Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (1): 101-113.DOI: 10.17521/cjpe.2021.0484
Special Issue: 光合作用
• Research Articles • Previous Articles Next Articles
LI Bian-Bian, ZHANG Feng-Hua*(), ZHAO Ya-Guang, SUN Bing-Nan
Received:
2021-12-20
Accepted:
2022-05-19
Online:
2023-01-20
Published:
2022-07-15
Contact:
*ZHANG Feng-Hua(fenghuazhang2021@163.com)
Supported by:
LI Bian-Bian, ZHANG Feng-Hua, ZHAO Ya-Guang, SUN Bing-Nan. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus[J]. Chin J Plant Ecol, 2023, 47(1): 101-113.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0484
土壤类型 Soil type | 土层 Soil layer | 质地 Soil texture | 有机质含量 Organic matter content (g·kg-1) | 全氮含量 Total nitrogen content (g·kg-1) | 速效钾含量 Available potassium content (mg·kg-1) | 速效磷含量 Available phosphorus content (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|
棕漠土 Brown desert soil | 0-20 cm | 壤土 Loam | 13.64 | 0.86 | 347.37 | 20.16 | 7.92 |
Table 1 Physical and chemical properties of the tested soil in Fukang
土壤类型 Soil type | 土层 Soil layer | 质地 Soil texture | 有机质含量 Organic matter content (g·kg-1) | 全氮含量 Total nitrogen content (g·kg-1) | 速效钾含量 Available potassium content (mg·kg-1) | 速效磷含量 Available phosphorus content (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|
棕漠土 Brown desert soil | 0-20 cm | 壤土 Loam | 13.64 | 0.86 | 347.37 | 20.16 | 7.92 |
Fig. 1 Effect of different stubble height on regeneration rate of Cyperus esculentus (mean ± SE). CK, control; R10-R50, stubble height 10, 20, 30, 40, 50 cm, respectively. Different lowercase letters indicate significant difference between different stubble clipping treatments (p < 0.05).
Fig. 2 Effects of different stubble height on leaf area per plant and of relative chlorophyll content (SPAD) value of Cyperus esculentus (mean ± SE). CK, control; R10-R50, stubble height 10, 20, 30, 40, 50 cm, respectively. Different lowercase letters indicate significant difference between different stubble clipping treatments (p < 0.05).
Fig. 3 Effects of different stubble heights on the photosynthetic characteristics of different stubble height Cyperus esculentus (mean ± SE). CK, control; R10-R50, stubble height 10, 20, 30, 40, 50 cm, respectively. Ci, intercellular CO2 concentration; Gs, stomatic conductance; Pn, net photosynthetic rate; Tr, transpiration rate. Different lowercase letters indicate significant difference between different stubble clipping treatments (p < 0.05).
Fig. 4 Effects of different stubble height on soluble sugar content and sucrose content of different stubble height Cyperus esculentus (mean ± SE). CK, control; R10-R50, stubble height 10, 20, 30, 40, 50 cm, respectively. Different lowercase letters indicate significant difference between different stubble clipping treatments (p < 0.05).
Fig. 5 Effects of different stubble height on starch and fructose content of different stubble height Cyperus esculentus (mean ± SE). CK, control; R10-R50, stubble height 10, 20, 30, 40, 50 cm, respectively. Different lowercase letters indicate significant difference between different stubble clipping treatments (p < 0.05).
Fig. 6 Effects of different stubble height on the activities of sucrose synthase (SS) and sucrose phosphate synthase (SPS) in the leaves of different stubble height Cyperus esculentus (mean ± SE). CK, control; R10-R50, stubble height 10, 20, 30, 40, 50 cm, respectively. Different lowercase letters indicate significant difference between different stubble clipping treatments (p < 0.05).
留茬处理 Stubble treatment | 刈割时 Clipping | 收获时 Reward | 合计 Total | |||
---|---|---|---|---|---|---|
鲜质量 Fresh mass (kg·hm-2) | 干质量 Dry mass (kg·hm-2) | 鲜质量 Fresh mass (kg·hm-2) | 干质量 Dry mass (kg·hm-2) | 鲜质量 Fresh mass (kg·hm-2) | 干质量 Dry mass (kg·hm-2) | |
CK | 0.00 ± 0.00d | 0.00 ± 0.00e | 22 501.13 ± 610.32a | 8 842.62 ± 357.88ab | 22 501.13 ± 1 802.87d | 8 842.62 ± 357.88b |
R50 | 1 833.43 ± 288.69cd | 741.07 ± 29.17d | 20 001.00 ± 566.38b | 7 738.24 ± 282.26c | 21 834.43 ± 1 607.36d | 8 479.31 ± 286.97b |
R40 | 4 722.46 ± 481.15bc | 1 472.57 ± 515.51c | 22 001.10 ± 1 000.05a | 8 976.93 ± 339.92a | 29 723.71 ± 1 601.58b | 10 449.51 ± 245.49a |
R30 | 6 500.33 ± 500.03b | 2 231.38 ± 277.61b | 23 334.50 ± 789.60a | 8 373.73 ± 265.79b | 29 834.83 ± 1 756.03b | 10 605.11 ± 102.57a |
R20 | 12 037.64 ± 556.51a | 4 473.91 ± 634.8a | 14 500.73 ± 685.05d | 5 804.22 ± 171.48d | 26 538.36 ± 445.62c | 10 278.13 ± 604.49a |
R10 | 15 500.78 ± 866.07a | 4 048.94 ± 181.72a | 17 500.88 ± 500.03c | 6 223.71 ± 171.42d | 33 001.65 ± 1 322.94a | 10 272.65 ± 260.16a |
Table 2 Effects of different stubble height on aboveground biomass of Cyperus esculentus (mean ± SE)
留茬处理 Stubble treatment | 刈割时 Clipping | 收获时 Reward | 合计 Total | |||
---|---|---|---|---|---|---|
鲜质量 Fresh mass (kg·hm-2) | 干质量 Dry mass (kg·hm-2) | 鲜质量 Fresh mass (kg·hm-2) | 干质量 Dry mass (kg·hm-2) | 鲜质量 Fresh mass (kg·hm-2) | 干质量 Dry mass (kg·hm-2) | |
CK | 0.00 ± 0.00d | 0.00 ± 0.00e | 22 501.13 ± 610.32a | 8 842.62 ± 357.88ab | 22 501.13 ± 1 802.87d | 8 842.62 ± 357.88b |
R50 | 1 833.43 ± 288.69cd | 741.07 ± 29.17d | 20 001.00 ± 566.38b | 7 738.24 ± 282.26c | 21 834.43 ± 1 607.36d | 8 479.31 ± 286.97b |
R40 | 4 722.46 ± 481.15bc | 1 472.57 ± 515.51c | 22 001.10 ± 1 000.05a | 8 976.93 ± 339.92a | 29 723.71 ± 1 601.58b | 10 449.51 ± 245.49a |
R30 | 6 500.33 ± 500.03b | 2 231.38 ± 277.61b | 23 334.50 ± 789.60a | 8 373.73 ± 265.79b | 29 834.83 ± 1 756.03b | 10 605.11 ± 102.57a |
R20 | 12 037.64 ± 556.51a | 4 473.91 ± 634.8a | 14 500.73 ± 685.05d | 5 804.22 ± 171.48d | 26 538.36 ± 445.62c | 10 278.13 ± 604.49a |
R10 | 15 500.78 ± 866.07a | 4 048.94 ± 181.72a | 17 500.88 ± 500.03c | 6 223.71 ± 171.42d | 33 001.65 ± 1 322.94a | 10 272.65 ± 260.16a |
Fig. 7 Redundancy analysis (RDA) of above-ground biomass, regeneration rate and non-structural carbohydrate related indicators in five periods of different stubble height Cyperus esculentus. A, B, C, D and E represent the five periods of 1, 7, 14, 21 and 28 d, respectively. FDG, dry mass at harvest; R, regeneration rate; RFG, fresh mass at harvest; SPS, sucrose phosphate synthetase; SS, sucrose synthetase; TDG, total dry mass; TFG, total fresh mass. CK, control; R10-R50, stubble height is 10, 20, 30, 40, 50 cm, respectively. Subscript 1, 2, 3 represent repetition.
指标 Index | R2 | p ( > r) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 d | 7 d | 14 d | 21 d | 28 d | 1 d | 7 d | 14 d | 21 d | 28 d | |
可溶性糖含量 Soluble sugar content | 0.671 | 0.648 | 0.744 | 0.561 | 0.569 | 0.001*** | 0.002** | 0.001*** | 0.007** | 0.003** |
蔗糖含量 Sucrose content | 0.413 | 0.050 | 0.346 | 0.004 | 0.007 | 0.029* | 0.677 | 0.034* | 0.963 | 0.950 |
果糖含量 Fructose content | 0.186 | 0.432 | 0.129 | 0.300 | 0.292 | 0.216 | 0.017* | 0.358 | 0.065 | 0.060 |
淀粉含量 Starch content | 0.208 | 0.524 | 0.013 | 0.377 | 0.027 | 0.166 | 0.003** | 0.917 | 0.022* | 0.828 |
蔗糖合成酶活性 SS activity | 0.298 | 0.804 | 0.506 | 0.357 | 0.520 | 0.074 | 0.001*** | 0.006** | 0.041* | 0.010** |
蔗糖磷酸合成酶活性 SPS activity | 0.643 | 0.492 | 0.513 | 0.478 | 0.648 | 0.002** | 0.010** | 0.008** | 0.005** | 0.001** |
Table 3 Based on redundancy analysis of the influence of different indicators on the aboveground biomass and regeneration rate of Cyperus esculentus
指标 Index | R2 | p ( > r) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 d | 7 d | 14 d | 21 d | 28 d | 1 d | 7 d | 14 d | 21 d | 28 d | |
可溶性糖含量 Soluble sugar content | 0.671 | 0.648 | 0.744 | 0.561 | 0.569 | 0.001*** | 0.002** | 0.001*** | 0.007** | 0.003** |
蔗糖含量 Sucrose content | 0.413 | 0.050 | 0.346 | 0.004 | 0.007 | 0.029* | 0.677 | 0.034* | 0.963 | 0.950 |
果糖含量 Fructose content | 0.186 | 0.432 | 0.129 | 0.300 | 0.292 | 0.216 | 0.017* | 0.358 | 0.065 | 0.060 |
淀粉含量 Starch content | 0.208 | 0.524 | 0.013 | 0.377 | 0.027 | 0.166 | 0.003** | 0.917 | 0.022* | 0.828 |
蔗糖合成酶活性 SS activity | 0.298 | 0.804 | 0.506 | 0.357 | 0.520 | 0.074 | 0.001*** | 0.006** | 0.041* | 0.010** |
蔗糖磷酸合成酶活性 SPS activity | 0.643 | 0.492 | 0.513 | 0.478 | 0.648 | 0.002** | 0.010** | 0.008** | 0.005** | 0.001** |
[1] |
Aljuhaimi F, Ghafoor K, Özcan MM, Miseckaite O, Babiker EE, Hussain S (2018). The effect of solvent type and roasting processes on physico-chemical properties of tigernut (Cyperus esculentus L.) tuber oil. Journal of Oleo Science, 67, 823-828.
DOI PMID |
[2] |
Bork EW, Broadbent TS, Willms WD (2017). Intermittent growing season defoliation variably impacts accumulated herbage productivity in mixed grass prairie. Rangeland Ecology & Management, 70, 307-315.
DOI URL |
[3] |
Buysse J, Merckx R (1993). An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany, 44, 1627-1629.
DOI URL |
[4] |
Carpita N, Sabularse D, Montezinos D, Delmer DP (1979). Determination of the pore size of cell walls of living plant cells. Science, 205, 1144-1147.
DOI PMID |
[5] |
Chen L, Huang JG, Dawson A, Zhai L, Stadt KJ, Comeau PG, Whitehouse C (2018). Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada. Global Change Biology, 24, 655-667.
DOI PMID |
[6] |
Chen Q, Lu XY, Guo XR, Xu MY, Tang ZH (2021). A source-sink model explains the difference in the metabolic mechanism of mechanical damage to young and senescing leaves in Catharanthus roseus. BMC Plant Biology, 21, 154. DOI: 10.1186/S12870-02/02934-6.
DOI |
[7] |
Dombrowski JE, Hind SR, Martin RC, Stratmann JW (2011). Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses. Plant Science, 180, 686-693.
DOI PMID |
[8] |
Donaghy, Fulkerson (1998). Priority for allocation of water-soluble carbohydrate reserves during regrowth of Lolium perenne. Grass and Forage Science, 53, 211-218.
DOI URL |
[9] | Du Y, Han Y, Wang CK (2014). The influence of drought on non-structural carbohydrates in the needles and twigs of Larix gmelinii. Acta Ecologica Sinica, 34, 6090-6100. |
[ 杜尧, 韩轶, 王传宽 (2014). 干旱对兴安落叶松枝叶非结构性碳水化合物的影响. 生态学报, 34, 6090-6100.] | |
[10] | Feng YJ, Jin Q, Wang JW (2010). Systemic induced effects of mechanical wounding on the chemical defense of Bt corn (Zea mays). Chinese Journal of Plant Ecology, 34, 695-703. |
[ 冯远娇, 金琼, 王建武 (2010). 机械损伤对Bt玉米化学防御的系统诱导效应. 植物生态学报, 34, 695-703.]
DOI |
|
[11] |
Fulkerson WJ, Slack K (1994). Leaf number as a criterion for determining defoliation time for Lolium perenne, 1. Effect of water-soluble carbohydrates and senescence. Grass and Forage Science, 49, 373-377.
DOI URL |
[12] | Gao YT, Zhang R, Li HX, Wei PC (2021). Effect of water stress on sugar accumulation and sucrose metabolism enzyme activities of greenhouse grape fruit. Arid Zone Research, 38, 1713-1721. |
[ 高彦婷, 张芮, 李红霞, 魏鹏程 (2021). 水分胁迫对葡萄糖分及其蔗糖代谢酶活性的影响. 干旱区研究, 38, 1713-1721.] | |
[13] |
Harrison MT, Kelman WM, Moore AD, Evans JR (2010). Grazing winter wheat relieves plant water stress and transiently enhances photosynthesis. Functional Plant Biology, 37, 726-736.
DOI URL |
[14] |
Heck KL Jr, Valentine JF (2006). Plant-herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology, 330, 420-436.
DOI URL |
[15] | Hou FJ (2001). Effect of grazing on photosynthesis and respiration of herbage and on its absorption and transporation of nitrogen and carbon. Chinese Journal of Applied Ecology, 12, 938-942. |
[ 侯扶江 (2001). 放牧对牧草光合作用、呼吸作用和氮、碳吸收与转运的影响. 应用生态学报, 12, 938-942.] | |
[16] | Hu RF, Jiang H, Li YY (2012). Research advance on sucrose synthesize enzymes. Northern Horticulture, (1), 167-170. |
[ 胡瑞芳, 姜慧, 李玥莹 (2012). 蔗糖代谢相关酶的研究进展. 北方园艺, (1), 167-170.] | |
[17] |
Koch KE (1996). Carbohydrate-modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 509-540.
PMID |
[18] |
Koch KE, Ying Z, Wu Y, Avigne WT (2000). Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. Journal of Experimental Botany, 51, 417-427.
DOI URL |
[19] | Kolb TE, Dodds KA, Clancy KM (1999). Effect of western spruce budworm defoliation on the physiology and growth of potted Douglas-fir seedlings. Forest Science, 45, 280-291. |
[20] | Latt CR, Nair PKR, Kang B (2000). Interactions among cutting frequency, reserve carbohydrates, and post-cutting biomass production in Gliricidia sepium and Leucaena leucocephala. Agroforestry Systems, 50, 27-46. |
[21] |
Latt CR, Nair PKR, Kang BT (2001). Reserve carbohydrate levels in the boles and structural roots of five multipurpose tree species in a seasonally dry tropical climate. Forest Ecology and Management, 146, 145-158.
DOI URL |
[22] | Lattanzi FA, Schnyder H, Thornton B (2004). Defoliation effects on carbon and nitrogen substrate import and tissue-bound efflux in leaf growth zones of grasses. Plant, Cell & Environment, 27, 347-356. |
[23] |
Letty BA, Makhubedu T, Scogings PF, Mafongoya P (2021). Effect of cutting height on non-structural carbohydrates, biomass production and mortality rate of pigeon peas. Agroforestry Systems, 95, 659-667.
DOI |
[24] |
Lin XZ, Liu L, Dong TT, Fang QB, Guo QX (2021). Effects of non-structural carbohydrate and nitrogen allocation on the ability of Populus deltoides and P. cathayana to resist soil salinity stress. Chinese Journal of Plant Ecology, 45, 961-971.
DOI URL |
[ 林夏珍, 刘林, 董婷婷, 方琦博, 郭庆学 (2021). 非结构性碳水化合物与氮分配对美洲黑杨和青杨耐盐能力的影响. 植物生态学报, 45, 961-971.]
DOI |
|
[25] |
Loewe A, Einig W, Shi LB, Dizengremel P, Hampp R (2000). Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytologist, 145, 565-574.
DOI PMID |
[26] |
MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ (2017). Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. Journal of Experimental Botany, 68, 4433-4453.
DOI PMID |
[27] |
Moyo H, Scholes MC, Twine W (2015). The effects of repeated cutting on coppice response of Terminalia sericea. Trees, 29, 161-169.
DOI URL |
[28] |
Nowak RS, Caldwell MM (1984). A test of compensatory photosynthesis in the field: implications for herbivory tolerance. Oecologia, 61, 311-318.
DOI PMID |
[29] |
Nzunda EF, Griffiths ME, Lawes MJ (2008). Sprouting by remobilization of above-ground resources ensures persistence after disturbance of coastal dune forest trees. Functional Ecology, 22, 577-582.
DOI URL |
[30] |
Padhi S, Grimes MM, Muro-Villanueva F, Ortega JL, Sengupta-Gopalan C (2019). Distinct nodule and leaf functions of two different sucrose phosphate synthases in alfalfa. Planta, 250, 1743-1755.
DOI PMID |
[31] | Qu WX, Du B, Yu QL, Han YY, Hao JH, Liu CJ, Fan SX (2021). Effects of selenium on carbon metabolism of lettuce under high temperature stress. Journal of Beijing University of Agriculture, 36(4), 30-34. |
[ 屈卫星, 杜柏, 余琦隆, 韩莹琰, 郝敬虹, 刘超杰, 范双喜 (2021). 硒对高温胁迫下生菜碳代谢的影响. 北京农学院学报, 36(4), 30-34.] | |
[32] |
Quentin AG, Pinkard EA, Ryan MG, Tissue DT, Baggett LS, Adams HD, Maillard P, Marchand J, Landhäusser SM, Lacointe A, Gibon Y, Anderegg WRL, Asao S, Atkin OK, Bonhomme M, et al. (2015). Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology, 35, 1146-1165.
DOI PMID |
[33] |
Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, Murakami P, Schaberg PG, Xu XM (2013). Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytologist, 197, 850-861.
DOI PMID |
[34] |
Schrader S, Sauter JJ (2002). Seasonal changes of sucrose-phosphate synthase and sucrose synthase activities in poplar wood (Populus × canadensis Moench ‘robusta’) and their possible role in carbohydrate metabolism. Journal of Plant Physiology, 159, 833-843.
DOI URL |
[35] | Shen QL (2010). A Preliminary Studies on High Yield and Quality Cultivation in Chufa. Master degree dissertation, Yangzhou University, Yangzhou, Jiangsu. |
[ 沈庆雷 (2010). 油莎豆高产优质栽培初步研究. 硕士学位论文,扬州大学, 江苏扬州.] | |
[36] | Wang DD, Tian LH, Shen YY, Liu YB (2014). Regrowth responses to cutting of different cultivars of winter wheat. Chinese Journal of Eco-Agriculture, 22, 642-647. |
[ 王丹丹, 田莉华, 沈禹颖, 刘渊博 (2014). 不同品种冬小麦再生生长对刈割干扰的响应. 中国生态农业学报, 22, 642-647.] | |
[37] | Wang J, Yang C, Han WQ, Liu ML (2003). Effects on water-soluble carbohydrate of Artemisia frigida under different defoliation intensities. Acta Ecologica Sinica, 23, 908-913. |
[ 王静, 杨持, 韩文权, 刘美玲 (2003). 刈割强度对冷蒿可溶性碳水化合物的影响. 生态学报, 23, 908-913.] | |
[38] | Wang LH, Sun JW, Wang W, Zhou Q (2017). Research advances in effects of acid rain on plant photosynthesis. Journal of Safety and Environment, 17, 775-780. |
[ 王丽红, 孙静雯, 王雯, 周青 (2017). 酸雨对植物光合作用影响的研究进展. 安全与环境学报, 17, 775-780.] | |
[39] | Wang RY, Wang XS, Xiang H (2019). A multi-purpose novel oil crop—Cyperus beans. China Oils and Fats, 44(1), 1-4. |
[ 王瑞元, 王晓松, 相海 (2019). 一种多用途的新兴油料作物——油莎豆. 中国油脂, 44(1), 1-4.] | |
[40] | Wang Y, Li ZY, Ge F (2000). Lag-change of chemical components in needles of injured pine, Pinus massoniana. Acta Entomologica Sinica, 43, 291-296. |
[ 王燕, 李镇宇, 戈峰 (2000). 马尾松受害诱导的化学物质滞后变化. 昆虫学报, 43, 291-296.] | |
[41] | Wang Y, Wu JY, Liu JH, Feng XY (2021). Effects of controlled-release nitrogen fertilizer on agronomic characteristics and yield of Panicum miliaceum L. Journal of Northern Agriculture, 49(3), 41-47. |
[ 王英, 武俊英, 刘景辉, 冯学颖 (2021). 控释氮肥对糜子农艺性状及产量的影响. 北方农业学报, 49(3), 41-47.]
DOI |
|
[42] |
Wei FT, Tao HB, Wang P (2010). Relationship of non-structure carbohydrate production and yield components of aerobic rice, Handao 297. Acta Agronomica Sinica, 36, 2135-2142.
DOI URL |
[ 魏凤桐, 陶洪斌, 王璞 (2010). 旱稻297非结构性碳水化合物的生产与产量构成因子的关系. 作物学报, 36, 2135-2142.]
DOI |
|
[43] |
William RLA, Jeffrey AH, Rosie AF, Craig DA, Juliann ABB, Sharon HJWL, Alison KM, Nate MYP, Kenneth RAS, John DSNL, Stephenson CT, Melanie Z (2015). Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, 208, 674-683.
DOI PMID |
[44] | Wu JH, Cui YT, Zhao QZ, Wang L (2013). Effects of drought stress on anatomical structure of leaves and physiological indexes of Potentilla species. Pratacultural Science, 30, 1369-1373. |
[ 吴建慧, 崔艳桃, 赵倩竹, 王玲 (2013). 干旱胁迫下委陵菜和翻白委陵菜叶片结构和生理指标的变化. 草业科学, 30, 1369-1373.] | |
[45] |
Wu YW, Li Q, Jin R, Chen W, Liu XL, Kong FL, Ke YP, Shi HC, Yuan JC (2019). Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. Journal of Integrative Agriculture, 18, 1246-1256.
DOI URL |
[46] | Yang HM, Wang ZN, Ji CR (2013). Research progress in the dynamics of carbon and nitrogen in forages after cutting and grazing. Chinese Journal of Grassland, 35(4), 102-109. |
[ 杨惠敏, 王振南, 吉春荣 (2013). 刈割和放牧后牧草碳氮动态研究进展. 中国草地学报, 35(4), 102-109.] | |
[47] | Zhang YL, Wang XG, Luo XM, Jiang L (2018). Effects of plant growth regulators on growth characteristics and seeds yield of Leymus chinensis. Grassland and Turf, 38(1), 18-24. |
[ 张永亮, 王显国, 骆秀梅, 姜澜 (2018). 生长调节剂对羊草生长及种子产量的影响. 草原与草坪, 38(1), 18-24.] | |
[48] | Zhao CZ, Zhong RZ, Zhou DW, Zheng CC (2019). Effects of mowing time and interval on dry matter yield and chemical composition of Leymus chinensis. Soils and Crops, 8, 212-219. |
[ 赵成振, 钟荣珍, 周道玮, 郑聪聪 (2019). 不同刈割时间和间隔对羊草产量和品质的影响. 土壤与作物, 8, 212-219.] | |
[49] | Zheng YP, Wang HX, Lou X, Yang QP, Xu M (2014). Changes of non-structural carbohydrates and its impact factors in trees: a review. Chinese Journal of Applied Ecology, 25, 1188-1196. |
[ 郑云普, 王贺新, 娄鑫, 杨庆朋, 徐明 (2014). 木本植物非结构性碳水化合物变化及其影响因子研究进展. 应用生态学报, 25, 1188-1196.] | |
[50] | Zhou XH, Wang GX, Yang F, Chen QM, Wang L (2008). Effects of cutting on photosynthesis and purification efficiencies on nitrogen and phosphorus of the Lolium multiflorum. Environmental Science, 29, 3393-3399. |
[ 周晓红, 王国祥, 杨飞, 陈秋敏, 汪丽 (2008). 刈割对生态浮床植物黑麦草光合作用及其对氮磷等净化效果的影响. 环境科学, 29, 3393-3399.] |
[1] | Qingshui Yu xiaofeng ni Jiangling Zhu Zhi-Yao TANG Jing-Yun FANG. Effects of 10 years of nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in two tropical rainforests in the Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Guang-Ze JIN Zhi-Li LIU. Variations and relationships analysis of leaf traits of three Acer species for different tree sizes and canopy conditions in Xiao Hinggan Mountains of Northeast China [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[3] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[4] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[5] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[6] | FAN Hong-Kun, ZENG Tao, JIN Guang-Ze, LIU Zhi-Li. Leaf trait variation and trade-offs among growth types of broadleaf plants in Xiao Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 364-376. |
[7] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[8] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[9] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[10] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[11] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[12] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[13] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[14] | DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar [J]. Chin J Plant Ecol, 2023, 47(3): 348-360. |
[15] | YU Hai-Xia, QU Lu-Ping, TANG Xing-Hao, LIU Nan, ZHANG Zi-Lei, WANG Hao, WANG Yi-Xuan, SHAO Chang-Liang, DONG Gang, HU Ya-Lin. Divergent responses of non-structural carbohydrates in Phoebe bournei and Schima superba to different heat wave patterns [J]. Chin J Plant Ecol, 2023, 47(2): 249-261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn