Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (4): 318-329.DOI: 10.17521/cjpe.2019.0201
Special Issue: 生态学研究的方法和技术; 生态系统碳水能量通量
• Reviews • Previous Articles Next Articles
WEI Jie1,CHEN Chang-Hua1,WANG Jing-Yuan1,WEN Xue-Fa1,2,*()
Received:
2019-08-05
Accepted:
2019-11-14
Online:
2020-04-20
Published:
2020-03-26
Contact:
WEN Xue-Fa
Supported by:
WEI Jie, CHEN Chang-Hua, WANG Jing-Yuan, WEN Xue-Fa. Theory, hypothesis and application advance in chamber-based technology and methods for flux measurement[J]. Chin J Plant Ecol, 2020, 44(4): 318-329.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0201
Fig. 1 System characteristics and CO2 concentration change inside of chamber at non-steady-state (A, B) and steady-state (C, D). Cc and Ca represent the CO2 concentration inside and outside of the chamber, respectively; Pc and Pa represent the atmosphere pressure inside and outside of the chamber, respectively; Tc and Wc represent the air temperature and moisture inside the chamber, respectively.
Fig. 2 Diagram on cooperative observation system of the CO2 carbon stable isotope composition (δ13C) flux of soil and plant (A) and observation system of the CO2 δ13C flux of canopy and ecosystem (B). In A, we only take leaf and soil chambers as an example to show the flow diagram of gas system (stem and root chambers same as leaf chamber).
[1] |
Albanito F, McAllister JL, Cescatti A, Smith P, Robinson D (2012). Dual-chamber measurements of δ13C of soilrespired CO2 partitioned using a field-based three end-member model. Soil Biology & Biochemistry, 47, 106-115.
DOI URL |
[2] |
Bahn M, Schmitt M, Siegwolf R, Richter A, Brüggemann N (2009). Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytologist, 182, 451-460.
DOI URL PMID |
[3] |
Barbour MM, Evans JR, Simonin KA, von Caemmerer S (2016). Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New Phytologist, 210, 875-889.
URL PMID |
[4] |
Barbour MM, McDowell NG, Tcherkez G, Bickford CP, Hanson DT (2007). A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. Plant, Cell & Environment, 30, 469-482.
DOI URL PMID |
[5] | Bowling DR, Egan JE, Hall SJ, Risk DA (2015). Environmental forcing does not induce diel or synoptic variation in carbon isotope content of forest soil respiration. Biogeosciences, 12, 5143-5160. |
[6] |
Bowling DR, Pataki DE, Randerson JT (2008). Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytologist, 178, 24-40.
URL PMID |
[7] |
Buchmann N, Ehleringer JR (1998). CO2 concentration profiles, and carbon and oxygen isotopes in C3 and C4 crop canopies. Agricultural and Forest Meteorology, 89, 45-58.
DOI URL |
[8] | Chen CH, Pang JP, Wei J, Wen XF, Sun XM (2017). Intercomparison of three models for δ13C of respiration with four regression approaches. Agricultural and Forest Meteorology, 247, 229-239. |
[9] | Chen CH, Wei J, Wen XF, Sun XM, Guo QJ (2019). Photosynthetic carbon isotope discrimination and effects on daytime NEE partitioning in a subtropical mixed conifer plantation. Agricultural and Forest Meteorology, 272-273, 143-155. |
[10] | Davidson EA, Savage K, Verchot LV, Navarro R (2002). Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology, 113, 21-37. |
[11] |
Douthe C, Dreyer E, Epron D, Warren CR (2011). Mesophyll conductance to CO2, assessed from online TDL-AS records of 13CO2 discrimination, displays small but significant short-term responses to CO2 and irradiance in Eucalyptus seedlings. Journal of Experimental Botany, 62, 5335-5346.
DOI URL PMID |
[12] |
Dubbert M, Cuntz M, Piayda A, Werner C (2014). Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions. New Phytologist, 203, 1242-1252.
URL PMID |
[13] |
Ekblad A, Högberg P (2001). Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia, 127, 305-308.
DOI URL PMID |
[14] |
Epron D, Cabral OMR, Laclau JP, Dannoura M, Packer AP, Plain C, Battie-Laclau P, Moreira MZ, Trivelin PCO, Bouillet JP, Gérant D, Nouvellon Y (2016). In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon. Tree Physiology, 36, 6-21.
DOI URL PMID |
[15] | Gao J, Han GL, Huang BX, Shi SJ, Jia CR, Ren YF (2011). Integration and performance test of an automatic multi- channel long-term soil respiration measurement system. Scientia Silvae Sinicae, 47(9), 153-157. |
[ 高峻, 韩光鲁, 黄彬香, 施生锦, 贾长荣, 任迎丰 (2011). 多通道土壤呼吸长期自动测量系统的集成与性能测试. 林业科学, 47(9), 153-157.] | |
[16] | Griffis TJ (2013). Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: a review of optical isotope techniques and their application. Agricultural and Forest Meteorology, 174-175, 85-109. |
[17] | Griffis TJ, Baker JM, Sargent SD, Tanner BD, Zhang J (2004). Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. Agricultural and Forest Meteorology, 124, 15-29. |
[18] | Hafner S, Unteregelsbacher S, Seeber E, Lena B, Xu XL, Li XG, Guggenberger G, Miehe G, Kuzyakov Y (2012). Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Global Change Biology, 18, 528-538. |
[19] |
Hanson PJ, Gunderson CA (2009). Root carbon flux: measurements versus mechanisms. New Phytologist, 184, 4-6.
URL PMID |
[20] |
He NP, Wang RM, Gao Y, Dai JZ, Wen XF, Yu GR (2013). Changes in the temperature sensitivity of SOM decomposition with grassland succession: implications for soil C sequestration. Ecology and Evolution, 3, 5045-5054.
URL PMID |
[21] |
Hilman B, Angert A (2016). Measuring the ratio of CO2 efflux to O2 influx in tree stem respiration. Tree Physiology, 36, 1422-1431.
URL PMID |
[22] |
Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang JW, Subke JA (2013). Ecosystem-level controls on root-rhizosphere respiration. New Phytologist, 199, 339-351.
DOI URL PMID |
[23] | Hutchinson GL, Livingston GP (2001). Vents and seals in non-steady-state chambers used for measuring gas exchange between soil and the atmosphere. European Journal of Soil Science, 52, 675-682. |
[24] | Imer D, Merbold L, Eugster W, Buchmann N (2013). Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands. Biogeosciences, 10, 5931-5945. |
[25] |
Jia SX, McLaughlin NB, Gu JC, Li XP, Wang ZQ (2013). Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica. Tree Physiology, 33, 579-589.
URL PMID |
[26] | Kammer A, Tuzson B, Emmenegger L, Knohl A, Mohn J, Hagedorn F (2011). Application of a quantum cascade laser- based spectrometer in a closed chamber system for real- time δ13C and δ18O measurements of soil-respired CO2. Agricultural and Forest Meteorology, 151, 39-48. |
[27] | Keeling CD (1958). The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta, 13, 322-334. |
[28] |
Kuptz D, Fleischmann F, Matyssek R, Grams TEE (2011a). Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling. New Phytologist, 191, 160-172.
URL PMID |
[29] |
Kuptz D, Matyssek R, Grams TEE (2011b). Seasonal dynamics in the stable carbon isotope composition δ¹³C from non-leafy branch, trunk and coarse root CO2 efflux of adult deciduous (Fagus sylvatica) and evergreen (Picea abies) trees. Plant, Cell & Environment, 34, 363-373.
URL PMID |
[30] | Lai ZR, Lu S, Zhang YQ, Wu B, Qin SG, Feng W, Liu JB, Fa KY (2016). Diel patterns of fine root respiration in a dryland shrub, measured in situ over different phenological stages. Journal of Forest Research, 21, 31-42. |
[31] | Lai ZR, Zhang YQ, Wu B, Qin SG, Feng W, Liu JB (2015). Impacts of morphological traits and temperature on fine root respiration during dormancy of Caragana korshinskii. Ecological Research, 30, 337-345. |
[32] | Li JJ, Liu L, Chen DM, Xu FW, Cheng JH, Bai YF (2019). Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe. Chinese Journal of Plant Ecology, 43, 152-164. |
[ 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞 (2019). 底座入土深度和面积对典型草原土壤呼吸测定结果的影响. 植物生态学报, 43, 152-164.] | |
[33] |
Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP (2018). Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of the Total Environment, 635, 423-431.
URL PMID |
[34] | Livingston GP, Hutchinson GL, Spartalian K (2006). Trace gas emission in chambers: a non-steady-state diffusion model. Soil Science Society of America Journal, 70, 1459-1469. |
[35] | Lundegårdh H (1927). Carbon dioxide evolution of soil and crop growth. Soil Science, 23, 417-453. |
[36] | Maier M, Schack-Kirchner H (2014). Using the gradient method to determine soil gas flux: a review. Agricultural and Forest Meteorology, 192-193, 78-95. |
[37] |
Maier M, Schack-Kirchner H, Hildebrand EE, Schindler D (2011). Soil CO2 efflux vs. soil respiration: implications for flux models. Agricultural and Forest Meteorology, 151, 1723-1730.
DOI URL |
[38] |
Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009). Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiology, 29, 579-585.
URL PMID |
[39] |
Makita N, Kosugi Y, Dannoura M, Takanashi S, Niiyama K, Kassim AR, Nik AR (2012). Patterns of root respiration rates and morphological traits in 13 tree species in a tropical forest. Tree Physiology, 32, 303-312.
URL PMID |
[40] |
Makita N, Yaku R, Ohashi M, Fukuda K, Ikeno H, Hirano Y (2013). Effects of excising and washing treatments on the root respiration rates of Japanese cedar (Cryptomeria japonica) seedlings. Journal of Forest Research, 18, 379-383.
DOI URL |
[41] |
Marron N, Plain C, Longdoz B, Epron D (2009). Seasonal and daily time course of the 13C composition in soil CO2 efflux recorded with a tunable diode laser spectrophotometer (TDLS). Plant and Soil, 318, 137-151.
DOI URL |
[42] |
Marsden C, Nouvellon Y, MʼBou AT, Saint-Andre L, Jourdan C, Kinana A, Epron D (2008). Two independent estimations of stand-level root respiration on clonal Eucalyptus stands in Congo: up scaling of direct measurements on roots versus the trenched-plot technique. New Phytologist, 177, 676-687.
DOI URL PMID |
[43] | Matter JM, Kelemen PB (2009). Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nature Geoscience, 2, 837-841. |
[44] |
Mencuccini M, Hölttä T (2010). The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked. New Phytologist, 185, 189-203.
URL PMID |
[45] |
Merbold L, Steinlin C, Hagedorn F (2013). Winter greenhouse gas emissions (CO2, CH4 and N2O) from a sub-alpine grassland. Biogeosciences, 10, 3185-3203.
DOI URL |
[46] |
Midwood AJ, Gebbing T, Wendler R, Sommerkorn M, Hunt JE, Millard P (2006). Collection and storage of CO2 for 13C analysis: an application to separate soil CO2 efflux into root- and soil-derived components. Rapid Communications in Mass Spectrometry, 20, 3379-3384.
URL PMID |
[47] |
Midwood AJ, Millard P (2011). Challenges in measuring the δ13C of the soil surface CO2 efflux. Rapid Communications in Mass Spectrometry, 25, 232-242.
URL PMID |
[48] |
Midwood AJ, Thornton B, Millard P (2008). Measuring the 13C content of soil-respired CO2 using a novel open chamber system. Rapid Communications in Mass Spectrometry, 22, 2073-2081.
DOI URL PMID |
[49] | Millard P, Midwood AJ, Hunt JE, Whitehead D, Boutton TW (2008). Partitioning soil surface CO2 efflux into autotrophic and heterotrophic components, using natural gradients in soil δ13C in an undisturbed savannah soil. Soil Biology & Biochemistry, 40, 1575-1582. |
[50] | Miller JB, Tans PP (2003). Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus B: Chemical and Physical Meteorology, 55, 207-214. |
[51] |
Moreno-Gutiérrez C, Dawson TE, Nicolás E, Querejeta JI (2012). Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytologist, 196, 489-496.
URL PMID |
[52] |
Nickerson N, Risk D (2009). A numerical evaluation of chamber methodologies used in measuring the δ13C of soil respiration. Rapid Communications in Mass Spectrometry, 23, 2802-2810.
DOI URL PMID |
[53] | Ohlsson KEA, Singh B, Holm S, Nordgren A, Lövdahl L, Högberg P (2005). Uncertainties in static closed chamber measurements of the carbon isotopic ratio of soil-respired CO2. Soil Biology & Biochemistry, 37, 2273-2276. |
[54] | Pang JP, Wen XF (2018). A review of the calibration methods for measuring the carbon and oxygen isotopes in CO2 based on isotope ratio infrared spectroscopy. Chinese Journal of Plant Ecology, 42, 143-152. |
[ 庞家平, 温学发 (2018). 稳定同位素红外光谱技术测定CO2同位素校正方法的研究进展. 植物生态学报, 42, 143-152.] | |
[55] |
Pang JP, Wen XF, Sun XM (2016a). Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China. Science of the Total Environment, 539, 322-330.
DOI URL PMID |
[56] | Pang JP, Wen XF, Sun XM, Huang K (2016b). Intercomparison of two cavity ring-down spectroscopy analyzers for atmospheric 13CO2/12CO2 measurement. Atmospheric Measurement Techniques, 9, 3879-3891. |
[57] | Parkin TB, Kaspar TC, Senwo Z, Prueger JH, Hatfield JL (2005). Relationship of soil respiration to crop and landscape in the walnut creek watershed. Journal of Hydrometeorology, 6, 812-824. |
[58] |
Plain C, Gerant D, Maillard P, Dannoura M, Dong Y, Zeller B, Priault P, Parent F, Epron D (2009). Tracing of recently assimilated carbon in respiration at high temporal resolution in the field with a tuneable diode laser absorption spectrometer after in situ 13CO2 pulse labelling of 20-year-old beech trees. Tree Physiology, 29, 1433-1445.
DOI URL PMID |
[59] |
Powers HH, Hunt JE, Hanson DT, McDowell NG (2010). A dynamic soil chamber system coupled with a tunable diode laser for online measurements of δ13C, δ18O, and efflux rate of soil-respired CO2. Rapid Communications in Mass Spectrometry, 24, 243-253.
URL PMID |
[60] | Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinistö S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Grünzweig JM, Reth S, Subke JA, Savage K, Kutsch W, Østreng G, Ziegler W, Anthoni P, Lindroth A, Hari P (2004). Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 123, 159-176. |
[61] |
Rey A (2015). Mind the gap: non-biological processes contributing to soil CO2 efflux. Global Change Biology, 21, 1752-1761.
DOI URL PMID |
[62] |
Salomón RL, Valbuena-Carabaña M, Gil L, McGuire MA, Teskey RO, Aubrey DP, González-Doncel I, Rodríguez- Calcerrada J (2016). Temporal and spatial patterns of internal and external stem CO2 fluxes in a sub-Mediterranean oak. Tree Physiology, 36, 1409-1421.
DOI URL PMID |
[63] | Savage K, Phillips R, Davidson E (2014). High temporal frequency measurements of greenhouse gas emissions from soils. Biogeosciences, 11, 2709-2720. |
[64] | Shi XL, Wang CK, Xu F, Wang XC (2010). Temporal dynamics and influencing factors of stem respiration for four temperate tree species. Acta Ecologica Sinica, 30, 3994-4003. |
[ 石新立, 王传宽, 许飞, 王兴昌 (2010). 四个温带树种树干呼吸的时间动态及其影响因子. 生态学报, 30, 3994-4003.] | |
[65] |
Snell HSK, Robinson D, Midwood AJ (2014). Minimising methodological biases to improve the accuracy of partitioning soil respiration using natural abundance 13C. Rapid Communications in Mass Spectrometry, 28, 2341-2351.
URL PMID |
[66] |
Sturm P, Tuzson B, Henne S, Emmenegger L (2013). Tracking isotopic signatures of CO2 at the high altitude site Jungfraujoch with laser spectroscopy: analytical improvements and representative results. Atmospheric Measurement Techniques, 6, 1659-1671.
DOI URL |
[67] |
Subke JA, Vallack HW, Magnusson T, Keel SG, Metcalfe DB, Högberg P, Ineson P (2009). Short-term dynamics of abiotic and biotic soil 13CO2 effluxes after in situ 13CO2 pulse labelling of a boreal pine forest. New Phytologist, 183, 349-357.
DOI URL PMID |
[68] |
Sun LJ, Ataka M, Kominami Y, Yoshimura K (2017). Relationship between fine-root exudation and respiration of two Quercus species in a Japanese temperate forest. Tree Physiology, 37, 1011-1020.
URL PMID |
[69] |
Sun T, Mao ZJ (2011). Functional relationships between morphology and respiration of fine roots in two Chinese temperate tree species. Plant and Soil, 346, 375-384.
DOI URL |
[70] | Susfalk RB, Cheng WX, Johnson DW, Walker RF, Verburg P, Fu S (2002). Lateral diffusion and atmospheric CO2 mixing compromise estimates of rhizosphere respiration in a forest soil. Canadian Journal of Forest Research, 32, 1005-1015. |
[71] |
Wang JY, Wang XJ, Wang JP (2018a). Profile distribution of CO2 in an arid saline-alkali soil with gypsum and wheat straw amendments: a two-year incubation experiment. Scientific Reports, 8, 11939. DOI: 10.038/s41598-018-30312-0.
URL PMID |
[72] | Wang XW, Mao ZJ, McGuire MA, Teskey RO (2019). Stem radial CO2 conductance affects stem respiratory CO2 fluxes in ash and birch trees. Journal of Forestry Research, 30, 21-29. |
[73] | Wang YY, Li XX, Dong WX, Wu DM, Hu CS, Zhang YM, Luo YQ (2018b). Depth-dependent greenhouse gas production and consumption in an upland cropping system in northern China. Geoderma, 319, 100-112. |
[74] | Wei J, Liu WG, Wan H, Cheng JM, Li WJ (2016). Differential allocation of carbon in fenced and clipped grasslands: a 13C tracer study in the semiarid Chinese Loess Plateau. Plant and Soil, 406, 251-263. |
[75] | Weiss I, Mizrahi Y, Raveh E (2009). Chamber response time: a neglected issue in gas exchange measurements. Photosynthetica, 47, 121-124. |
[76] | Wen XF, Meng Y, Zhang XY, Sun XM, Lee X (2013). Evaluating calibration strategies for isotope ratio infrared spectroscopy for atmospheric 13CO2/12CO2 measurement. Atmospheric Measurement Techniques, 6, 1491-1501. |
[77] | Wen XF, Sun XM, Liu YF, Li XB (2007). Effects of linear and exponential fitting on the initial rate of change in CO2 concentration across the soil surface. Journal of Plant Ecology (Chinese Version), 31, 380-385. |
[ 温学发, 孙晓敏, 刘允芬, 李晓波 (2007). 线性和指数回归方法对土壤呼吸CO2扩散速率估算的影响. 植物生态学报, 31, 380-385.] | |
[78] | Wen XF, Sun XM, Zhang SC, Yu GR, Sargent SD, Lee XH (2008). Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. Journal of Hydrology, 349, 489-500. |
[79] | Wen XF, Zhang XY, Wei J, Lü SD, Wang J, Chen CH, Song XW, Wang JY, Dai XQ (2019). Understanding the biogeochemical process and mechanism of ecosystem carbon cycle from the perspective of the earth’s critical zone. Advances in Earth Science, 34, 471-479. |
[ 温学发, 张心昱, 魏杰, 吕斯丹, 王静, 陈昌华, 宋贤威, 王晶苑, 戴晓琴 (2019). 地球关键带视角理解生态系统碳生物地球化学过程与机制. 地球科学进展, 34, 471-479.] | |
[80] |
Wingate L, Ogée J, Burlett R, Bosc A, Devaux M, Grace J, Loustau D, Gessler A (2010). Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration. New Phytologist, 188, 576-589.
DOI URL PMID |
[81] | Wu YB, Tan HC, Deng YC, Wu J, Xu XL, Wang YF, Tang YH, Teruo H, Cui XY (2010). Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field13C pulse-labeling. Global Change Biology, 16, 2322-2333. |
[82] | Xu LK, Furtaw MD, Madsen RA, Garcia RL, Anderson DJ, McDermitt DK (2006). On maintaining pressure equilibrium between a soil CO2 flux chamber and the ambient air. Journal of Geophysical Research, 111, D08S10. DOI: 10.1029/2005JD006435. |
[83] |
Yang JY, He YJ, Aubrey DP, Zhuang QL, Teskey RO (2016). Global patterns and predictors of stem CO2 efflux in forest ecosystems. Global Change Biology, 22, 1433-1444.
DOI URL PMID |
[84] | Yang QP, Xu M, Chi YG, Zheng YP, Shen RC, Li PX, Dai HT (2012). Temporal and spatial variations of stem CO2 efflux of three species in subtropical China. Journal of Plant Ecology, 5, 229-237. |
[85] |
Yang QP, Zhang WD, Li RS, Zheng WH, Yang JY, Xu M, Guan X, Huang K, Chen LC, Wang QK, Wang SL (2019). Effects of girdling on stem CO2 efflux and its temperature sensitivity in Chinese fir and sweetgum trees. Agricultural and Forest Meteorology, 268, 116-123.
DOI URL |
[86] | Yu GR (2009). Scientific Frontier on Human Activities and Ecosystem Changes. Higher Education Press, Beijing. |
[ 于贵瑞 (2009). 人类活动与生态系统变化的前言科学问题. 高等教育出版社, 北京.] | |
[87] | Yu GR, Sun XM (2017). Principles of Flux Measurement in Terrestrial Ecosystems. 2nd ed. Higher Education Press, Beijing. |
[ 于贵瑞, 孙晓敏 (2017). 陆地生态系统通量观测的原理与方法. 2版. 高等教育出版社, 北京.] | |
[88] | Yu GR, Wen XF, Li XB, Liu YY, Xing YW, Zhu XN (2015). Device and Method for Verifying the Flux of Soil Carbon Dioxide, Methane and Nitrous Oxide. China, 201410527692.5. 2015-01-14. |
[ 于贵瑞, 温学发, 李晓波, 刘亚勇, 邢友武, 朱湘宁 (2015). 土壤二氧化碳、甲烷和氧化亚氮通量验证装置以及验证方法. 中国, 201410527692.5. 2015-01-14.] | |
[89] | Yu ZL (2017). Ecology: Current Knowledge and Future Challenges. Higher Education Press, Beijing. |
[ 于振良 (2017). 生态学的现状与发展趋势. 高等教育出版社, 北京.] | |
[90] | Zhao JY, Xiao W, Zhang M, Wang JY, Wen XF, Lee XH (2020). Applications and prospect of the flux-gradient method in measuring the greenhouse gases and isotope fluxes. Chinese Journal of Plant Ecology, 44, 305-317. |
[ 赵佳玉, 肖薇, 张弥, 王晶苑, 温学发, 李旭辉 (2020). 通量梯度法在温室气体及同位素通量观测研究中的应用与展望, 植物生态学报, 44, 305-317.] | |
[91] | Zhao KJ, Dong BQ, Jia ZK, Ma LY (2018). Effect of climatic factors on the temporal variation of stem respiration in Larix principis-rupprechtii Mayr. Agricultural and Forest Meteorology, 248, 441-448. |
[92] | Zhou J, Yang ZY, Wu GH, Yang YZ, Lin GH (2018). The relationship between soil CO2 efflux and its carbon isotopic composition under non-steady-state conditions. Agricultural and Forest Meteorology, 256-257, 492-500. |
[1] | QU Ze-Kun, ZHU Li-Qin, JIANG Qi, WANG Xiao-Hong, YAO Xiao-Dong, CAI Shi-Feng, LUO Su-Zhen, sCHEN Guang-Shui. Nutrient foraging strategies of arbuscular mycorrhizal tree species in a subtropical evergreen broadleaf forest and their relationship with fine root morphology [J]. Chin J Plant Ecol, 2024, 48(4): 416-427. |
[2] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[3] | YAO Meng, KANG Rong-Hua, WANG Ang, MA Fang-Yuan, LI Jin, TAI Zi-Han, FANG Yun-Ting. Foliar assimilation and distribution of NO2 in Schima superba and Pinus massoniana seedlings using 15N stable isotope tracing technique [J]. Chin J Plant Ecol, 2023, 47(1): 114-122. |
[4] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[5] | WU Kai, LI Kai, JIA Wei-Han, LIAO Meng-Na, NI Jian. Modern processes of lacustrine plant sedimentary ancient DNA [J]. Chin J Plant Ecol, 2022, 46(7): 735-752. |
[6] | FANG Yun-Ting, LIU Dong-Wei, ZHU Fei-Fei, TU Ying, LI Shan-Long, HUANG Shao-Nan, QUAN Zhi, WANG Ang. Applications of nitrogen stable isotope techniques in the study of nitrogen cycling in terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(4): 373-383. |
[7] | ZHAO Jia-Yu, XIAO Wei, ZHANG Mi, WANG Jing-Yuan, WEN Xue-Fa, LEE Xu-Hui. Applications and prospect of the flux-gradient method in measuring the greenhouse gases and isotope fluxes [J]. Chin J Plant Ecol, 2020, 44(4): 305-317. |
[8] | Ting LÜ, Xi-Ning ZHAO, Xiao-Dong GAO, Yan-Hui PAN. Soil water use strategy of dominant species in typical natural and planted shrubs in loess hilly region [J]. Chin J Plant Ecol, 2017, 41(2): 175-185. |
[9] | Bo-Kai DOU, Yi-Dong WANG, Dong-Mei XUE, Zhong-Liang WANG. Research advancement in the processes and mechanisms of transporting methane by emerged herbaceous plants and hygrophytes [J]. Chin J Plan Ecolo, 2017, 41(11): 1208-1218. |
[10] | Ting-Ting ZOU, Zi-Liang ZHANG, Na LI, Yuan-Shuang YUAN, Dong-Hui ZHENG, Qin LIU, Hua-Jun YIN. Differential uptakes of different forms of soil nitrogen among major tree species in subalpine coniferous forests of western Sichuan, China [J]. Chin J Plant Ecol, 2017, 41(10): 1051-1059. |
[11] | Chun-Xia HE, Ping CHEN, Ping MENG, Jin-Song ZHANG, Hong-Guo YANG. Interspecific water use strategies of a Juglans regia and Isatis tinctoria/Senna tora agroforestry [J]. Chin J Plan Ecolo, 2016, 40(2): 151-164. |
[12] | WANG Dan,ZHANG Rong,XIONG Jun,GUO Hai-Qiang,ZHAO Bin. Contribution of invasive species Spartina alterniflora to soil organic carbon pool in coastal wetland: Stable isotope approach [J]. Chin J Plan Ecolo, 2015, 39(10): 941-949. |
[13] | XU Bing-Xin, HU Yi-Gang, ZHANG Zhi-Shan, CHEN Yong-Le, ZHANG Peng, LI Gang. Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region [J]. Chin J Plant Ecol, 2014, 38(8): 809-820. |
[14] | DAI Yue,ZHENG Xin-Jun,TANG Li-Song,LI Yan. Dynamics of water usage in Haloxylon ammodendron in the southern edge of the Gurbantünggüt Desert [J]. Chin J Plant Ecol, 2014, 38(11): 1214-1225. |
[15] | ZHOU Hai,ZHENG Xin-Jun,TANG Li-Song,LI Yan. Differences and similarities between water sources of Tamarix ramosissima, Nitraria sibirica and Reaumuria soongorica in the southeastern Junggar Basin [J]. Chin J Plant Ecol, 2013, 37(7): 665-673. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn