Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (1): 114-122.DOI: 10.17521/cjpe.2022.0085
Special Issue: 稳定同位素生态学
• Research Articles • Previous Articles Next Articles
YAO Meng1,2, KANG Rong-Hua1,3,*(), WANG Ang1,3, MA Fang-Yuan4, LI Jin1, TAI Zi-Han1,2, FANG Yun-Ting1,3
Received:
2022-03-07
Accepted:
2022-04-22
Online:
2023-01-20
Published:
2022-08-26
Contact:
*KANG Rong-Hua(kangrh@iae.ac.cn)
Supported by:
YAO Meng, KANG Rong-Hua, WANG Ang, MA Fang-Yuan, LI Jin, TAI Zi-Han, FANG Yun-Ting. Foliar assimilation and distribution of NO2 in Schima superba and Pinus massoniana seedlings using 15N stable isotope tracing technique[J]. Chin J Plant Ecol, 2023, 47(1): 114-122.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0085
组织 Tissue | 木荷 S. superba | 马尾松 P. massoniana | ||
---|---|---|---|---|
黑暗 Dark | 光照 Light | 黑暗 Dark | 光照 Light | |
叶 Leaf | 1.10 ± 0.05 | 1.03 ± 0.06 | 1.09 ± 0.03 | 1.08 ± 0.07 |
枝 Branch | 0.39 ± 0.03 | 0.39 ± 0.04 | 0.46 ± 0.05 | 0.46 ± 0.06 |
干 Stem | 0.20 ± 0.02 | 0.20 ± 0.01 | 0.34 ± 0.03 | 0.29 ± 0.02 |
根 Root | 0.34 ± 0.01 | 0.31 ± 0.01 | 0.52 ± 0.11 | 0.45 ± 0.01 |
Table 1 Nitrogen content (%) of Schima superba and Pinus massoniana (mean ± SE)
组织 Tissue | 木荷 S. superba | 马尾松 P. massoniana | ||
---|---|---|---|---|
黑暗 Dark | 光照 Light | 黑暗 Dark | 光照 Light | |
叶 Leaf | 1.10 ± 0.05 | 1.03 ± 0.06 | 1.09 ± 0.03 | 1.08 ± 0.07 |
枝 Branch | 0.39 ± 0.03 | 0.39 ± 0.04 | 0.46 ± 0.05 | 0.46 ± 0.06 |
干 Stem | 0.20 ± 0.02 | 0.20 ± 0.01 | 0.34 ± 0.03 | 0.29 ± 0.02 |
根 Root | 0.34 ± 0.01 | 0.31 ± 0.01 | 0.52 ± 0.11 | 0.45 ± 0.01 |
组织 Tissue | 木荷 S. superba | 马尾松 P. massoniana | ||
---|---|---|---|---|
黑暗 Dark | 光照 Light | 黑暗 Dark | 光照 Light | |
叶 Leaf | 5.08 ± 3.54b | 4.69 ± 1.21b | 24.50 ± 2.81a | 25.00 ± 3.26a |
枝 Branch | 2.24 ± 0.63a | 1.76 ± 0.26a | 2.88 ± 1.77a | 3.58 ± 1.10a |
干 Stem | 10.38 ± 1.40b | 12.69 ± 0.79b | 17.56 ± 1.52a | 16.00 ± 3.88ab |
根 Root | 17.64 ± 3.26a | 33.21 ± 1.97a | 8.66 ± 0.27ab | 7.48 ± 1.55b |
Table 2 Dry mass (g) of Schima superba and Pinus massoniana (mean ± SE)
组织 Tissue | 木荷 S. superba | 马尾松 P. massoniana | ||
---|---|---|---|---|
黑暗 Dark | 光照 Light | 黑暗 Dark | 光照 Light | |
叶 Leaf | 5.08 ± 3.54b | 4.69 ± 1.21b | 24.50 ± 2.81a | 25.00 ± 3.26a |
枝 Branch | 2.24 ± 0.63a | 1.76 ± 0.26a | 2.88 ± 1.77a | 3.58 ± 1.10a |
干 Stem | 10.38 ± 1.40b | 12.69 ± 0.79b | 17.56 ± 1.52a | 16.00 ± 3.88ab |
根 Root | 17.64 ± 3.26a | 33.21 ± 1.97a | 8.66 ± 0.27ab | 7.48 ± 1.55b |
树种 Species | 黑暗 Dark | 光照 Light |
---|---|---|
木荷 S. superba | 738.69 ± 348.00b | 783.67 ± 160.37b |
马尾松 P. massoniana | 5138.45 ± 629.32a | 6 895.78 ± 1255.28a |
Table 3 Leave area (cm2) of Schima superba and Pinus massoniana (mean ± SE)
树种 Species | 黑暗 Dark | 光照 Light |
---|---|---|
木荷 S. superba | 738.69 ± 348.00b | 783.67 ± 160.37b |
马尾松 P. massoniana | 5138.45 ± 629.32a | 6 895.78 ± 1255.28a |
Fig. 3 15N isotopic abundance (δ15N) in Schima superba (A) and Pinus massoniana (B) under natural, dark and light conditions after 15NO2 fumigation (mean ± SE, n = 3). Different lewercase letters indicate significant differences in δ15N of same tissue under different treatments (p < 0.05).
组织 Tissue | 木荷 S. superba | 马尾松 P. massoniana | ||
---|---|---|---|---|
黑暗 Dark | 光照 Light | 黑暗 Dark | 光照 Light | |
叶 Leaf | 1.878 | 9.009 | 0.498 | 2.690 |
枝 Branch | 0.374 | 0.142 | 0.912 | 0.159 |
干 Stem | 0.138 | 0.064 | 0.485 | 0.112 |
根 Root | 0.020 | 0.059 | 0.019 | 0.006 |
Table 4 15N recovery per dry mass (g-1) in different tissues of Schima superba and Pinus massoniana
组织 Tissue | 木荷 S. superba | 马尾松 P. massoniana | ||
---|---|---|---|---|
黑暗 Dark | 光照 Light | 黑暗 Dark | 光照 Light | |
叶 Leaf | 1.878 | 9.009 | 0.498 | 2.690 |
枝 Branch | 0.374 | 0.142 | 0.912 | 0.159 |
干 Stem | 0.138 | 0.064 | 0.485 | 0.112 |
根 Root | 0.020 | 0.059 | 0.019 | 0.006 |
[1] |
Bortolazzi A, da Ros L, Rodeghiero M, Tognetti R, Tonon G, Ventura M (2021). The canopy layer, a biogeochemical actor in the forest N-cycle. Science of the Total Environment, 776, 146024. DOI: 10.1016/j.scitotenv.2021.146024.
DOI |
[2] |
Bryan Dail D, Hollinger DY, Davidson EA, Fernandez I, Sievering HC, Scott NA, Gaige E (2009). Distribution of nitrogen- 15 tracers applied to the canopy of a mature spruce- hemlock stand, Howland, Maine, USA. Oecologia, 160, 589-599.
DOI PMID |
[3] |
Chaparro-Suarez IG, Meixner FX, Kesselmeier J (2011). Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture. Atmospheric Environment, 45, 5742-5750.
DOI URL |
[4] |
Dong SF, Cheng LL, Scagel CF, Fuchigami LH (2002). Nitrogen absorption, translocation and distribution from urea applied in autumn to leaves of young potted apple (Malus domestica) trees. Tree Physiology, 22, 1305-1310.
PMID |
[5] | Eller ASD, Sparks JP (2006). Predicting leaf-level fluxes of O3 and NO2: the relative roles of diffusion and biochemical processes. Plant, Cell & Environment, 29, 1742-1750. |
[6] |
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226.
DOI URL |
[7] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[8] |
Geßler A, Rienks M, Rennenberg H (2002). Stomatal uptake and cuticular adsorption contribute to dry deposition of NH3 and NO2 to needles of adult spruce (Picea abies) trees. New Phytologist, 156, 179-194.
DOI URL |
[9] |
Jensen ES, Pilegaard K (1993). Absorption of nitrogen dioxide by barley in open-top chambers. New Phytologist, 123, 359-364.
DOI URL |
[10] |
Ke PP, Yu Q, Luo Y, Kang RH, Duan L (2020). Fluxes of nitrogen oxides above a subtropical forest canopy in China. Science of the Total Environment, 715, 136993. DOI: 10.1016/j.scitotenv.2020.136993.
DOI |
[11] | Luo YZ, Cheng ZY (2011). Impact of water stress on leaf water potential, transpiration rate (Tr) and stomatal conductance (Gs) of alfalfa. Acta Agrestia Sinica, 19, 215-221. |
[ 罗永忠, 成自勇 (2011). 水分胁迫对紫花苜蓿叶水势、蒸腾速率和气孔导度的影响. 草地学报, 19, 215-221.]
DOI |
|
[12] | Morikawa H, Higaki A, Nohno M, Takahashi M, Kamada M, Nakata M, Toyohara G, Okamura Y, Matsui K, Kitani S, Fujita K, Irifune K, Goshima N (1998). More than a 600- fold variation in nitrogen dioxide assimilation among 217 plant taxa. Plant, Cell & Environment, 21, 180-190. |
[13] |
Nair RKF, Perks MP, Weatherall A, Baggs EM, Mencuccini M (2016). Does canopy nitrogen uptake enhance carbon sequestration by trees? Global Change Biology, 22, 875-888.
DOI PMID |
[14] |
Patrick JW (1997). PHLOEM UNLOADING: sieve element unloading and post-sieve element transport. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 191-222.
PMID |
[15] | Ping XY, Zhou GS, Sun JS (2010). Advances in the study of photosynthate allocation and its controls. Chinese Journal of Plant Ecology, 34, 100-111. |
[ 平晓燕, 周广胜, 孙敬松 (2010). 植物光合产物分配及其影响因子研究进展. 植物生态学报, 34, 100-111.]
DOI |
|
[16] | Rennenberg H, Gessler A (1999). Consequences of N deposition to forest ecosystems—Recent results and future research needs. Water, Air, & Soil Pollution, 116, 47-64. |
[17] | Shi ZM, Tang JC, Cheng RM, Luo D, Liu SR (2015). A review of nitrogen allocation in leaves and factors in its effects. Acta Ecologica Sinica, 35, 5909-5919. |
[ 史作民, 唐敬超, 程瑞梅, 罗达, 刘世荣 (2015). 植物叶片氮分配及其影响因子研究进展. 生态学报, 35, 5909-5919.] | |
[18] | Si JH, Feng Q, Yu TF, Zhao CY (2014). Research advances in nighttime transpiration and its eco-hydrological implications. Advances in Water Science, 25, 907-914. |
[ 司建华, 冯起, 鱼腾飞, 赵春彦 (2014). 植物夜间蒸腾及其生态水文效应研究进展. 水科学进展, 25, 907-914.] | |
[19] |
Siegwolf RTW, Matyssek R, Saurer M, Maurer S, Günthardt- Goerg MS, Schmutz P, Bucher JB (2001). Stable isotope analysis reveals differential effects of soil nitrogen and nitrogen dioxide on the water use efficiency in hybrid poplar leaves. New Phytologist, 149, 233-246.
DOI PMID |
[20] |
Sparks JP (2009). Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia, 159, 1-13.
DOI PMID |
[21] |
Sparks JP, Monson RK, Sparks KL, Lerdau M (2001). Leaf uptake of nitrogen dioxide (NO2) in a tropical wet forest: implications for tropospheric chemistry. Oecologia, 127, 214-221.
DOI PMID |
[22] |
Takahashi M, Higaki A, Nohno M, Kamada M, Okamura Y, Matsui K, Kitani S, Morikawa H (2005). Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level. Chemosphere, 61, 633-639.
PMID |
[23] |
Templer PH, Mack MC, Chapin III FS, Christenson LM, Compton JE, Crook HD, Currie WS, Curtis CJ, Bryan Dail D, D’Antonio CM, Emmett BA, Epstein HE, Goodale CL, Gundersen P, Hobbie SE, et al. (2012). Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies. Ecology, 93, 1816-1829.
PMID |
[24] |
Tomaszewski T, Sievering H (2007). Canopy uptake of atmospheric N deposition at a conifer forest: part II—Response of chlorophyll fluorescence and gas exchange parameters. Tellus B: Chemical and Physical Meteorology, 59, 493-501.
DOI URL |
[25] |
Vallano DM, Sparks JP (2008). Quantifying foliar uptake of gaseous nitrogen dioxide using enriched foliar δ15N values. New Phytologist, 177, 946-955.
DOI PMID |
[26] | Wang W, Ganzeveld L, Rossabi S, Hueber J, Helmig D (2020). Measurement report:leaf-scale gas exchange of atmospheric reactive trace species (NO2, NO, O3) at a northern hardwood forest in Michigan. Atmospheric Chemistry and Physics, 20, 11287-11304. |
[27] |
Wang X, Wang B, Wang CZ, Wang ZH, Li J, Jia Z, Yang S, Li P, Wu YT, Pan SN, Liu LL (2021). Canopy processing of N deposition increases short-term leaf N uptake and photosynthesis, but not long-term N retention for aspen seedlings. New Phytologist, 229, 2601-2610.
DOI PMID |
[28] | Wang Y, Teng ZY, Zhang XL, Che YH, Sun GY (2019). Research progress on the effects of atmospheric nitrogen dioxide on plant growth and metabolism. Chinese Journal of Applied Ecology, 30, 316-324. |
[ 王月, 滕志远, 张秀丽, 车延辉, 孙广玉 (2019). 大气NO2影响植物生长与代谢的研究进展. 应用生态学报, 30, 316-324.]
DOI |
|
[29] |
Yu GR, Jia YL, He NP, Zhu JX, Chen Z, Wang QF, Piao SL, Liu XJ, He HL, Guo XB, Wen Z, Li P, Ding GA, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429.
DOI |
[30] | Zhang YJ, Feng YL (2004). The relationships between photosynthetic capacity and lamina mass per unit area, nitrogen content and partitioning in seedlings of two Ficus species grown under different irradiance. Acta Photophysiologica Sinica, 30, 269-276. |
[ 张亚杰, 冯玉龙 (2004). 不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系. 植物生理与分子生物学学报, 30, 269-276.] | |
[31] |
Zhao YH, Zhang L, Chen YF, Liu XJ, Xu W, Pan YP, Duan L (2017). Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmospheric Environment, 153, 32-40.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn