分株叶片形态上缩减的可塑性生长是为减少维持其存活的消耗, 提高遮阴分株存活率的一种适应性表现。
郝晨淞, 王庆凯, 孙小玲. 异质性光对野牛草叶片解剖结构的影响. 植物生态学报, 2016, 40(3): 246-254. DOI: 10.17521/cjpe.2015.0377
Chen-Song HAO, Qing-Kai WANG, Xiao-Ling SUN. Effects of light heterogeneity on leaf anatomical structure in Buchloe dactyloides. Chinese Journal of Plant Ecology, 2016, 40(3): 246-254. DOI: 10.17521/cjpe.2015.0377
图1 试验开始时由匍匐茎连接的野牛草母株、姊株和妹株。
Fig. 1 Diagrammatic presentation of a Buchloe dactyloides stolon segment consisting of mother ramet, elder daughter ramet and younger daughter ramet at the start of this experiment.
试验处理 Treatment | 姊株 EDR | 妹株 YDR |
---|---|---|
HH | 高光 High light | 高光 High light |
HL | 高光 High light | 低光 Low light |
LH | 低光 Low light | 高光 High light |
LL | 低光 Low light | 低光 Low light |
表1 姊妹分株接受的不同光处理
Table 1 The pattern of light treatments to elder daughter ramets (EDR) and younger daughter ramets (YDR)
试验处理 Treatment | 姊株 EDR | 妹株 YDR |
---|---|---|
HH | 高光 High light | 高光 High light |
HL | 高光 High light | 低光 Low light |
LH | 低光 Low light | 高光 High light |
LL | 低光 Low light | 低光 Low light |
图2 光学显微镜下野牛草叶片的横切结构图。近轴侧和远轴侧叶肉细胞厚度的测定参考Jiang等(2011)的方法, 选取维管束中央(叶片中间)的位置拉线, 如上图的虚线所示。a, 叶肉细胞; b, 维管束鞘细胞; c, 厚壁组织; d, 表皮细胞; e, 木质部; f, 韧皮部; g, 泡状细胞。
Fig. 2 Illustration of an image used to measure the adaxial (lower) and abaxial (upper) mesophyll tissues of Buchloe dactyloides in a cross-section light micrograph. The adaxial and abaxial mesophyll thickness were measured separately relative to the middle of the bundle sheath as shown by the dashed line, which generally represented the middle of the leaf (Jiang et al., 2011). a, mesophyll cells; b, bundle sheath cells; c, sclerenchyma; d, epidermal cell; e, xylem; f, phloem; g, motor cell.
图3 同质和异质性光处理下野牛草姊株和妹株的主脉直径(A)、维管束鞘细胞个数(B)和维管束鞘细胞与叶肉接触面的长度(C) (平均值±标准误差, n = 7)。不同小写/大写字母表示处理间差异显著(p < 0.05)。HH、HL、LH、LL同表1。
Fig. 3 Main vein diameter (MVD) (A), bundle sheath cell number (BSCN) (B), and total contact length between bundle sheath and mesophyll cells (CLBM) (C) of Buchloe dactyloides elder daughter ramets (EDR) and younger daughter ramets (YDR) under homogeneous and heterogeneous light treatments (means ± SE, n = 7). Different letters indicate significant difference among treatments (p < 0.05). For HH, HL, LH and LL, see Table 1.
图4 同质和异质性光处理下野牛草姊株和妹株的叶片厚度(A)、近轴侧叶肉细胞的厚度(B)和远轴侧叶肉细胞的厚度(C) (平均值±标准误差, n = 7)。不同小写/大写字母表示处理间差异显著(p < 0.05)。HH、HL、LH、LL同表1。
Fig 4 Leaf thickness (LT) (A), adaxial mesophyll thickness (AdMT) (B), and abaxial mesophyll thickness (AbMT) (C) of Buchloe dactyloides elder daughter ramets (EDR) and younger daughter ramets (YDR) under homogeneous and heterogeneous light treatments (means ± SE, n = 7). Different letters indicate significant difference among treatments (p < 0.05). For HH, HL, LH and LL, see Table 1.
处理 Treatment | 自由度 Degree of freedom | 主脉直径 MVD | 维管束鞘细胞个数 BSCN | 维管束鞘细胞与叶肉接触面的长度 CLBM | 叶片 厚度 LT | 近轴侧叶肉细胞厚度 AdMT | 远轴侧叶肉细胞厚度 AbMT | 近轴侧 气孔密度 AdSD | 远轴侧 气孔密度 AbSD | 近轴侧 气孔大小 AdSZ | 远轴侧 气孔大小 AbSZ |
---|---|---|---|---|---|---|---|---|---|---|---|
年龄 A | 1, 48 | 0.754 | 0.388 | 0.017 | 1.168 | 4.19* | 4.28* | 0.368 | 0.116 | 33.925*** | 22.998*** |
分株自身所处光照 Lc | 1, 48 | 10.667** | 0.028 | 1.864 | 4.027 | 0.910 | 3.740 | 23.540*** | 31.030*** | 55.845*** | 85.684*** |
相连分株所处光照 Rc | 1, 48 | 3.265 | 0.447 | 0.209 | 0.559 | 8.380** | 17.550*** | 29.793*** | 35.030*** | 130.628*** | 98.520*** |
A × Lc | 1, 48 | 0.018 | 2.495 | 0.988 | 0.008 | 0.110 | 1.630 | 0.828 | 0.485 | 37.874*** | 102.998*** |
Lc × Rc | 1, 48 | 11.227** | 28.096*** | 6.339* | 10.221** | 16.570*** | 20.700*** | 4.506* | 1.486 | 2.041 | 0.112 |
A × Rc | 1, 48 | 0.883 | 4.457* | 0.001 | 1.380 | 12.780*** | 3.730 | 0.092 | 0.059 | 21.304*** | 81.604*** |
A × Lc × Rc | 1, 48 | 0.285 | 2.592 | 1.299 | 0.079 | 1.390 | 3.490 | 0.368 | 0.021 | 0.592 | 66.281*** |
表2 年龄、分株自身所处光照条件和相连分株所处光照条件及其交互作用对野牛草叶片解剖特征的三因素方差分析
Table 2 F-values of three-way ANOVA for the effects of age (A), local condition (Lc), remote condition (Rc), and their interactions on leaf anatomical traits of Buchloe dactyloides
处理 Treatment | 自由度 Degree of freedom | 主脉直径 MVD | 维管束鞘细胞个数 BSCN | 维管束鞘细胞与叶肉接触面的长度 CLBM | 叶片 厚度 LT | 近轴侧叶肉细胞厚度 AdMT | 远轴侧叶肉细胞厚度 AbMT | 近轴侧 气孔密度 AdSD | 远轴侧 气孔密度 AbSD | 近轴侧 气孔大小 AdSZ | 远轴侧 气孔大小 AbSZ |
---|---|---|---|---|---|---|---|---|---|---|---|
年龄 A | 1, 48 | 0.754 | 0.388 | 0.017 | 1.168 | 4.19* | 4.28* | 0.368 | 0.116 | 33.925*** | 22.998*** |
分株自身所处光照 Lc | 1, 48 | 10.667** | 0.028 | 1.864 | 4.027 | 0.910 | 3.740 | 23.540*** | 31.030*** | 55.845*** | 85.684*** |
相连分株所处光照 Rc | 1, 48 | 3.265 | 0.447 | 0.209 | 0.559 | 8.380** | 17.550*** | 29.793*** | 35.030*** | 130.628*** | 98.520*** |
A × Lc | 1, 48 | 0.018 | 2.495 | 0.988 | 0.008 | 0.110 | 1.630 | 0.828 | 0.485 | 37.874*** | 102.998*** |
Lc × Rc | 1, 48 | 11.227** | 28.096*** | 6.339* | 10.221** | 16.570*** | 20.700*** | 4.506* | 1.486 | 2.041 | 0.112 |
A × Rc | 1, 48 | 0.883 | 4.457* | 0.001 | 1.380 | 12.780*** | 3.730 | 0.092 | 0.059 | 21.304*** | 81.604*** |
A × Lc × Rc | 1, 48 | 0.285 | 2.592 | 1.299 | 0.079 | 1.390 | 3.490 | 0.368 | 0.021 | 0.592 | 66.281*** |
图5 同质和异质性光处理下野牛草姊株和妹株近轴侧和远轴侧的气孔密度(A和B)以及近轴侧和远轴侧的气孔大小(C和D) (平均值±标准误差, n = 7)。不同小写/大写字母表示处理间差异显著(p < 0.05)。HH、HL、LH、LL同表1。
Fig. 5 Adaxial stomatal density (AdSD) (A), abaxial stomatal density (AbSD) (B), adaxial stomatal size (AdSZ) (C) and abaxial stomatal size (AbSZ) (D) of Buchloe dactyloides elder daughter ramets (EDR) and younger daughter ramets (YDR) under homogeneous and heterogeneous light treatments (means ± SE, n = 7). Different letters indicate significant difference among treatments (p < 0.05). For HH, HL, LH and LL, see Table 1.
[1] | Abrams MD, Kubiske ME (1990). Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: Influence of light regime and shade-tolerance rank.Forest Ecology and Management, 31, 245-253. |
[2] | Alpert P (1999). Clonal integration in Fragaria chiloensis differs between populations: Ramets from grassland are selfish.Oecologia, 120, 69-76. |
[3] | Alpert P, Holzapfel C, Benson JM (2002). Hormonal modification of resource sharing in the clonal plant Fragaria chiloensis.Functional Ecology, 16, 191-197. |
[4] | Alpert P, Simms EL (2002). The relative advantages of plasticity and fixity in different environments: When is it good for a plant to adjust?Evolutionary Ecology, 16, 285-297. |
[5] | Driscoll SP, Prins A, Olmos E, Kunert KJ, Foyer CH (2006). Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. Journal of Experimental Botany, 57, 381-390. |
[6] | Gong Y, Chen HM, Jiang CD, Shi L (2014). Quantification of leaf anatomical structure and its application in a C4 plant, sorghum.Chinese Bulletin of Botany, 49, 173-182. (in Chinese with English abstract)[巩玥, 陈海苗, 姜闯道, 石雷 (2014). 植物叶片解剖结构的量化及其在C4植物高粱中的应用. 植物学报, 49, 173-182.] |
[7] | Guo W, Song YB, Yu FH (2011). Heterogeneous light supply affects growth and biomass allocation of the understory fern Diplopterygium glaucum at high patch contrast.PLoS ONE, 6, e27998. |
[8] | Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999). Systemic signaling and acclimation in response to excess excitation energy inArabidopsis. Science, 284, 654-657. |
[9] | James SA, Bell DT (2000). Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances.Tree Physiology, 20, 1007-1018. |
[10] | Jiang CD, Wang X, Gao HY, Shi L, Chow WS (2011). Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum.Plant Physiology, 155, 1416-1424. |
[11] | Lake JA, Quick WP, Beerling DJ, Woodward FI (2001). Plant development: Signals from mature to new leaves.Nature, 411, 154-154. |
[12] | Li Q, Liu X, Yue M, Zhang XF, Zhang RC (2011). Effects of physiological integration on photosynthetic efficiency of Trifolium repens in response to heterogeneous UV-B radiation.Photosynthetica, 49, 539-545. |
[13] | Long SP, Farage PK, Bolhár-Nordenkampf HR, Rohrhofer U (1989). Separating the contribution of the upper and lower mesophyll to photosynthesis in Zea mays L. leaves.Planta, 177, 207-216. |
[14] | Magyar G, Kun A, Oborny B, Stuefer JF (2007). Importance of plasticity and decision-making strategies for plant resource acquisition in spatio-temporally variable environments.New Phytologist, 174, 182-193. |
[15] | Murchie EH, Horton P (1997). Acclimation of photosynthesis to irradiance and spectral quality in British plant species: Chlorophyll content, photosynthetic capacity and habitat preference.Plant, Cell & Environment, 20, 438-448. |
[16] | Oguchi R, Hikosaka K, Hirose T (2003). Does the photosynthetic light-acclimation need change in leaf anatomy?Plant, Cell & Environment, 26, 505-512. |
[17] | Oguchi R, Hikosaka K, Hiura T, Hirose T (2008). Costs and benefits of photosynthetic light acclimation by tree seedlings in response to gap formation.Oecologia, 155, 665-675. |
[18] | Qian Y, Li D, Han L, Sun Z (2010). Inter-ramet photosynthate translocation in buffalograss under differential water defi- cit stress.Journal of the American Society for Horticultural Science, 135, 310-316. |
[19] | Soares-Cordeiro AS, Driscoll SP, Pellny TK, Olmos E, ArrabaÇA MC, Foyer CH (2009). Variations in the dorso- ventral organization of leaf structure and Kranz anatomy coordinate the control of photosynthesis and associated signalling at the whole leaf level in monocotyledonous species.Plant, Cell & Environment, 32, 1833-1844. |
[20] | Stuefer JF, During HJ, de Kroon H (1994). High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments.Journal of Ecology, 82, 511-518. |
[21] | Tao YS, Hong SC, Liao YM, Li YX, Liao XL, Quan QM (2013). Cost-benefits of the clonal integration of Cynodon dactylon, a stolon herbaceous plant, under heterogeneous lighting condition.Acta Ecologica Sinica, 33, 6509-6516. (in Chinese with English abstract)[陶应时, 洪胜春, 廖咏梅, 黎云祥, 廖兴利, 权秋梅 (2013). 异质性光照下匍匐茎草本狗牙根克隆整合的耗益. 生态学报, 33, 6509-6516.] |
[22] | Thomas PW, Woodward FI, Quick WP (2004). Systemic irradiance signalling in tobacco.New phytologist, 161, 193-198. |
[23] | van Kleunen M, Fischer M (2007). Progress in the detection of costs of phenotypic plasticity in plants.New Phytologist, 176, 727-730. |
[24] | Wang N, Yu FH, Li PX, He WM, Liu FH, Liu JM, Dong M (2008). Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress.Annals of Botany, 101, 671-678. |
[25] | Wang XL, Li ZQ, Jiang CD, Shi L, Xing Q, Liu LA (2012). Effects of diffuse and direct light on photosynthetic function in sorghum leaf.Acta Agronomica Sinica, 38, 1452-1459. (in Chinese with English abstract)[王晓琳, 李志强, 姜闯道, 石雷, 邢全, 刘立安 (2012). 散射光和直射光对高粱叶片光合功能的影响. 作物学报, 38, 1452-1459.] |
[26] | Wei HJ, Yang HM, Zhao L (2007). The effects of shadowing on stomatal and photosynthetic characteristics of Trifolium repens.Pratacultural Science, 24(10), 94-97. (in Chinese with English abstract)[韦海建, 杨惠敏, 赵亮 (2007). 遮荫环境对白三叶草气孔和光合特性的影响. 草业科学, 24(10), 94-97.] |
[27] | Weijschedé J, Martínková J, de Kroon H, Huber H (2006). Shade avoidance in Trifolium repens: Costs and benefits of plasticity in petiole length and leaf size.New Phytologist, 172, 655-666. |
[28] | Xu Z, Zhou G (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.Journal of Experimental Botany, 59, 3317-3325. |
[29] | Yu FH, Dong M (2003). Effect of light intensity and nutrient availability on clonal growth and clonal morphology of the stoloniferous herbHalerpestes ruthenica. Acta Botanica Sinica, 45, 408-416. |
[30] | Yu FH, Dong M, Krüsi B (2004). Clonal integration helps Psammochloa villosa survive sand burial in an inland dune.New Phytologist, 162, 697-704. |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[3] | 纪若璇, 于笑, 常远, 沈超, 白雪卡, 夏新莉, 尹伟伦, 刘超. 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义[J]. 植物生态学报, 2020, 44(3): 277-286. |
[4] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[5] | 韩吉梅, 张旺锋, 熊栋梁, 张亚黎. 植物光合作用叶肉导度及主要限制因素研究进展[J]. 植物生态学报, 2017, 41(8): 914-924. |
[6] | 段贝贝, 赵成章, 徐婷, 郑慧玲, 冯威, 韩玲. 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析[J]. 植物生态学报, 2016, 40(12): 1289-1297. |
[7] | 王娜, 张韫, 钱文丽, 王政权, 谷加存. CO2浓度倍增对红松幼苗根尖和叶解剖结构及生理功能的影响[J]. 植物生态学报, 2016, 40(1): 60-68. |
[8] | 金鹰, 王传宽. 植物叶片水力与经济性状权衡关系的研究进展[J]. 植物生态学报, 2015, 39(10): 1021-1032. |
[9] | 熊慧, 马承恩, 李乐, 曾辉, 郭大立. 不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应[J]. 植物生态学报, 2014, 38(8): 868-877. |
[10] | 邱权,潘昕,李吉跃,王军辉,马建伟,杜坤. 青藏高原20种灌木抗旱形态和生理特征[J]. 植物生态学报, 2014, 38(6): 562-575. |
[11] | 孙善文, 章永江, 曹坤芳. 热带季雨林不同小生境大戟科植物幼树的叶片结构、耐旱性和光合能力之间的相关性[J]. 植物生态学报, 2014, 38(4): 311-324. |
[12] | 覃凤飞,李强,崔棹茗,李洪萍,杨智然. 越冬期遮阴条件下3个不同秋眠型紫花苜蓿品种叶片解剖结构与其光生态适应性[J]. 植物生态学报, 2012, 36(4): 333-345. |
[13] | 毛立彦, 慕小倩, 董改改, 崔宏安, 冉俊祥. 光照强度对曼陀罗和紫花曼陀罗生长发育的影响[J]. 植物生态学报, 2012, 36(3): 243-252. |
[14] | 刘颖, 谷加存, 卫星, 许旸, 王政权. 树木不同着生位置1级根的形态、解剖结构和氮 含量[J]. 植物生态学报, 2010, 34(11): 1336-1343. |
[15] | 卫星, 刘颖, 陈海波. 黄波罗不同根序的解剖结构及其功能异质性[J]. 植物生态学报, 2008, 32(6): 1238-1247. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3375
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 4622
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La