Chin J Plant Ecol ›› 2011, Vol. 35 ›› Issue (2): 147-158.DOI: 10.3724/SP.J.1258.2011.00147
Special Issue: 全球变化与生态系统
• Research Articles • Previous Articles Next Articles
LI Liang1,2, SU Hong-Xin1, SANG Wei-Guo1,*()
Received:
2009-01-12
Accepted:
2009-06-03
Online:
2011-01-12
Published:
2011-01-21
Contact:
SANG Wei-Guo
LI Liang, SU Hong-Xin, SANG Wei-Guo. Simulating impacts of summer drought on forest dynamics in Dongling Mountain[J]. Chin J Plant Ecol, 2011, 35(2): 147-158.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.00147
参数 Parameter | 参数值 Parameter value | ||||
---|---|---|---|---|---|
辽东栎 Quercus liaotungensis | 油松 Pinus tabulaeformis | 棘皮桦 Betula dahurica | 核桃楸 Juglans mandshurica | ||
root_distribution | 对照 Control 策略1 Strategy 1 策略2 Strategy 2 | 7/3 7/3 6/4 | 7/3 7/3 6/4 | 7/3 7/3 7/3 | 7/3 7/3 8/2 |
drought_tolerance | 对照 Control 策略1 Strategy 1 策略2 Strategy 2 | 0.3 0.2 0.3 | 0.3 0.2 0.3 | 0.3 0.3 0.3 | 0.3 0.4 0.3 |
gdd5min_est (℃) fire_resistance shade_tolerance longevity (year) k_allom1 k_allom2 k_allom3 | 700 0.2 tolerant 220 200 16.29 0.36 | 600 0.1 tolerant 380 150 44.81 0.78 | 700 0.2 intolerant 150 200 14.9 0.23 | 1 100 0.3 intermediate 360 200 40 0.85 |
Table 1 Major species parameters for simulations with the ecosystem model LPJ-GUESS
参数 Parameter | 参数值 Parameter value | ||||
---|---|---|---|---|---|
辽东栎 Quercus liaotungensis | 油松 Pinus tabulaeformis | 棘皮桦 Betula dahurica | 核桃楸 Juglans mandshurica | ||
root_distribution | 对照 Control 策略1 Strategy 1 策略2 Strategy 2 | 7/3 7/3 6/4 | 7/3 7/3 6/4 | 7/3 7/3 7/3 | 7/3 7/3 8/2 |
drought_tolerance | 对照 Control 策略1 Strategy 1 策略2 Strategy 2 | 0.3 0.2 0.3 | 0.3 0.2 0.3 | 0.3 0.3 0.3 | 0.3 0.4 0.3 |
gdd5min_est (℃) fire_resistance shade_tolerance longevity (year) k_allom1 k_allom2 k_allom3 | 700 0.2 tolerant 220 200 16.29 0.36 | 600 0.1 tolerant 380 150 44.81 0.78 | 700 0.2 intolerant 150 200 14.9 0.23 | 1 100 0.3 intermediate 360 200 40 0.85 |
Fig. 3 Variation of net primary production (NPP) and carbon biomass (Cmass) of vegetation and tree species with different strategies to drought in Dongling Mountain. BEDA, Betula dahurica; JUMA, Juglans mandshurica; PITA, Pinus tabulaeformis; QULI, Quercus liaotungensis.
策略 Strategy | 情景 Scenario | 净初级生产力 NPP (kg C·m-2) | 碳生物量 Cmass (kg C·m-2) | 蒸散 ET (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
90 | 120 | 150 | 90 | 120 | 150 | 90 | 120 | 150 | ||||
对照 Control 策略1 Strategy 1 策略2 Strategy 2 | CK DP CK DP CK DP | 0.91 0.88 0.92 0.88 0.88 0.87 | 0.95 0.93 0.95 0.93 0.95 0.93 | 0.97 0.95 0.95 0.95 0.98 0.95 | 9.22 9.88 8.48 7.52 8.04 7.93 | 9.92 8.92 8.32 8.87 8.96 8.61 | 9.66 9.46 9.33 9.36 8.16 8.31 | 403.17 403.43 391.04 392.07 373.50 373.04 | 396.55 397.86 385.47 387.34 383.45 384.80 | 389.60 400.35 373.03 384.19 373.82 371.50 |
Table 2 Carbon and water cycles of forest vegetation at different age (90, 120, 150 years) under two scenarios of precipitation in Dongling Mountain
策略 Strategy | 情景 Scenario | 净初级生产力 NPP (kg C·m-2) | 碳生物量 Cmass (kg C·m-2) | 蒸散 ET (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
90 | 120 | 150 | 90 | 120 | 150 | 90 | 120 | 150 | ||||
对照 Control 策略1 Strategy 1 策略2 Strategy 2 | CK DP CK DP CK DP | 0.91 0.88 0.92 0.88 0.88 0.87 | 0.95 0.93 0.95 0.93 0.95 0.93 | 0.97 0.95 0.95 0.95 0.98 0.95 | 9.22 9.88 8.48 7.52 8.04 7.93 | 9.92 8.92 8.32 8.87 8.96 8.61 | 9.66 9.46 9.33 9.36 8.16 8.31 | 403.17 403.43 391.04 392.07 373.50 373.04 | 396.55 397.86 385.47 387.34 383.45 384.80 | 389.60 400.35 373.03 384.19 373.82 371.50 |
Fig. 4 Comparison of observed and simulated species composition of studied area at different drought response. BEDA, Betula dahurica; JUMA, Juglans mandshurica; PITA, Pinus tabulaeformis; QULI, Quercus liaotungensis.
[1] | Ainsworth EA, Long SP (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta- analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351-371. |
[2] | Archaux F, Wolters V (2006). Impact of summer drought on forest biodiversity: What do we know? Annals of Forest Science, 63, 645-652. |
[3] | Brown TJ, Hall BL, Westerling AL (2004). The impact of twenty-first century climate change on wildland fire danger in the western United States: an applications perspective. Climatic Change, 62, 365-388. |
[4] | Chen LZ (陈灵芝), Huang JH (黄建辉) (1997). Study on the Structure and Function of Forest Ecosystems in Warm Temperate Zone (暖温带森林生态系统结构与功能的研究). Science Press, Beijing. (in Chinese) |
[5] | Chen WJ, Black TA, Yang PC, Barr AG, Neumann HH, Nesic Z, Blanken PD, Novak MD, Eley J, Ketler RJ, Cuenca R (1999). Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biology, 5, 41-53. |
[6] |
Ciais Ph, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer Chr, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529-533.
DOI URL PMID |
[7] |
Collins SL (2009). Biodiversity under global change. Science, 326, 1353-1354.
URL PMID |
[8] | Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[9] |
Davies WJ, Tardieu F, Trejo CL (1994). How do chemical signals work in plants that grow in drying soil? Plant Physiology, 104, 309-314.
URL PMID |
[10] |
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: observations, modeling, and impacts. Science, 289, 2068-2074.
DOI URL PMID |
[11] | Fang JY (方精云), Liu GH (刘国华), Zhu B (朱彪), Wang XK (王效科), Liu SH (刘绍辉) (2006). Carbon budgets of three temperate forest ecosystems in Dongling Mt., Beijing, China. Science in China (Series D: Earth Sciences) (中国科学D辑: 地球科学), 36, 533-543. (in Chinese) |
[12] | Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004). Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 286, 249-270. |
[13] | Graham RL, Monica GT, Virginia H (1990). How increasing CO2 and climate change affect forests. BioScience, 40, 575-587. |
[14] | Guo RP (郭瑞萍), Mo XG (莫兴国) (2007). Differences of evapotranspiration on forest, grassland and farmland. Chinese Journal of Applied Ecology (应用生态学报), 18, 1751-1757. (in Chinese with English abstract) |
[15] | Guo MC (郭明春), Wang YH (王彦辉), Yu PT (于澎涛) (2005). A review of forest hydrology studies. World Forestry Research (世界林业研究), 18(3), 6-11. (in Chinese with English abstract) |
[16] | Han H, Gong DY (2003). Extreme climate events over northern China during the last 50 years. Journal of Geographical Sciences, 13, 469-479. |
[17] |
Hanson PJ, Todd DE Jr, Amthor JS (2001). A six-year study of sapling and large-tree growth and mortality responses to natural and induced variability in precipitation and throughfall. Tree Physiology, 21, 345-358.
URL PMID |
[18] | Hanson PJ, Weltzin JF (2000). Drought disturbance from climate change: response of United States forests. The Science of Total Environment, 262, 205-220. |
[19] | Hanson PJ, Wullschleger SD, Norby RJ, Tschaplinski TJ, Gunderson CA (2005). Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global Change Biology, 11, 1402-1423. |
[20] | Heisler JL, Weltzin JF (2006). Variability matters towards a perspective on the influence of precipitation on terrestrial ecosystems. New Phytologist, 172, 189-192 |
[21] | Hickler T, Smith B, Sykes MT, Davis MB, Sugita S, Walker K (2004). Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology, 85, 519-530. |
[22] |
Holt RD (1990). The microevolutionary consequences of climate change. Trends in Ecology & Evolution, 5, 311-315.
DOI URL PMID |
[23] | IPCC (Intergovernmental Panel on Climate Change) (2007). Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin DH, Manning M, Marquis M, Chen ZL, Averyt K, Tignor M, Miller HL eds. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[24] |
Jarvis P, Linder S (2000). Botany-constraints to growth of boreal forests. Nature, 405, 904-905.
DOI URL PMID |
[25] | Jiang GM (蒋高明), Chang J (常杰), Gao YB (高玉葆), Li YG (李永庚) (2004). Plant Ecophysiology (植物生理生态学). Higher Education Press, Beijing. (in Chinese) |
[26] | Jiang H (江洪) (1997). Study on biomass of the typical deciduous broadleaved forests in Dongling Mountain. In: Chen LZ, Huang JH eds. Study on the Structure and Function of Forest Ecosystems in Warm Temperate Zone (暖温带森林生态系统结构与功能的研究). Science Press, Beijing. 104-115. (in Chinese) |
[27] | Jiang YL (蒋延玲), Zhou GS (周广胜) (2001). Carbon equilibrium in Larix gmelinii forest and impact of global change on it. Chinese Journal of Applied Ecology (应用生态学报), 12, 481-484. (in Chinese with English abstract) |
[28] | Kardol P, Todd DE, Hanson PJ, Mulholland PJ (2010). Long-term successional forest dynamics: species and community responses to climatic variability. Journal of Vegetation Science, 21, 627-642. |
[29] |
Kimball JS, McDonald KC, Running SW, Frolking SE (2004). Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests. Remote Sensing of Environment, 90, 243-258.
DOI URL |
[30] | King AW, Gunderson CA, Post WM, Weston DJ, Wullschleger SD (2006). Plant respiration in a warmer world. Science, 312, 356-357. |
[31] |
Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
DOI URL PMID |
[32] | Knapp AK, Beier C, Briske DD, Classen AT, Luo YQ, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience, 58, 811-821. |
[33] | Koca D, Smith B, Sykes MT (2006). Modelling regional climate change effects on potential natural ecosystems in Sweden. Climatic Change, 78, 381-406. |
[34] |
Laporte MF, Duchesne LC, Wetzel S (2002). Effect of rainfall patterns on soil surface CO2 efflux, soil moisture, soil temperature and plant growth in a grassland ecosystem of northern Ontario, Canada: implications for climate change. BMC Ecology, 2, 10.
DOI URL PMID |
[35] |
Leuzinger S, Zotz G, Asshoff R, Körner C (2005). Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiology, 25, 641-650.
DOI URL PMID |
[36] | Liski J, Lehtonen A, Palosuo T, Peltoniemi M, Eqqers T, Muukkonen P, Mäkipää R (2006). Carbon accumulation in Finland’s forests 1922-2004—an estimate obtained by combination of forest inventory data with modeling of biomass, litter and soil. Annals of Forest Science, 63, 687-697. |
[37] | Li SL (2008). Projecting the summer climate of mainland China in the middle 21st century: Will the droughts in North China persist? Atmospheric and Oceanic Science Letters, 1, 12-17. |
[38] | Liu RG (刘瑞刚), Li N (李娜), Su HX (苏宏新), Sang WG (桑卫国) (2009). Simulation and analysis on future carbon balance of three deciduous forests in Beijing mountain area, warm temperate zone of China. Chinese Journal of Plant Ecology (植物生态学报), 33, 516-534. (in Chinese with English abstract) |
[39] | Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-being: Synthesis. Island Press, Washington DC. |
[40] | Morales P, Sykes MT, Prentice IC, Smith P, Smith B, Bugmann H, Zierl B, Friedlingstein P, Viovy N, Sabaté S, Sánchez A, Pla E, Gracia CA, Sitch S, Arneth A, Ogee J (2005). Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 11, 2211-2233. |
[41] | Niinemets Ü, Valladares F (2006). Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecological Monographs, 76, 521-547. |
[42] | Piao SL, Yin L, Wang XH, Ciais P, Peng SS, Shen ZH, Seneviratne SI (2009). Summer soil moisture regulated by precipitation frequency in China. Environmental Research Letters, 4(4), 1-6. |
[43] | Sang WG (2004). Modelling changes of a deciduous broad-leaved forest in warm temperate zone of China. Acta Ecologica Sinica, 24, 1194-1198. |
[44] | Sang WG (桑卫国), Ma KP (马克平), Chen LZ (陈灵芝) (2002). Primary study on carbon cycling in warm temperate deciduous broad-leaved forest. Acta Phytoecologica Sinica (植物生态学报), 26, 543-548 (in Chinese with English abstract) |
[45] |
Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332-336.
DOI URL PMID |
[46] |
Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310, 1333-1337.
DOI URL PMID |
[47] |
Seneviratne SI, Lüthi D, Litschi M, Schär C (2006). Land-atmosphere coupling and climate change in Europe. Nature, 443, 205-209.
DOI URL PMID |
[48] | Shan YL (单延龙), Li H (李华), Qi QG (其其格) (2003). Experimental analysis of the burning and physicochemical property of principal species in Daxing'an Mountain, Heilongjiang Province. Fire Safety Science (火灾科学), 12, 74-78 (in Chinese with English abstract) |
[49] | Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161-185. |
[50] | Smith B, Prentice IC, Sykes MT (2001). Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and Biogeogr- aphy, 10, 621-637. |
[51] | Su HX, Sang WG (2004). Simulations and analysis of net primary productivity in Quercus liaotungensis forest of Donglingshan Mountain range in response to different climate change scenarios. Acta Botanica Sinica, 46, 1281-1291. |
[52] | Surface Climate Data of China Multiplied Monthly (中国地面气候资料月值数据集) (2005). China Meteorological Administration, Beijing. http://cdc.cma.gov.cn. Cited 6 Jan. 2008. |
[53] |
Tagesson T, Smith B, Löfgren A, Rammig A, Eklundh L, Lindroth A (2009). Estimating net primary production of Swedish forest landscapes by combining mechanistic modeling and remote sensing. AMBIO, 38, 316-324.
DOI URL PMID |
[54] | Tian HQ (田汉勤), Xu XF (徐小锋), Song X (宋霞) (2007). Drought impacts on terrestrial ecosystem productivity. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 231-241. (in Chinese with English abstract) |
[55] | The Editorial Board of Forest in China (《中国森林》编辑委员会) (2000). Forest in China (Volume Three: Broad-leaved Forest) (中国森林第3卷: 阔叶林). China Forestry Publishing House, Beijing. (in Chinese) |
[56] | Thonicke K, Venevsky S, Sitch S, Cramer W (2001). The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Global Ecology and Biogeography, 10, 661-677. |
[57] | Vukićević T, Braswell BH, Schimel DS (2001). A diagnostic study of temperature controls on global terrestrial carbon exchange. Tellus B, 53, 150-170. |
[58] | Watt AS (1947). Pattern and process in the plant community. Journal of Ecology, 35, 1-22. |
[59] | Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53, 941-952. |
[60] | Weltzin JF, McPherson GR. (2003) Changing Precipitation Regimes and Terrestrial Ecosystems: a North American Perspective. University of Arizona Press, Tucson. |
[61] | Wramneby A, Smith B, Zaehle S, Sykes MT (2008). Parameter uncertainties in the modelling of vegetation dynamics― effects on tree community structure and ecosystem functioning in European forest biomes. Ecological Modelling, 216, 277-290. |
[62] | Xu XF (徐小锋), Tian HQ (田汉勤), Wan SQ (万师强) (2007). Climate warming impacts on carbon cycling in terrestrial ecosystems. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 175-188. (in Chinese with English abstract) |
[1] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[2] | DONG Shao-Qiong, HOU Dong-Jie, QU Xiao-Yun, GUO Ke. A plot-based dataset of plant communities on the Qaidam Basin, China [J]. Chin J Plant Ecol, 2024, 48(4): 534-540. |
[3] | XUE Zhi-Fang, LIU Tong, WANG Li-Sheng, SONG Ji-Hu, CHEN Hong-Yang, XU Ling, YUAN Ye. Community structure and characteristics of plain valley forests in main tributaries of Ertix River Basin, China [J]. Chin J Plant Ecol, 2024, 48(3): 390-402. |
[4] | XIAO Lan, DONG Biao, ZHANG Lin-Ting, DENG Chuan-Yuan, LI Xia, JIANG De-Gang, LIN Yong-Ming. Characteristics of main plant communities on uninhabited islands in Bohai Sea, China [J]. Chin J Plant Ecol, 2024, 48(1): 127-134. |
[5] | WANG Yu-Ting, LIU Xu-Jing, TANG Chi-Fei, CHEN Wei-Yu, WANG Mei-Juan, XIANG Song-Zhu, LIU Mei, YANG Lin-Sen, FU Qiang, YAN Zhao-Gui, MENG Hong-Jie. Community characteristics and population dynamics of Acer miaotaiense, an extremely small population species in Shennongjia, China [J]. Chin J Plant Ecol, 2024, 48(1): 80-91. |
[6] | REN Yue, GAO Guang-Lei, DING Guo-Dong, ZHANG Ying, ZHAO Pei-Shan, LIU Ye. Species composition and driving factors of the ectomycorrhizal fungal community associated with Pinus sylvestris var. mongolica at different growth periods [J]. Chin J Plant Ecol, 2023, 47(9): 1298-1309. |
[7] | WANG Xiu-Ying, CHEN Qi, DU Hua-Li, ZHANG Rui, MA Hong-Lu. Evapotranspiration interpolation in alpine marshes wetland on the Qingzang Plateau based on machine learning [J]. Chin J Plant Ecol, 2023, 47(7): 912-921. |
[8] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[9] | FAN Fan, ZHAO Lian-Jun, MA Tian-Yi, XIONG Xin-Yu, ZHANG Yuan-Bin, SHEN Xiao-Li, LI Sheng. Community composition and structure in a 25.2 hm2 subalpine dark coniferous forest dynamics plot in Wanglang, Sichuan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1005-1017. |
[10] | WANG Shu-Wen, LI Wen-Huai, LI Yan-Long, YAN Hui, LI Yong-Hong. Effects of different livestock types on plant diversity and community structure of a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(8): 941-950. |
[11] | FENG Yin-Cheng, WANG Yun-Qi, WANG Yu-Jie, WANG Kai, WANG Song-Nian, WANG Jie-Shuai. Water vapor fluxes and their relationship with environmental factors in a conifer-broadleaf mixed forest ecosystem in Jinyun Mountain, Chongqing, China [J]. Chin J Plant Ecol, 2022, 46(8): 890-903. |
[12] | JIN Yi-Li, WANG Hao-Yan, WEI Lin-Feng, HOU Ying, HU Jing, WU Kai, XIA Hao-Jun, XIA Jie, ZHOU Bo-Rui, LI Kai, NI Jian. A plot-based dataset of plant community on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(7): 846-854. |
[13] | YU Qiu-Wu, YANG Jing, SHEN Guo-Chun. Relationship between canopy structure and species composition of an evergreen broadleaf forest in Tiantong region, Zhejiang, China [J]. Chin J Plant Ecol, 2022, 46(5): 529-538. |
[14] | HUANG Ying, CHEN Zhi, SHI Zhe, XIONG Bo-Wen, YAN Chun-Hua, QIU Guo-Yu. Temporal and spatial variation characteristics and different calculation methods for the key parameter αe in the generalized complementary principle of evapotranspiration [J]. Chin J Plant Ecol, 2022, 46(3): 300-310. |
[15] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn