Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (9): 942-951.DOI: 10.17521/cjpe.2016.0001
• Method and Technology • Previous Articles Next Articles
Da-Yong FAN*(), Zeng-Juan FU, Zong-Qiang XIE, Rong-Gui LI, Shu-Min ZHANG
Received:
2015-01-03
Accepted:
2016-07-19
Online:
2016-09-10
Published:
2016-09-29
Contact:
Da-Yong FAN
Da-Yong FAN, Zeng-Juan FU, Zong-Qiang XIE, Rong-Gui LI, Shu-Min ZHANG. A new technology of modulated Chl a fluorescence image: In vivo measurement of the PSII maximum photochemical efficiency and its heterogeneity within leaves[J]. Chin J Plant Ecol, 2016, 40(9): 942-951.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0001
参数 Index | 型号 Type | |||
---|---|---|---|---|
PAM101-102-1031) | IMAGING-PAM | PEA | 本仪器 This set-up | |
信号采集方式 Signal acquisition mode | 调制-锁相放大 Lock-in amplifier | CCD连续采集 CCD continuous collection | 光电连续采集 Photoelectric continuous collection | CCD连续采集 CCD continuous collection |
荧光数据形式 Fluorescence data format | 点式 Point | 图像 Image | 点式 Point | 图像 Image |
测量光光强 The measuring light intensity | 20-302) | 10-1 000 | 3 000 | 1 0003) |
测量光脉冲宽度 The measuring light pulse width | 2 μs4) | 1.8 ms | 2 s | 160 μs |
测量光周期 The measuring cycle duration | 600 μs5) | 125-1 000 ms | NA | 3.3 ms |
测量光脉冲宽度在OJIP的位置 The position of the measuring light pulse in OJIP curve | O段 At O stage | 接近J段 Close to J stage | NA | 接近O段 Close to O stage |
测量光占空比 The measuring light duty cycle | 1/300 | 1.8/(125-1000) | NA | 1/30 |
饱和光光强 Saturating light intensity (μmol·m-2·s-1) | >3 000 | 800-1 200 | 3 000 | 1 000 |
测量光光强是否与饱和光光强一致 Is the measuring light intensity consistent with the saturating light intensity? | 否 No | 否6) No6) | 是 Yes | 是 Yes |
可否得到叶水平面荧光异质性 Can the fluorescence image on the leaf surface be obtained? | 否 No | 可以 Yes | 否 No | 可以7) Yes7) |
可否得到叶横截面荧光异质性 Can the fluorescence across leaf section be obtained? | 否 No | 否8) No8) | 否 No | 可以9) Yes9) |
测量光和饱和光的均匀性 The uniformity of measuring and saturating light source | 均匀 Uniform | 一定范围内均匀 Uniform within a specific range | 均匀 Uniform | 均匀10) Uniform10) |
Table 1 The comparison of current fluorometers which can measure maximum photochemical efficiency (Fv/Fm)
参数 Index | 型号 Type | |||
---|---|---|---|---|
PAM101-102-1031) | IMAGING-PAM | PEA | 本仪器 This set-up | |
信号采集方式 Signal acquisition mode | 调制-锁相放大 Lock-in amplifier | CCD连续采集 CCD continuous collection | 光电连续采集 Photoelectric continuous collection | CCD连续采集 CCD continuous collection |
荧光数据形式 Fluorescence data format | 点式 Point | 图像 Image | 点式 Point | 图像 Image |
测量光光强 The measuring light intensity | 20-302) | 10-1 000 | 3 000 | 1 0003) |
测量光脉冲宽度 The measuring light pulse width | 2 μs4) | 1.8 ms | 2 s | 160 μs |
测量光周期 The measuring cycle duration | 600 μs5) | 125-1 000 ms | NA | 3.3 ms |
测量光脉冲宽度在OJIP的位置 The position of the measuring light pulse in OJIP curve | O段 At O stage | 接近J段 Close to J stage | NA | 接近O段 Close to O stage |
测量光占空比 The measuring light duty cycle | 1/300 | 1.8/(125-1000) | NA | 1/30 |
饱和光光强 Saturating light intensity (μmol·m-2·s-1) | >3 000 | 800-1 200 | 3 000 | 1 000 |
测量光光强是否与饱和光光强一致 Is the measuring light intensity consistent with the saturating light intensity? | 否 No | 否6) No6) | 是 Yes | 是 Yes |
可否得到叶水平面荧光异质性 Can the fluorescence image on the leaf surface be obtained? | 否 No | 可以 Yes | 否 No | 可以7) Yes7) |
可否得到叶横截面荧光异质性 Can the fluorescence across leaf section be obtained? | 否 No | 否8) No8) | 否 No | 可以9) Yes9) |
测量光和饱和光的均匀性 The uniformity of measuring and saturating light source | 均匀 Uniform | 一定范围内均匀 Uniform within a specific range | 均匀 Uniform | 均匀10) Uniform10) |
Fig. 1 Block diagram of the experimental set-up of measurement of chlorophyll fluorescence yield within leaves. 1, leaf clip; 2, leaf pad; 3, leaf disk; 4, microscope objective; 5, incident modulated measuring light (for the determination of Fo) and saturate light (for the determination of Fm); 6, blue laser LED; 7, chopper (when turned on, modulated measuring light is created, for the determination of Fo; when turned off, continuous strong light is created, for the determination of Fm); 8, constant current source; 9, beam splitter; 10, chl a fluorescence; 11, short-wave cut-off filter (RG9); 12, charge coupled device (CCD); 13, computer. Fo, minimum fluorescence yield in dark-adapted state; Fm, maximum fluorescence yield in dark- adapted state
Fig. 4 The false color images of maximum photochemical efficiency (Fv/Fm) across leaf section after photoinhibition. A, free-hand section showing the thickness of leaf. B, 0 h. C, 1 h. D, 3 h.
1 | Aro EM, McMaffery S, Anderson JM (1993). Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances.Plant Physiology, 103, 835-843. |
2 | Baker NR (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo.Annual Review of Plant Biology, 59, 89-113. |
3 | Cao J, Govindjee (1990). Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakoid membranes.Biochimica et Biophysica Acta- Bioenergetics, 1015, 180-188. |
4 | Croxdale JG, Omasa K (1990). Chlorophyll-a fluorescence and carbon assimilation in developing leaves of light-grown cucumber.Plant Physiology, 93, 1078-1082. |
5 | Danielsson R, Albertsson PA, Mamedov F, Styring S (2004). Quantification, of photosystem I and II in different parts of the thylakoid membrane from spinach.Biochimica et Biophysica Acta-Bioenergetics, 1608, 53-61. |
6 | Farquhar GD, Caemmerer SV, Berry JA (1980). A biochemical- model of photosynthetic CO2 assimilation in leaves of C3 species.Planta, 149, 78-90. |
7 | Fan DY, Ye ZP, Wang SC, Chow WS (2015). Multiple roles of oxygen in the photoinactivation and dynamic repair of photosystem II in spinach leaves.Photosynthesis Research. doi: 10.1007/s11120-015-0185-y. |
8 | Hakala M, Tuominen I, Keranen M, Tyystjarvi T, Tyystjarvi E (2005). Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II.Biochimica et Biophysica Acta-Bioenergetics, 1706, 68-80. |
9 | Hu YY, Fan DY, Losciale P, Chow W, Zhang WF (2013). Whole-tissue determination of the rate coefficients of photoinactivation and repair of photosystem II in cotton leaf discs based on flash-induced P700 redox kinetics.Photosynthesis Research, 117, 517-528. |
10 | Kagawa T, Wada M (1999). Chloroplast-avoidance response induced by high-fluence blue light in prothallial cells of the fern Adiantum capillus-veneris as analyzed by microbeam irradiation.Plant Physiology, 119, 917-923. |
11 | Melis A (1991). Dynamics of photosynthetic membrane- composition and function.Biochimica et Biophysica Acta, 1058, 87-106. |
12 | Oguchi R, Douwstra P, Fujita T, Chow WS, Terashima I (2011). Intra-leaf gradients of photoinhibition induced by different color lights: Implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers.New Phytologist, 191, 146-159. |
13 | Osmond CB (1994). What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker NR, Bowyer JR eds. Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. BIOS Scientific Publishing, Oxford, UK. 1-24. |
14 | Oxborough K (2004). Using chlorophyll a fluorescence imaging to monitor photosynthetic performance, In: Papageorgiou GC, Govindjee eds. Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer Press, Dordrecht, The Netherland. 409-428. |
15 | Schreiber U, Kuhl M, Klimant I, Reising H (1996). Measurement of chlorophyll fluorescence within leaves using a modified PAM fluorometer with a fiber-optic microprobe. Photosynthesis Research, 47, 103-109. |
16 | Strasser RJ, Srivastava A, Govindjee (1995). Polyphasic chlorophyll-alpha fluorescence transient in plants and cyanobacteria.Photochemistry and Photobiology, 61, 32-42. |
17 | Strasser RJ, Tsimilli-Michael M, Srivastava A (2004). Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee eds. Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer Press, Dordrecht, the Netherland. 321-362. |
18 | Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009). Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green.Plant and Cell Physiology, 50, 684-697. |
19 | Terashima I, Inoue Y (1985). Palisade tissue chloroplasts and spongy tissue chloroplasts in spinach: Biochemical and ultrastructural differences.Plant and Cell Physiology, 26, 63-75. |
20 | Tyystjärvi E (2013). Photoinhibition of photosystem II.International Review of Cell and Molecular Biology, 300, 243-303. |
21 | Vogelmann TC, Bjorn LO (1984). Measurement of light gradients and spectral regime in plant-tissue with a fiber optic probe.Physiologia Plantarum, 60, 361-368. |
22 | Vogelmann TC, Evans JR (2002). Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence.Plant, Cell & Environment, 25, 1313-1323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn