Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (6): 613-623.DOI: 10.17521/cjpe.2021.0474
• Research Articles • Next Articles
Received:
2021-12-15
Accepted:
2022-02-16
Online:
2022-06-20
Published:
2022-02-16
Contact:
ZHU Jiao-Jun
Supported by:
ZHANG Min, ZHU Jiao-Jun. Effects of light and temperature on seed germination of Pinus koraiensis with different provenances[J]. Chin J Plant Ecol, 2022, 46(6): 613-623.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0474
Fig. 1 Fisheye photographs (A, B), seasonal variations of canopy openness (C), and daily soil temperature (D) in forest stands with different transmittances.
源 Source | III类平方和 Type III sum of squares | 自由度 df | F | p |
---|---|---|---|---|
模型 Model | 6 942.93a | 17 | 20.66 | 0.00 |
季节 Season | 2 066.04 | 1 | 195.69 | 0.00 |
种源 Provenance | 2 859.23 | 2 | 72.34 | 0.00 |
透光率 Light | 106.96 | 1 | 5.41 | 0.03 |
季节×种源 Season × Provenance | 1 475.41 | 4 | 18.66 | 0.00 |
季节×透光率 Season × Light | 222.48 | 2 | 5.63 | 0.01 |
种源×透光率 Provenance × Light | 98.84 | 2 | 2.50 | 0.10 |
种源×透光率×季节 Provenance × Light × Season | 113.96 | 4 | 1.44 | 0.24 |
Table 1 Three-way ANOVA of seasons, provenance, and light condition effects on germination percentage of Pinus koraiensis seeds under different canopy openness conditions
源 Source | III类平方和 Type III sum of squares | 自由度 df | F | p |
---|---|---|---|---|
模型 Model | 6 942.93a | 17 | 20.66 | 0.00 |
季节 Season | 2 066.04 | 1 | 195.69 | 0.00 |
种源 Provenance | 2 859.23 | 2 | 72.34 | 0.00 |
透光率 Light | 106.96 | 1 | 5.41 | 0.03 |
季节×种源 Season × Provenance | 1 475.41 | 4 | 18.66 | 0.00 |
季节×透光率 Season × Light | 222.48 | 2 | 5.63 | 0.01 |
种源×透光率 Provenance × Light | 98.84 | 2 | 2.50 | 0.10 |
种源×透光率×季节 Provenance × Light × Season | 113.96 | 4 | 1.44 | 0.24 |
Fig. 2 Germination percentage of Pinus koraiensis seeds from three provenances under different light conditions between different seasons (mean ± SE). The seeds did not germinate in spring, thus only summer and autumn data were displayed. Different uppercase letters indicate significant differences between different seasons in the forest stands with the same light transmittance (p ≤ 0.05). Different lowercase letters indicate significant differences between forest stands with different light transmittances in the same season (p ≤ 0.05).
种源地 Provenance | 种子取出季节 Seed-collection season | 林窗 Gap | 林下 Understory |
---|---|---|---|
清原 Qingyuan | 春 Spring | 76.67 ± 1.45a | 61.00 ± 8.19a |
夏 Summer | 56.00 ± 5.29a | 58.33 ± 7.54a | |
秋 Autumn | 2.00 ± 1.00a | 0.67 ± 0.33a | |
长白山 Changbai Mountain | 春 Spring | 34.00 ± 8.50a | 32.00 ± 4.93a |
夏 Summer | 53.00 ± 1.15a | 45.00 ± 10.69a | |
秋 Autumn | 1.67 ± 0.89a | 0.33 ± 0.33a | |
伊春 Yichun | 春 Spring | 57.33 ± 5.90a | 56.00 ± 11.50a |
夏 Summer | 62.33 ± 5.04a | 50.00 ± 10.69a | |
秋 Autumn | 0.67 ± 0.33b | 0a |
Table 2 Germination percentages (%) of Pinus koraiensis seeds from three provenances cultivated in growth chamber after overwintering under different forest stands (mean ± SE)
种源地 Provenance | 种子取出季节 Seed-collection season | 林窗 Gap | 林下 Understory |
---|---|---|---|
清原 Qingyuan | 春 Spring | 76.67 ± 1.45a | 61.00 ± 8.19a |
夏 Summer | 56.00 ± 5.29a | 58.33 ± 7.54a | |
秋 Autumn | 2.00 ± 1.00a | 0.67 ± 0.33a | |
长白山 Changbai Mountain | 春 Spring | 34.00 ± 8.50a | 32.00 ± 4.93a |
夏 Summer | 53.00 ± 1.15a | 45.00 ± 10.69a | |
秋 Autumn | 1.67 ± 0.89a | 0.33 ± 0.33a | |
伊春 Yichun | 春 Spring | 57.33 ± 5.90a | 56.00 ± 11.50a |
夏 Summer | 62.33 ± 5.04a | 50.00 ± 10.69a | |
秋 Autumn | 0.67 ± 0.33b | 0a |
指标 Index | 源 Source | III类平方和 Type III sum of squares | 自由度 df | F | p |
---|---|---|---|---|---|
GP | 模型 Model | 27 581.179a | 17 | 56.175 | 0.00 |
种源 Provenance | 6 191.542 | 2 | 107.189 | 0.00 | |
光 Light | 2 987.890 | 2 | 51.727 | 0.00 | |
温度 Temp | 12 454.163 | 1 | 431.217 | 0.00 | |
种源×光 Provenance × Light | 1 289.040 | 4 | 11.158 | 0.00 | |
种源×温度 Provenance × Temperature | 1 448.825 | 2 | 25.082 | 0.00 | |
光×温度 Light × Temperature | 877.690 | 2 | 15.195 | 0.00 | |
种源×光×温度 Provenance × Light × Temperature | 1 090.786 | 4 | 9.442 | 0.00 | |
MGT | 模型 Model | 4 888.740b | 17 | 6.396 | 0.00 |
种源 Provenance | 686.604 | 2 | 7.636 | 0.00 | |
光 Light | 542.808 | 2 | 6.037 | 0.00 | |
温度 Temp | 1 355.676 | 1 | 30.154 | 0.00 | |
种源×光 Provenance × Light | 178.422 | 4 | 0.992 | 0.42 | |
种源×温度 Provenance × Temperature | 679.857 | 2 | 7.561 | 0.00 | |
光×温度 Light × Temperature | 371.673 | 2 | 4.133 | 0.02 | |
种源×光×温度 Provenance × Light × Temperature | 743.805 | 4 | 4.136 | 0.00 | |
GV | 模型 Model | 57.775c | 17 | 47.783 | 0.00 |
种源 Provenance | 17.631 | 2 | 123.943 | 0.00 | |
光 Light | 0.556 | 2 | 3.911 | 0.03 | |
温度 Temperature | 28.159 | 1 | 395.914 | 0.00 | |
种源×光 Provenance × Light | 1.801 | 4 | 6.331 | 0.00 | |
种源×温度 Provenance × Temperature | 6.471 | 2 | 45.491 | 0.00 | |
光×温度 Light × Temperature | 0.869 | 2 | 6.106 | 0.00 | |
种源×光×温度 Provenance × Light × Temperature | 2.266 | 4 | 7.964 | 0.00 |
Table 3 Three-way ANOVA for light, temperature, and provenance effects on the germination percentage (GP), mean germination time (MGT) and germination value (GV) of Pinus koraiensis seeds
指标 Index | 源 Source | III类平方和 Type III sum of squares | 自由度 df | F | p |
---|---|---|---|---|---|
GP | 模型 Model | 27 581.179a | 17 | 56.175 | 0.00 |
种源 Provenance | 6 191.542 | 2 | 107.189 | 0.00 | |
光 Light | 2 987.890 | 2 | 51.727 | 0.00 | |
温度 Temp | 12 454.163 | 1 | 431.217 | 0.00 | |
种源×光 Provenance × Light | 1 289.040 | 4 | 11.158 | 0.00 | |
种源×温度 Provenance × Temperature | 1 448.825 | 2 | 25.082 | 0.00 | |
光×温度 Light × Temperature | 877.690 | 2 | 15.195 | 0.00 | |
种源×光×温度 Provenance × Light × Temperature | 1 090.786 | 4 | 9.442 | 0.00 | |
MGT | 模型 Model | 4 888.740b | 17 | 6.396 | 0.00 |
种源 Provenance | 686.604 | 2 | 7.636 | 0.00 | |
光 Light | 542.808 | 2 | 6.037 | 0.00 | |
温度 Temp | 1 355.676 | 1 | 30.154 | 0.00 | |
种源×光 Provenance × Light | 178.422 | 4 | 0.992 | 0.42 | |
种源×温度 Provenance × Temperature | 679.857 | 2 | 7.561 | 0.00 | |
光×温度 Light × Temperature | 371.673 | 2 | 4.133 | 0.02 | |
种源×光×温度 Provenance × Light × Temperature | 743.805 | 4 | 4.136 | 0.00 | |
GV | 模型 Model | 57.775c | 17 | 47.783 | 0.00 |
种源 Provenance | 17.631 | 2 | 123.943 | 0.00 | |
光 Light | 0.556 | 2 | 3.911 | 0.03 | |
温度 Temperature | 28.159 | 1 | 395.914 | 0.00 | |
种源×光 Provenance × Light | 1.801 | 4 | 6.331 | 0.00 | |
种源×温度 Provenance × Temperature | 6.471 | 2 | 45.491 | 0.00 | |
光×温度 Light × Temperature | 0.869 | 2 | 6.106 | 0.00 | |
种源×光×温度 Provenance × Light × Temperature | 2.266 | 4 | 7.964 | 0.00 |
Fig. 3 Germination percentage (GP) of Pinus koraiensis seeds from three provenances under different light and temperature conditions in growth chamber (mean ± SE). L0, L2 and L200 represent 0, 20, 200 μmol·m-2·s-1 light intensities, respectively. Different uppercase letters indicate significant differences between different temperature conditions under the same light intensity (p ≤0.05); different lowercase letters indicate significant differences between different light intensities under the same temperature condition (p ≤ 0.05).
Fig. 4 Mean germination time (MGT) of Pinus koraiensis seeds from three provenances under different light and temperature conditions (mean ± SE). L0, L2 and L200 represent 0, 20, 200 μmol·m-2·s-1 light intensities, respectively. Different uppercase letters indicate significant differences between different temperature conditions under the same light intensity (p ≤ 0.05); different lowercase letters indicate significant differences between different light intensities under the same temperature condition (p ≤ 0.05).
Fig. 5 Germination value (GV) of Pinus koraiensis seeds from three provenances under different light and temperature conditions (mean ± SE). L0, L2 and L200 represent 0, 20, 200 μmol·m-2·s-1 light intensities, respectively. Different uppercase letters indicate significant differences between different temperature conditions under the same light intensity (p ≤ 0.05); different lowercase letters indicate significant differences between different light intensities under the same temperature condition (p ≤ 0.05).
[1] |
Argyris J, Dahal P, Hayashi E, Still DW, Bradford KJ (2008). Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin and ethylene biosynthesis, metabolism and response genes. Plant Physiology, 148, 926-947.
DOI PMID |
[2] | Baskin CC, Baskin JM (2014). Seeds Ecology, Biogeography, and Evolution of Dormancy and Germination. 2nd ed. Academic Press, San Diego, USA. |
[3] |
Bauerová L, Munie SA, Houšková K, Habrová H (2020). Germination of Dracaena cinnabari Balf. f. seeds under controlled temperature conditions. Forests, 11, 521. DOI: 10.3390/f11050521.
DOI URL |
[4] | Bewley JD, Black M (1994). Seeds: Physiology of Development and Germination. 2nd ed. Plenum Press, New York. |
[5] |
Bu HY, Ge WJ, Zhou XH, Qi W, Liu K, Xu DH, Wang XJ, Du GZ (2017). The effect of light and seed mass on seed germination of common herbaceous species from the eastern Qinghai-Tibet Plateau. Plant Species Biology, 32, 263-269.
DOI URL |
[6] |
Bu HY, Ren QJ, Xu XL, Liu K, Jia P, Wen SJ, Sun DS, Du GZ (2008). Seed germinating characteristics of 54 gramineous species in the alpine meadow on the eastern Qinghai-Tibet Plateau. Frontiers of Biology in China, 3, 187-193.
DOI URL |
[7] |
Carón MM, de Frenne P, Verheyen K, Quinteros A, Ortega- Baes P, (2020). Germination responses to light of four Neotropical forest tree species along an elevational gradient in the southern Central Andes. Ecological Research, 35, 550-558.
DOI URL |
[8] | Chen CX, Wang JL, Zhi X (1997). Research state of the dormancy and pregermination of Pinus koraiensis seed in China and aboard. World Forestry Research, 10(5), 3-9. |
[陈彩霞, 王九龄, 智信 (1997). 国内外红松种子休眠及催芽问题研究动态. 世界林业研究, 10(5), 3-9.] | |
[9] | Chen SB, Song AQ, Li ZJ (2005). Research advance in re- sponse of forest seedling regeneration to light environmental heterogeneity. Chinese Journal of Applied Ecology, 16, 365-370. |
[陈圣宾, 宋爱琴, 李振基 (2005). 森林幼苗更新对光环境异质性的响应研究进展. 应用生态学报, 16, 365-370.] | |
[10] |
Daws MI, Burslem DFRP, Crabtree LM, Kirkman P, Mullins CE, Dalling JW (2002). Differences in seed germination responses may promote coexistence of four sympatric Piper species. Functional Ecology, 16, 258-267.
DOI URL |
[11] |
Finch-Savage WE, Leubner-Metzger G (2006). Seed dormancy and the control of germination. New Phytologist, 171, 501-523.
PMID |
[12] |
Fredrick C, Muthuri C, Ngamau K, Sinclair F (2017). Provenance and pretreatment effect on seed germination of six provenances of Faidherbia albida (Delile) A. Chev. Agroforestry Systems, 91, 1007-1017.
DOI URL |
[13] |
Ganatsas PP, Tsakaldimi MN (2007). Effect of light conditions and salinity on germination behaviour and early growth of umbrella pine (Pinus pinea L.) seed. The Journal of Horticultural Science and Biotechnology, 82, 605-610.
DOI URL |
[14] |
Gaudio N, Balandier P, Philippe G, Dumas Y, Jean F, Ginisty C (2011). Light-mediated influence of three understorey species (Calluna vulgaris, Pteridium aquilinum, Molinia caerulea) on the growth of Pinus sylvestris seedlings. European Journal of Forest Research, 130, 77-89.
DOI URL |
[15] |
Ghaderi-Far F, Coşgun ZL, Değirmenci CÜ, Tüysüz İ, Ülgen C, Tavşanoğlu Ç (2021). Light and temperature requirements for germination in the Mediterranean shrub Lavandula stoechas (Lamiaceae). Plant Biology, 23, 992-999.
DOI PMID |
[16] | Gu RS, Yu ZL, Du SM (2005). The status and development of Chinese forest basic research. Scientia Silvae Sinicae, 41(6), 201-205. |
[谷瑞升, 于振良, 杜生明 (2005). 我国林学基础研究及其发展. 林业科学, 41(6), 201-205.] | |
[17] | Guan YY, Fei F, Guan QW, Chen B (2016). Advances in studies of forest gap ecology. Scientia Silvae Sinicae, 52(4), 91-99. |
[管云云, 费菲, 关庆伟, 陈斌 (2016). 林窗生态学研究进展. 林业科学, 52(4), 91-99.] | |
[18] | Guo CC, Shen YB, Shi FH (2021). Response of respiration and hormones during germination of Pinus bungeana seeds to temperature changes. Journal of Central South University of Forestry & Technology, 41, 25-36. |
[郭聪聪, 沈永宝, 史锋厚 (2021). 白皮松种子萌发过程中呼吸代谢和内源激素对温度变化的响应. 中南林业科技大学学报, 41, 25-36.] | |
[19] |
Guo CC, Shen YB, Shi FH (2020). Effect of temperature, light and storage time on the seed germination of Pinus bungeana Zucc. ex Endl.: the role of seed-covering layers and abscisic acid changes. Forests, 11, 300. DOI: 10.3390/f11030300.
DOI URL |
[20] |
Han AR, Kim HJ, Jung JB, Park PS (2018). Seed germination and initial seedling survival of the subalpine tree species, Picea jezoensis, on different forest floor substrates under elevated temperature. Forest Ecology and Management, 429, 579-588.
DOI URL |
[21] |
Kara F, Topaçoğlu O (2018). Influence of stand density and canopy structure on the germination and growth of Scots pine (Pinus sylvestris L.) seedlings. Environmental Monitoring and Assessment, 190, 749. DOI: org/10.1007/s10661-018-7129-x.
DOI URL |
[22] |
Kołodziejek J, Patykowski J, Wala M (2017). Effect of light, gibberellic acid and nitrogen source on germination of eight taxa from dissapearing European temperate forest, Potentillo albae-Quercetum. Scientific Reports, 7, 13924. DOI: 10.1038/S41598-017-13101-z.
DOI PMID |
[23] | Li Y, Mao SL, Li X, Wang YC, Li Q (2016). Effects of temperature and seed size on seed germination in Potentilla aurea. Genomics and Applied Biology, 35, 1248-1251. |
[李阳, 毛少利, 李想, 王宇超, 李倩 (2016). 温度和种子大小对黄花委陵菜种子萌发特征的影响. 基因组学与应用生物学, 35, 1248-1251.] | |
[24] |
Li YB, Mou P, Wang TM, Ge JP (2012). Evaluation of regeneration potential of Pinus koraiensis in mixed pine-hardwood forests in the Xiao Xing'an Mountains, China. Journal of Forestry Research, 23, 543-551.
DOI URL |
[25] | Li YK, Liu SZ, Kang CZ, Man DQ, Li DL (2011). Effects of temperature on germination characteristics of Pinus sylvesiris var. mongolica and Picea mongolica seed. Bulletin of Soil and Water Conservation, 31, 73-77. |
[李银科, 刘世增, 康才周, 满多清, 李得禄 (2011). 温度对樟子松和沙地云杉种子萌发特征的影响. 水土保持通报, 31, 73-77.] | |
[26] | Ma JL, Zhuang LW, Chen D, Li JW (1992). Geographic distribution of Pinus koraiensis in the world. Journal of Northeast Forestry University, 20(5), 40-48. |
[马建路, 庄丽文, 陈动, 李景文 (1992). 红松的地理分布. 东北林业大学学报, 20(5), 40-48.] | |
[27] |
Metcalfe DJ, Grubb PJ (1995). Seed mass and light requirements for regeneration in Southeast Asian rain forest. Canadian Journal of Botany, 73, 817-826.
DOI URL |
[28] |
Milberg P, Andersson L, Thompson K (2000). Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Science Research, 10, 99-104.
DOI URL |
[29] |
Pérez-García F, Hornero J, González-Benito ME (2003). Interpopulation variation in seed germination of five Mediterranean Labiatae shrubby species. Israel Journal of Plant Sciences, 51, 117-124.
DOI URL |
[30] |
Ritter E, Dalsgaard L, Einhorn KS (2005). Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark. Forest Ecology and Management, 206, 15-33.
DOI URL |
[31] |
Ruano I, Pando V, Bravo F (2009). How do light and water influence Pinus pinaster Ait. germination and early seedling development? Forest Ecology and Management, 258, 2647-2653.
DOI URL |
[32] |
Song Y, Zhu JJ, Yan QL (2020). The temperature and length for the release of primary and induction of secondary physiological dormancy in Korean pine (Pinus koraiensis Sieb. et Zucc.) seeds. New Forests, 51, 657-669.
DOI URL |
[33] |
Song Y, Zhu JJ, Yan QL, Wang GC (2017). Korean pine seed: lingking changes in dormancy to germination in the 2 years following dispersal. Forestry, 91, 98-109.
DOI URL |
[34] | Su H, Shen YR, Cai J, Jiang ZM, Yang CH, Xu XQ (2021). Germination characteristics of Betula albo-sinensis seeds from different provenances. Journal of Northwest Forestry University, 36(3), 109-114. |
[宿昊, 申耀荣, 蔡靖, 姜在民, 杨彩虹, 徐秀琴 (2021). 不同种源红桦种子的萌发特性. 西北林学院学报, 36(3), 109-114.] | |
[35] | Tan M, Yang ZL, Yang X, Cheng XY, Li GR, Ma WM (2018). Study on seed germination and seedling growth of Houpoöa officinalis in different habitats. Journal of Ecology and Rural Environment, 34, 910-916. |
[谭美, 杨志玲, 杨旭, 程小燕, 李公荣, 马文明 (2018). 不同生境内厚朴种子萌发和幼苗生长研究. 生态与农村环境学报, 34, 910-916.] | |
[36] |
Toole VK, Toole EH, Hendricks SB, Borthwick HA (1961). Responses of seeds of Pinus virginiana to light. Plant Physiology, 36, 285-290.
DOI PMID |
[37] | Wang LL, Liu YP, Zhang GF, Su WH, Zhou R, Guo XR, Zhao GH (2015). Effects of temperatures and light on seed germination of Platycladus orientalis (Linn.) Franco. Seed, 34(8), 1-5. |
[王玲玲, 刘亚萍, 张光飞, 苏文华, 周睿, 郭晓荣, 赵冠华 (2015). 温度和光照对侧柏种子萌发的影响. 种子, 34(8), 1-5.] | |
[38] |
Xia QQ, Ando M, Seiwa K (2016). Interaction of seed size with light quality and temperature regimes as germination cues in 10 temperate pioneer tree species. Functional Ecology, 30, 866-874.
DOI URL |
[39] | Xu HC (1992). Geographical Variation and Provenance Selection of Pinus tabulaeformis. China Forestry Publishing House, Beijing. |
[徐化成 (1992). 油松地理变异和种源选择. 中国林业出版社, 北京.] | |
[40] | Yan XF, Wang JL, Zhou LB (2011). Effects of light intensity on Quercus liaotungensis seed germination and seedling growth. Chinese Journal of Applied Ecology, 22, 1682-1688. |
[闫兴富, 王建礼, 周立彪 (2011). 光照对辽东栎种子萌发和幼苗生长的影响. 应用生态学报, 22, 1682-1688.] | |
[41] | Yu LZ, Yu SQ, Shi JW, Kong XW, Ding GQ, Lu ZM (2005). Higher plants species diversity in different types of artificial broad-leaved Korean pine forests. Chinese Journal of Ecology, 24, 1253-1257. |
[于立忠, 于水强, 史建伟, 孔祥文, 丁国泉, 卢正茂 (2005). 不同类型人工阔叶红松林高等植物物种多样性. 生态学杂志, 24, 1253-1257.] | |
[42] |
Yu Y, Baskin JM, Baskin CC, Tang Y, Cao M (2008). Ecology of seed germination of eight non-pioneer tree species from a tropical seasonal rain forest in southwest China. Plant Ecology, 197, 1-16.
DOI URL |
[43] | Zhang JN, Liu K (2014). Mechanisms for plants detecting the optimum time and place to germinate. Acta Prataculturae Sinica, 23(1), 328-338. |
[张佳宁, 刘坤 (2014). 植物调节萌发时间和萌发地点的机制. 草业学报, 23(1), 328-338.] | |
[44] |
Zhang M, Zhu JJ, Yan QL (2012). Review on influence mechanisms of light in seed germination. Chinese Journal of Plant Ecology, 36, 899-908.
DOI URL |
[张敏, 朱教君, 闫巧玲 (2012). 光对种子萌发的影响机理研究进展. 植物生态学报, 36, 899-908.]
DOI |
|
[45] |
Zhang M, Zhu JJ, Yan QL (2012). Seed germination of Pinus koraiensis Siebold & Zucc. in response to light regimes caused by shading and seed positions. Forest Systems, 21, 426-438.
DOI URL |
[46] | Zhu JJ (2002). A review on fundamental studies of secondary forest management. Chinese Journal of Applied Ecology, 13, 1689-1694. |
[朱教君 (2002). 次生林经营基础研究进展. 应用生态学报, 13, 1689-1694.] | |
[47] |
Zhu JJ, Liu ZG, Wang HX, Yan QL, Fang HY, Hu LL, Yu LZ (2008). Effects of site preparation on emergence and early establishment of Larix olgensis in montane regions of northeastern China. New Forests, 36, 247-260.
DOI URL |
[48] | Zou L, Zhang GQ, Saxi Y, Yu Y, Tang QM (2015). Plant diversity of virgin broadleaved-Korean pine forest and birch secondary forest in Liangshui. Bulletin of Botanical Research, 35, 945-951. |
[邹莉, 张国权, 萨喜雅尔图, 于洋, 唐庆明 (2015). 凉水原始阔叶红松林与白桦次生林植物多样性的比较研究. 植物研究, 35, 945-951.] |
[1] | Wen-bo Li Long Sun Hu Lou Cheng Yu Yu Han Tong-xin HU. Effects of fire disturbance on seed germination of Larix gmelinii [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | . Difference of seed germination characteristics and dormancy release method of Schoenoplectiella mucronata [J]. Chin J Plant Ecol, 2024, 48(5): 638-650. |
[3] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[4] | GAO Min, GOU Qian-Qian, WANG Guo-Hua, GUO Wen-Ting, ZHANG Yu, ZHANG Yan. Effects of low temperature stress on the physiology and growth of Caragana korshinskii seedlings from different mother tree ages [J]. Chin J Plant Ecol, 2024, 48(2): 201-214. |
[5] | WANG Yan-Ling, ZHAO Li-Jun, ZHU Li-Qiong, MO Ruo-Guo, LIN Ting, ZHAO Xiao-Yu. Seedling quantitative characteristics and dynamics of Syzygium hancei populations in Guangxi, China [J]. Chin J Plant Ecol, 2023, 47(9): 1278-1286. |
[6] | ZHANG Xue, HAN Feng-Peng, XIAO Bo, SHEN Si-Ming. Effects of biocrusts on surface roughness and seed secondary dispersal of shrubs and grasses on the Loess Plateau, China [J]. Chin J Plant Ecol, 2023, 47(12): 1668-1683. |
[7] | YAO Meng, KANG Rong-Hua, WANG Ang, MA Fang-Yuan, LI Jin, TAI Zi-Han, FANG Yun-Ting. Foliar assimilation and distribution of NO2 in Schima superba and Pinus massoniana seedlings using 15N stable isotope tracing technique [J]. Chin J Plant Ecol, 2023, 47(1): 114-122. |
[8] | DONG Quan-Min, ZHAO Xin-Quan, LIU Yu-Zhen, FENG Bin, YU Yang, YANG Xiao-Xia, ZHANG Chun-Ping, CAO Quan, LIU Wen-Ting. Effects of different herbivore assemblage on relationship between Kobresia humilis seed size and seed number in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(9): 1018-1026. |
[9] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[10] | QIN Jiang-Huan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Testing Janzen-Connell hypothesis based on plant-soil feedbacks in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 624-631. |
[11] | CHENG Si-Qi, JIANG Feng, JIN Guang-Ze. Leaf economics spectrum of broadleaved seedlings and its relationship with defense traits in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 678-686. |
[12] | LI Si-Yuan, ZHANG Zhao-Xin, RAO Liang-Yi. Responses of non-structural carbohydrates and growth hormone in Morus alba seedlings to flooding stress [J]. Chin J Plant Ecol, 2022, 46(3): 311-320. |
[13] | ZHONG Yu-Chen, WANG Bin, FANG Zhong-Ping, XU Xiao-Zhong, YU Ming-Jian. Seed predation and dispersal pattern of Fagaceae species in a fragmented landscape, eastern China [J]. Chin J Plant Ecol, 2021, 45(2): 154-162. |
[14] | LI Shao-Yang, MA Hong-Yuan, ZHAO Dan-Dan, MA Meng-Yao, QI Wen-Wen. Research progress on the effects of fire-related cues on seed germination [J]. Chin J Plant Ecol, 2021, 45(11): 1177-1190. |
[15] | HAN Da-Yong, ZHANG Wei, Nuermaimaiti YILIYASI, YANG Yun-Fei. Recruitment limitation of plant population regeneration [J]. Chin J Plant Ecol, 2021, 45(1): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn