Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (7): 1070-1081.DOI: 10.17521/cjpe.2024.0100 cstr: 32100.14.cjpe.2024.0100
• Research Articles • Previous Articles Next Articles
WANG Yao1,2(), WANG Yao-Bin1,2, CHEN Zi-Yan1,2, YI Ru-Han3, BAI Yong-Fei2, ZHAO Yu-Jin2,*(
), JIN Jing-Wei1,*(
)
Received:
2024-04-07
Accepted:
2024-05-27
Online:
2025-07-20
Published:
2024-10-11
Contact:
ZHAO Yu-Jin, JIN Jing-Wei
Supported by:
WANG Yao, WANG Yao-Bin, CHEN Zi-Yan, YI Ru-Han, BAI Yong-Fei, ZHAO Yu-Jin, JIN Jing-Wei. Effect of consecutive drought on the resilience and resistance of the grasslands on the Mongolian Plateau[J]. Chin J Plant Ecol, 2025, 49(7): 1070-1081.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0100
Fig. 1 Distribution map of Mongolian Plateau Grasslands net primary production (NPP) (A), mean annual precipitation (MAP) (B), drought severity levels (C), grassland types (D), and change of NPP and standardized precipitation evapotranspiration index (SPEI) over the years (E). The red horizontal lines in E indicate drought severity levels: SPEI ≤ -1.28 represents extreme drought, while -1.28 ≤ SPEI ≤ -0.67 represents moderate drought.
SPEI | 严重程度 Severity level |
---|---|
-1.28 > SPEI | 极端干旱 Extreme drought |
-0.67 ≥ SPEI ≥ -1.28 | 中度干旱 Moderate drought |
0.67 > SPEI > -0.67 | 正常 Normal |
Table 1 Dry severity level classified by standardized precipitation evapotranspiration index (SPEI) value
SPEI | 严重程度 Severity level |
---|---|
-1.28 > SPEI | 极端干旱 Extreme drought |
-0.67 ≥ SPEI ≥ -1.28 | 中度干旱 Moderate drought |
0.67 > SPEI > -0.67 | 正常 Normal |
Fig. 2 Spatial distribution patterns of resistance (A) and resilience (B) in Mongolian Plateau Grasslands, variation of resistance (C) and resilience (D) along the mean annual precipitation (MAP) gradient, resistance and resilience of different grassland types (E). The solid lines are the best fitted lines (p < 0.05), and the shaded area represents the 95% confidence space. *, p < 0.05; ***, p < 0.001.
Fig. 3 Change of the resistance and resilience to different drought intensities across the entire region of the Mongolian Plateau, as well as meadow steppe, typical steppe and desert steppe under continuous drought (mean ± SE). * indicates a significant difference (p < 0.05), ** indicates a very significant difference (p < 0.01), *** indicates a highly significant difference (p < 0.001), and ns indicates no significant difference (p ≥ 0.05).
Fig. 4 Resistance and resilience, as well as their changes (E, F), of the grasslands in the Mongolian Plateau during 2000-2010 (A, B) and 2011-2020 (C, D). A, C, E indicate resistance; B, D, F indicate resilience.
Fig. 5 Change of the resistance and resilience to different time periods across the entire region of the Mongolian Plateau, as well as meadow steppe, typical steppe, and desert steppe under continuous drought (mean ± SE). * indicates a significant difference (p < 0.05), ** indicates a very significant difference (p < 0.01), *** indicates a highly significant difference (p < 0.001), and ns indicates no significant difference (p ≥ 0.05).
[1] | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184. |
[2] |
Carroll CJW, Slette IJ, Griffin-Nolan RJ, Baur LE, Hoffman AM, Denton EM, Gray JE, Post AK, Johnston MK, Yu Q, Collins SL, Luo YQ, Smith MD, Knapp AK (2021). Is a drought a drought in grasslands? Productivity responses to different types of drought. Oecologia, 197, 1017-1026.
DOI PMID |
[3] | Chen XN, Tao X, Yang YP (2022). Distribution and attribution of gross primary productivity increase over the Mongolian Plateau, 2001-2018. IEEE Access, 10, 25125-25134. |
[4] | Craven D, Eisenhauer N, Pearse WD, Hautier Y, Isbell F, Roscher C, Bahn M, Beierkuhnlein C, Bönisch G, Buchmann N, Byun C, Catford JA, Cerabolini BEL, Cornelissen JHC, Craine JM, et al. (2018). Multiple facets of biodiversity drive the diversity-stability relationship. Nature Ecology & Evolution, 2, 1579-1587. |
[5] | de Keersmaecker W, Lhermitte S, Tits L, Honnay O, Somers B, Coppin P (2015). A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Global Ecology and Biogeography, 24, 539-548. |
[6] | Forzieri G, Dakos V, McDowell NG, Ramdane A, Cescatti A (2022). Emerging signals of declining forest resilience under climate change. Nature, 608, 534-539. |
[7] | Gao G, Li Y, Chen YX, Feng AQ (2023). The evolution characteristics of drought spatio-temporal law in China in the recent 30 years. China Flood & Drought Management, 33(7), 1-8. |
[高歌, 李莹, 陈逸骁, 冯爱青 (2023). 30年来中国干旱时空规律演变特征. 中国防汛抗旱, 33(7), 1-8.] | |
[8] | Gu Y, Dong K, Geisen S, Yang W, Yan Y, Gu D, Liu N, Borisjuk N, Luo Y, Friman VP (2020). The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion. Plant and Soil, 452, 105-117. DOI: 10.1007/s11104-020-04545-w. |
[9] | Guo J, Yang X, Jiang W, Xing X, Zhang M, Chen A, Yang D, Yang M, Wei L, Xu B (2023). Resistance of grassland under different drought types in the Inner Mongolia Autonomous Region of China. Remote Sensing, 15, 5045. DOI: 10.3390/rs15205045. |
[10] | Hoover DL, Knapp AK, Smith MD (2014). Resistance and resilience of a grassland ecosystem to climate extremes. Ecology, 95, 2646-2656. |
[11] | Hossain ML, Li J, Hoffmann S, Beierkuhnlein C (2022). Biodiversity showed positive effects on resistance but mixed effects on resilience to climatic extremes in a long-term grassland experiment. Science of the Total Environment, 827, 154322. DOI: 10.1016/j.scitotenv.2022.154322. |
[12] | Hossain ML, Li J, Lai Y, Beierkuhnlein C (2023). Long-term evidence of differential resistance and resilience of grassland ecosystems to extreme climate events. Environmental Monitoring and Assessment, 195, 734. DOI: 10.1007/s10661-023-11269-8. |
[13] | Huang WJ, Wang W, Cao M, Fu G, Xia JY, Wang ZX, Li JS (2021). Local climate and biodiversity affect the stability of China’s grasslands in response to drought. Science of the Total Environment, 768, 145482. DOI: 10.1016/j.scitotenv.2021.145482. |
[14] | Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, de Luca E, Ebeling A, Griffin JN, Guo QF, Hautier Y, Hector A, et al. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526, 574-577. |
[15] | Ivits E, Horion S, Erhard M, Fensholt R (2016). Assessing European ecosystem stability to drought in the vegetation growing season. Global Ecology and Biogeography, 25, 1131-1143. |
[16] | Komatsu KJ, Avolio ML, Lemoine NP, Isbell F, Grman E, Houseman GR, Koerner SE, Johnson DS, Wilcox KR, Alatalo JM, Anderson JP, Aerts R, Baer SG, Baldwin AH, Bates J, et al. (2019). Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 116, 17867-17873. |
[17] | Kong DD, Zhang Q, Gu XH, Wang Y, Li HZ (2016). Vegetation responses to drought at different time scales in China. Acta Ecologica Sinica, 36, 7908-7918. |
[孔冬冬, 张强, 顾西辉, 王月, 李华贞 (2016). 植被对不同时间尺度干旱事件的响应特征及成因分析. 生态学报, 36, 7908-7918.] | |
[18] | Lei T, Feng J, Lv J, Wang J, Song H, Song W, Gao X (2020). Net Primary Productivity Loss under different drought levels in different grassland ecosystems. Journal of Environmental Management, 274, 111144. DOI: 10.1016/j.jenvman.2020.111144. |
[19] | Li X, Piao S, Wang K, Wang X, Wang T, Ciais P, Chen A, Lian X, Peng S, Peñuelas J (2020). Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nature Ecology & Evolution, 4, 1075-1083. |
[20] | Li ZY, Ye XZ, Wang SP (2021). Ecosystem stability and its relationship with biodiversity. Chinese Journal of Plant Ecology, 45, 1127-1139. |
[李周园, 叶小洲, 王少鹏 (2021). 生态系统稳定性及其与生物多样性的关系. 植物生态学报, 45, 1127-1139.]
DOI |
|
[21] | Liu L, Guan JY, Zheng JH, Wang YD, Han WQ, Liu YJ (2023). Cumulative effects of drought have an impact on net primary productivity stability in Central Asian grasslands. Journal of Environmental Management, 344, 118734. DOI: 10.1016/j.jenvman.2023.118734. |
[22] | Luo W, Ma W, Song L, Te N, Chen J, Muraina TO, Wilkins K, Griffin-Nolan RJ, Ma T, Qian J, Xu C, Yu Q, Wang Z, Han X, Collins SL (2023). Compensatory dynamics drive grassland recovery from drought. Journal of Ecology, 111, 1281-1291. |
[23] | Luo W, Zuo X, Griffin-Nolan RJ, Xu C, Ma W, Song L, Helsen K, Lin Y, Cai J, Yu Q, Wang Z, Smith MD, Han X, Knapp AK (2019). Long term experimental drought alters community plant trait variation, not trait means, across three semiarid grasslands. Plant and Soil, 442, 343-353. |
[24] | Miao LJ, Jiang C, He B, Liu Q, Zhu F, Cui XF (2014). Response of vegetation coverage to climate change in Mongolian Plateau during recent 10 years. Acta Ecologica Sinica, 34, 1295-1301. |
[缪丽娟, 蒋冲, 何斌, 刘强, 朱枫, 崔雪锋 (2014). 近10年来蒙古高原植被覆盖变化对气候的响应. 生态学报, 34, 1295-1301.] | |
[25] | Schwalm CR, Anderegg WRL, Michalak AM, Fisher JB, Biondi F, Koch G, Litvak M, Ogle K, Shaw JD, Wolf A, Huntzinger DN, Schaefer K, Cook R, Wei Y, Fang Y, et al. (2017). Global patterns of drought recovery. Nature, 548, 202-205. |
[26] | Shi H, Tian H, Lange S, Yang J, Pan S, Fu B, Reyer CPO (2021). Terrestrial biodiversity threatened by increasing global aridity velocity under high-level warming. Proceedings of the National Academy of Sciences of the United States of America, 118, e2015552118. DOI: 10.1073/pnas.2015552118. |
[27] | Smith MD (2011). An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 99, 656-663. |
[28] |
Song L, Luo WT, Ma W, He P, Liang XS, Wang ZW (2020). Extreme drought effects on nonstructural carbohydrates of dominant plant species in a meadow grassland. Chinese Journal of Plant Ecology, 44, 669-676.
DOI |
[宋琳, 雒文涛, 马望, 何鹏, 梁潇洒, 王正文 (2020). 极端干旱对草甸草原优势植物非结构性碳水化合物的影响. 植物生态学报, 44, 669-676.]
DOI |
|
[29] | Stuart-Haëntjens E, de Boeck HJ, Lemoine NP, Mänd P, Kröel-Dulay G, Schmidt IK, Jentsch A, Stampfli A, Anderegg WRL, Bahn M, Kreyling J, Wohlgemuth T, Lloret F, Classen AT, Gough CM, Smith MD (2018). Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Science of the Total Environment, 636, 360-366. |
[30] |
Tong S, Zhang J, Bao Y, Lai Q, Lian X, Li N, Bao Y (2018). Analyzing vegetation dynamic trend on the Mongolian Plateau based on the Hurst exponent and influencing factors from 1982-2013. Journal of Geographical Sciences, 28, 595-610.
DOI |
[31] |
Vicente-Serrano SM, Gouveia C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A (2013). Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America, 110, 52-57.
DOI PMID |
[32] | Wang B (2023). Characteristics of Plant Communities and Soil Organic Carbon Mineralization in Desert Steppe of Western Inner Mongolia. Master degree dissertation, Shanxi University, Taiyuan. |
[王犇 (2023). 内蒙古西部荒漠草原植物群落特征与土壤有机碳矿化研究. 硕士学位论文, 山西大学, 太原.] | |
[33] |
Wei YX, Chen LJ, Feng Q, Xi HY, Guo R, Zhang CQ (2024). Progress on microbial characteristics in arid salt-affected soils and related factors. Journal of Desert Research, 44(3), 18-30.
DOI |
[卫雨西, 陈丽娟, 冯起, 席海洋, 郭瑞, 张成琦 (2024). 干旱区盐碱土微生物特征及其影响因素研究进展. 中国沙漠, 44(3), 18-30.]
DOI |
|
[34] | Xu C, Ke Y, Zhou W, Luo W, Ma W, Song L, Smith MD, Hoover DL, Wilcox KR, Fu W (2021). Resistance and resilience of a semi-arid grassland to multi-year extreme drought. Ecological Indicators, 131, 108139. DOI: 10.1016/j.ecolind.2021.108139. |
[35] | Xu YQ (2020). Study on the Remote Sensing-based Measurement Model of Vegetation Resilience. PhD dissertation, China University of Mining and Technology, Xuzhou, Jiangsu. |
[徐雅晴 (2020). 植被恢复力遥感测度模型研究. 博士学位论文, 中国矿业大学, 江苏徐州.] | |
[36] |
Zhang B, Zhu JJ, Liu HM, Pan QM (2014). Effects of extreme rainfall and drought events on grassland ecosystems. Chinese Journal of Plant Ecology, 38, 1008-1018.
DOI |
[张彬, 朱建军, 刘华民, 潘庆民 (2014). 极端降水和极端干旱事件对草原生态系统的影响. 植物生态学报, 38, 1008-1018.]
DOI |
|
[37] |
Zhang P, Jeong JH, Yoon JH, Kim H, Wang SYS, Linderholm HW, Fang K, Wu X, Chen D (2020). Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science, 370, 1095-1099.
DOI PMID |
[38] |
Zhao SY, Gon ZN, Liu XY (2015). Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001-2013. Acta Geographica Sinica, 70, 717-729.
DOI |
[赵舒怡, 宫兆宁, 刘旭颖 (2015). 2001-2013年华北地区植被覆盖度与干旱条件的相关分析. 地理学报, 70, 717-729.]
DOI |
|
[39] | Zhou Y, Ma HB, Lu Q, Ma JL, Shen Y, Wang GH (2024). Different responses of leaf and root economics spectrum to grazing time at the community level in desert steppe, China. Science of the Total Environment, 909, 168547. DOI: 10.1016/j.scitotenv.2023.168547. |
[1] | LI Wen-Zhu, Junwei 军伟, DI yaping, Yi 一, CHEN Zhi-Cheng, LIU Shi-Rong. Effects of manipulative drought on mycorrhiza-mediated soil enzyme activities and soil organic carbon fractions in a warm temperate oak forest [J]. , 2026, 50(菌根生态学): 0-. |
[2] | Zhang Lin, HUANG Zhen-Ying. Dataset of Plant Species Composition and Community Characteristics of Long-term Observation Plots in the Ordos Sandy Grassland from 2004 to 2010 [J]. Chin J Plant Ecol, 2025, 49(8): 1-. |
[3] | ZHANG Bin, ZHANG Hao-Cheng, QIAO Tian, LÜ Zhi-Bing, XU Ya-Nan, LI Xue-Qin, YUAN Xiang-Yang, FENG Mei-Chen, ZHANG Mei-Jun. Effect of arbuscular mycorrhizal fungi inoculation on non-structural carbohydrates and C, N and P stoichiometry in oat plants under drought stress [J]. Chin J Plant Ecol, 2025, 49(7): 1082-1095. |
[4] | LIU Ke-Yan, HAN Lu, SONG Wu-Ye, ZHANG Chu-Rui, HU Xu, XU Hang, CHEN Li-Xin. Detection of drought effects on photosynthetic stability of vegetation on the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2025, 49(3): 415-431. |
[5] | LI Shu-Wen, TANG Lu-Yao, ZHANG Bo-Na, YE Lin-Feng, TONG Jin-Lian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Regional differentiation of cooperative relationships between Ulmus pumila branches and leaves along precipitation gradients [J]. Chin J Plant Ecol, 2025, 49(2): 282-294. |
[6] | SHAO Chang-Chang, DUAN Hong-Lang, ZHAO Xi-Zhou, DING Gui-Jie. Research progress on the prediction of drought death point and the mechanism of drought- induced tree mortality [J]. Chin J Plant Ecol, 2025, 49(2): 221-231. |
[7] | WANG Kun-Ying, QIU Gui-Fu, LIU Zi-He, MENG Jun, LIU Yu-Xuan, JIA Guo-Dong. Climate change regulate tree growth and intrinsic water use efficiency of Populus simonii at different levels of degradation [J]. Chin J Plant Ecol, 2025, 49(2): 343-355. |
[8] | WANG Yin, TONG Xiao-Juan, ZHANG Jin-Song, LI Jun, MENG Ping, LIU Pei-Rong, ZHANG Jing-Ru. Impact of drought on carbon and water fluxes and their coupling in a Quercus variabilis plantation [J]. Chin J Plant Ecol, 2024, 48(9): 1157-1171. |
[9] | ZHANG Peng, JIAO Liang, XUE Ru-Hong, WEI Meng-Yuan, DU Da-Shi, WU Xuan, WANG Xu-Ge, LI Qian. Drought intensity affected the growth recovery of Picea crassifolia across different altitudes in western Qilian Mountains [J]. Chin J Plant Ecol, 2024, 48(8): 977-987. |
[10] | LONG Ji-Lan, JIANG Zheng, LIU Ding-Qin, MIAO Yu-Xuan, ZHOU Ling-Yan, FENG Ying, PEI Jia-Ning, LIU Rui-Qiang, ZHOU Xu-Hui, FU Yu-Ling. Effects of drought on plant root exudates and associated rhizosphere priming effect: review and prospect [J]. Chin J Plant Ecol, 2024, 48(7): 817-827. |
[11] | CHEN Ke-Yu, XING Sen, TANG Yu, SUN Jia-Hui, REN Shi-Jie, ZHANG Jing, JI Bao-Ming. Arbuscular mycorrhizal fungal community characteristics and driving factors in different grassland types [J]. Chin J Plant Ecol, 2024, 48(5): 660-674. |
[12] | BAI Hao-Ran, HOU Meng, LIU Yan-Jie. Mechanisms of the invasion of Cenchrus spinifex and drought effects on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[13] | SUONAN Ji, LI Bo-Wen, LÜ Wang-Wang, WANG Wen-Ying, LA Ben, LU Xu-Wei, SONGZHA Cuo, CHEN Cheng-Hao, MIAO Qi, SUN Fang-Hui, WANG Shi-Ping. Changes of phenological sequence of Potentilla saundersiana and its frost resistance under the scenarios of warming and increasing precipitation [J]. Chin J Plant Ecol, 2024, 48(2): 158-170. |
[14] | HUANG Li-Cheng, MO Xing-Guo. Response and resilience of net primary productivity of the Hai River Basin ecosystems under meteorological droughts [J]. Chin J Plant Ecol, 2024, 48(10): 1256-1273. |
[15] | MA Chang-Qin, HUANG Hai-Long, PENG Zheng-Lin, WU Chun-Ze, WEI Qing-Yu, JIA Hong-Tao, WEI Xing. Response of compound leaf types and photosynthetic function of male and female Fraxinus mandschurica to different habitats [J]. Chin J Plant Ecol, 2023, 47(9): 1287-1297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn