Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (4): 407-415.DOI: 10.17521/cjpe.2015.0040
• Orginal Article • Previous Articles Next Articles
WU Xiu-Li1, OU Yong-Bin1, YUAN Gai-Huan1, CHEN Yong-Fu1, WANG Yang1, YAO Yin-An1,2,*()
Received:
2014-10-27
Accepted:
2015-03-17
Online:
2015-04-01
Published:
2015-04-21
Contact:
Yin-An YAO
About author:
# Co-first authors
WU Xiu-Li,OU Yong-Bin,YUAN Gai-Huan,CHEN Yong-Fu,WANG Yang,YAO Yin-An. Physiological responses of two poplar species to high boron stress[J]. Chin J Plan Ecolo, 2015, 39(4): 407-415.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0040
杨树种 Poplar species | 浓度 Concentration (mg·kg-1) | 株高 Plant height (cm) | 地上部鲜质量 Aboveground fresh mass (g) | 地下部鲜质量 Underground fresh mass (g) | EC10 (mg·kg-1) |
---|---|---|---|---|---|
俄罗斯杨 Populus russkii | CK | 97.5 ± 4.9a | 143.5 ± 5.9a | 95.3 ± 4.2a | 19.5 |
10 | 94.5 ± 3.3ab | 131.8 ± 5.9b | 91.2 ± 4.3ab | ||
20 | 93.5 ± 2.6ab | 129.4 ± 7.0bc | 87.3 ± 3.4b | ||
30 | 90.8 ± 3.8bc | 127.1 ± 5.3bc | 80.3 ± 0.9c | ||
40 | 85.5 ± 3.8cd | 119.8 ± 1.9cd | 68.1 ± 5.2d | ||
50 | 80.0 ± 3.7d | 112.4 ± 4.5d | 60.5 ± 3.0e | ||
新疆杨 Populus bolleca | CK | 108.3 ± 0.9a | 125.9 ± 7.4b | 158.5 ± 3.9a | 35.4 |
10 | 109.3 ± 3.2a | 138.8 ± 3.4a | 156.4 ± 6.6a | ||
20 | 105.3 ± 2.5a | 117.2 ± 4.5c | 141.3 ± 3.5b | ||
30 | 98.0 ± 2.9b | 116.0 ± 3.8c | 137.3 ± 4.3b | ||
40 | 92.0 ± 5.2c | 114.9 ± 4.2c | 135.8 ± 4.3b | ||
50 | 88.5 ± 2.6c | 101.1 ± 4.0d | 115.8 ± 4.5c |
Table 1 Effect of different concentrations of boron on plant height and fresh mass of two poplar species (mean ± SE, n = 5)
杨树种 Poplar species | 浓度 Concentration (mg·kg-1) | 株高 Plant height (cm) | 地上部鲜质量 Aboveground fresh mass (g) | 地下部鲜质量 Underground fresh mass (g) | EC10 (mg·kg-1) |
---|---|---|---|---|---|
俄罗斯杨 Populus russkii | CK | 97.5 ± 4.9a | 143.5 ± 5.9a | 95.3 ± 4.2a | 19.5 |
10 | 94.5 ± 3.3ab | 131.8 ± 5.9b | 91.2 ± 4.3ab | ||
20 | 93.5 ± 2.6ab | 129.4 ± 7.0bc | 87.3 ± 3.4b | ||
30 | 90.8 ± 3.8bc | 127.1 ± 5.3bc | 80.3 ± 0.9c | ||
40 | 85.5 ± 3.8cd | 119.8 ± 1.9cd | 68.1 ± 5.2d | ||
50 | 80.0 ± 3.7d | 112.4 ± 4.5d | 60.5 ± 3.0e | ||
新疆杨 Populus bolleca | CK | 108.3 ± 0.9a | 125.9 ± 7.4b | 158.5 ± 3.9a | 35.4 |
10 | 109.3 ± 3.2a | 138.8 ± 3.4a | 156.4 ± 6.6a | ||
20 | 105.3 ± 2.5a | 117.2 ± 4.5c | 141.3 ± 3.5b | ||
30 | 98.0 ± 2.9b | 116.0 ± 3.8c | 137.3 ± 4.3b | ||
40 | 92.0 ± 5.2c | 114.9 ± 4.2c | 135.8 ± 4.3b | ||
50 | 88.5 ± 2.6c | 101.1 ± 4.0d | 115.8 ± 4.5c |
指标 Indicator | 杨树种 Poplar species | 硼处理 Boron treatment | 杨树种×硼处理 Poplar species × boron treatment |
---|---|---|---|
株高 Height | 97.887*** | 37.568*** | 1.600NS |
地上部鲜质量 Aboveground fresh mass | 24.684*** | 27.477*** | 4.255** |
地下部鲜质量 Underground fresh mass | 1839.731*** | 69.783*** | 2.740* |
叶绿素a Chl a | 16.434*** | 160.187*** | 14.542*** |
叶绿素b Chl b | 48.117*** | 99.303*** | 14.330*** |
总叶绿素 Chl a+b | 2.566NS | 196.331*** | 19.477*** |
叶绿素a/b Chl a/b | 171.615*** | 8.297*** | 2.817* |
过氧化氢酶 CAT | 3.360NS | 63.215*** | 15.106*** |
过氧化物酶 Gu-POD | 1.382NS | 94.742*** | 4.206** |
可溶性蛋白 SP | 3.751NS | 51.696*** | 1.952NS |
可溶性糖 SC | 518.683*** | 41.706*** | 0.802NS |
Table 2 Statistical significance of the F values (ANOVA) for the effects of poplar species, boron treatments and poplar species × boron treatments
指标 Indicator | 杨树种 Poplar species | 硼处理 Boron treatment | 杨树种×硼处理 Poplar species × boron treatment |
---|---|---|---|
株高 Height | 97.887*** | 37.568*** | 1.600NS |
地上部鲜质量 Aboveground fresh mass | 24.684*** | 27.477*** | 4.255** |
地下部鲜质量 Underground fresh mass | 1839.731*** | 69.783*** | 2.740* |
叶绿素a Chl a | 16.434*** | 160.187*** | 14.542*** |
叶绿素b Chl b | 48.117*** | 99.303*** | 14.330*** |
总叶绿素 Chl a+b | 2.566NS | 196.331*** | 19.477*** |
叶绿素a/b Chl a/b | 171.615*** | 8.297*** | 2.817* |
过氧化氢酶 CAT | 3.360NS | 63.215*** | 15.106*** |
过氧化物酶 Gu-POD | 1.382NS | 94.742*** | 4.206** |
可溶性蛋白 SP | 3.751NS | 51.696*** | 1.952NS |
可溶性糖 SC | 518.683*** | 41.706*** | 0.802NS |
Fig. 1 Effect of different concentrations of boron on minimal chlorophyll fluorescence (Fo) , maximal chlorophyll fluorescence (Fm) , maximum quantum yield of PSII photochemistry (Fv/Fm) and quantum yield of non-regulated energy dissipation (Y(NO)) in Populus russkii and P. bolleca.
Fig. 2 Rapid-light-curve of Populus russkii (Pr) and P. bolleca (Pb) under different concentrations of boron. PAR, photosynthetic active radiation; ETR, photosynthetic electron transport rate; Y(II), effective quantum yield of photochemical energy; NPQ, no-photochemical quenching; qP, photochemical quenching.
Fig. 3 Effect of different boron concentration on chlorophyll (Chl) contents in Populus russkii and P. bolleca (mean ± SE, n = 5). Different lower-case letters indicate significant difference (p < 0.05) (Duncan’s multiple range test), standardized form represents P. russkii, inclined form represents P. bolleca.
Fig. 4 Effect of different boron concentration on CAT and Gu-POD activity in leaves of Populus russkii and P. bolleca (mean ± SE, n = 3). Different lower-case letters indicate significant difference (p < 0.05) (Duncan’s multiple range test), standardized form represents P. russkii, inclined form represents P. bolleca.
Fig. 5 Effect of different boron concentration on contents of soluble protein (SP) and soluble carbohydrate (SC) in Populus russkii and P. bolleca (mean ± SE, n = 3). Different lower-case letters indicate significant difference (p < 0.05) (Duncan’s multiple range test), standardized form represents P. russkii, inclined form represents P. bolleca.
[1] | Arriaga D (2012). Microelement Localization in Leaves in Populus spp. and Tolerance Mechanism to Boron-salt Toxicity. PhD dissertation, University of Texas, EI Paso. 5-6. |
[2] | Bañeulos GS, Shannon MC, Ajwa HA, Draper JH, Jordahl J, Licht J (1999). Phytoextraction and accumulation of boron and selenium by poplar (Populus) hybrid clones.International Journal of Phytoremediation, 1(1), 81-96. |
[3] | Blevins DG, Lukaszewski KM (1998). Boron in plant structure and function.Annual Review of Plant Biology, 49, 481-500. |
[4] | Bowler C, van Montagu M, Inze D (1992). Superoxide dismutase and stress tolerance.Annual Review of Plant Physiology and Plant Molecular Biology, 43, 83-116. |
[5] | Chen SY (1989). Membrane lipid peroxide and plant adversity stress.Chinese Bulletin of Botany, 6, 211-217.(in Chinese with English abstract) |
[陈少裕 (1989). 膜脂过氧化与植物逆境胁迫. 植物学通报, 6, 211-217.] | |
[6] | Dong GF, Chen YZ, Jiang GM (1999). Plant xanthophylls cycle and radiationless energy dissipation.Plant Physiology Communications, 35, 141-144.(in Chinese with English abstract) |
[董高峰, 陈贻竹, 蒋高明 (1999). 植物叶黄素循环与非辐射能量耗散. 植物生理学通讯, 35, 141-144.] | |
[7] | Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophy II fluorescence.Biohimica et Biophysica Acta, 990, 87-92. |
[8] | Heuer B (1994). Osmoregulatory role of proline in water and salt stressed plants. In: Pessarakli M ed. Handbook of Plant and Crop Stress. Marcel Dekker, New York. 363-381. |
[9] | Hu H, Brown PH (1994). Localization of boron in cell walls of squash and tobacco and its association with pectin evidence for a structural role of boron in the cell wall.Plant Physiology, 105, 681-689. |
[10] | Knörzer OC, Burner J, Boger P (1996). Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress.Physiologia Plantarun, 97, 388-396. |
[11] | Li DQ, Zou Q, Cheng BS (1991). The progress of plant osmotic adjustment.Journal of Shandong Agricultural University, 22, 86-90.(in Chinese with English abstract) |
[李德全, 邹琦, 程炳嵩 (1991). 植物渗透调节研究进展. 山东农业大学学报, 22, 86-90.] | |
[12] | Li YH, Huang XY (2006). Effects of metal on photosynthesis in plants.Import Inquiry, (6), 23-25.(in Chinese with English abstract) |
[李裕红, 黄小瑜 (2006). 重金属污染对植物光合作用的影响. 引进与咨询, (6), 23-25.] | |
[13] | Liu CG, He XJ (2012). Boron toxicity in plants and phytoremediation of boron-laden soils.Journal of Agro-Environment Science, 31, 230-236.(in Chinese with English abstract) |
[刘春光, 何小娇 (2012). 过量硼对植物的毒害及高硼土壤植物修复研究进展. 农业环境科学学报, 31, 230-236.] | |
[14] | Liu H, Shu XX, Zhao Y, Wang SM (1997). Effect of salt stress on growth and carbohydrate contents inPuccinellia tenuiflora. Pratacultural Science, 14, 18-20.(in Chinese with English abstract) |
[刘华, 舒孝喜, 赵银, 王锁民 (1997). 盐胁迫对碱茅生长及碳水化合物含量的影响. 草业科学, 14, 18-20.] | |
[15] | Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001). Oxidative stress and antioxidant activity as the basis of senescence in maize leaves.Plant Science, 161, 765-771. |
[16] | Read SM, Northcote DH (1981). Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein.Analytical Biochemistry, 116, 53-64. |
[17] | Rees R, Robinson BH, Menon M, Lehmann E, Günthardt- Goerg MS, Schulin R (2011). Boron accumulation and toxicity in hybrid poplar (Populus nigra × euramericana).Environmental Science and Technology, 45, 10538-10543. |
[18] | Rees R, Robinson BH, Rog CJ, Papritz A, Schulin R (2013). Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill.Science of the Total Environment, 447, 515-524. |
[19] | Robinson BH, Green S, Mills T, Clothier B, Velde M, Laplane R, Fung L, Deurer M, Hurst S, Thayalakumaran T, Dijssel C (2003). Phytoremediation: Using plants as biopumps to improve degraded environments.Australian Journal of Soil Research, 41, 599-611. |
[20] | Schnurbusch T, Hayes J, Sutton T (2010). Boron toxicity tolerance in wheat and barley: Australian perspectives.Breeding Science, 60, 297-304. |
[21] | Stiles AR, Bautista D, Atalay E, Babaoğlu M, Terry N (2010). Mechanisms of boron tolerance and accumulation in plants: A physiological comparison of the extremely boron tolerant plant species, Puccinellia distans, with the moderately boron-tolerantGypsophila arrostil. Environmental Science and Technology, 44, 7089-7095. |
[22] | Tanaka M, Fujiwara T (2008). Physiological roles and transport mechanisms of boron: Perspectives from plants.Pflügers Archiv European Journal of Physiology, 456, 671-677. |
[23] | Wang CL, Xin XR, Wu GP, Si Y, Wei XS (2003). Analyses of boron distribution and pollution in soil and some crops in Kuandian.Environmental Monitoring in China, 19(5), 4-7.(in Chinese with English abstract) |
[王春利, 邢小茹, 吴国平, 司杨, 魏复盛 (2003). 宽甸土壤及部分农作物中硼的分布及污染分析. 中国环境监测, 19(5), 4-7.] | |
[24] | Wang XK (2006). The Experiment Principle and Technique on Plant Physiology and Biochemistry. Higher Education Press, Beijing. 134-136.(in Chinese with English abstract) |
[王学奎 (2006). 植物生理生化试验原理和技术. 高等教育出版社, 北京. 134-136.] | |
[25] | Xiao Q, Zheng HL, Chen Y (2005). Effect of salinity on the growth and proline soluble sugar and protein contents ofSpartina alterniflora. Chinese Journal of Ecology, 24, 373-376.(in Chinese with English abstract) |
[肖强, 郑海雷, 陈瑶 (2005). 盐度对互花米草生长及脯氨酸、可溶性糖和蛋白质含量的影响. 生态学杂志, 24, 373-376.] | |
[26] | Yau SK, Ryan J (2008). Boron toxicity tolerance in crops: A viable alternative to soil amelioration.Crop Science, 48, 854-865. |
[27] | Zhang Y, Xue LG, Gao TP, Jin L, An NZ (2005). The research progress of desert plants seed germination.Journal of Desert Research, 25, 106-112.(in Chinese with English abstract) |
[张勇, 薛林贵, 高天鹏, 晋玲安黎哲 (2005). 荒漠植物种子萌发研究进展. 中国沙漠, 25, 106-112.] | |
[28] | Zu YL, Lin KH (2000). The role of boron plant body and the influence on crop yield and quality.Journal of Yunnan Agricultural University, 15, 353-363.(in Chinese with English abstract) |
[祖艳群, 林克惠 (2000). 硼在植物体中的作用及对作物产量和品质的影响. 云南农业大学学报, 15, 353-363.] |
[1] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
[2] | ZHAO Xiao-Ning, TIAN Xiao-Nan, LI Xin, LI Guang-De, GUO You-Zheng, JIA Li-Ming, DUAN Jie, XI Ben-Ye. Analysis of applicability of Granier’s original equation for calculating the stem sap flux density—Take Populus tomentosa as an example [J]. Chin J Plant Ecol, 2023, 47(3): 404-417. |
[3] | DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar [J]. Chin J Plant Ecol, 2023, 47(3): 348-360. |
[4] | FAN Yun-Xiang, DI Nan, LIU Yang, ZHANG Yu-Wen, DUAN Jie, LI Xin, WANG Hai-Hong, XI Ben-Ye. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors [J]. Chin J Plant Ecol, 2023, 47(2): 262-274. |
[5] | LIU Li-Yan, FENG Jin-Xia, LIU Wen-Xin, WAN Xian-Chong. Effects of drought stress on photosynthesis, growth and root structure of transgenic PtPIP2;8 poplar 84K (Populus alba × P. glandulosa) [J]. Chin J Plant Ecol, 2020, 44(6): 677-686. |
[6] | ZHOU Hui-Min, LI Pin, FENG Zhao-Zhong, ZHANG Yin-Bo. Short-term effects of combined elevated ozone and limited irrigation on accumulation and allocation of non-structural carbohydrates in leaves and roots of poplar sapling [J]. Chin J Plant Ecol, 2019, 43(4): 296-304. |
[7] | ZHU Wan-Rui,WANG Qi-Tong,LIU Meng-Ling,WANG Hua-Tian,WANG Yan-Ping,ZHANG Guang-Can,LI Chuan-Rong. Interactive effects of phenolic acid and nitrogen on morphological traits of poplar (Populus × euramericana ‘Neva’) fine roots [J]. Chin J Plan Ecolo, 2015, 39(12): 1198-1208. |
[8] | LIU Ting,TANG Ming. Effects of arbuscular mycorrhizal fungi on growth and anatomical properties of stomata and xylem in poplars [J]. Chin J Plant Ecol, 2014, 38(9): 1001-1007. |
[9] | WANG Hua-Tian, YANG Yang, WANG Yan-Ping, JIANG Yue-Zhong, WANG Zong-Qin. Effects of exogenous phenolic acids on nitrate absorption and utilization of hydroponic cuttings of Populus × euramericana ‘Neva’ [J]. Chin J Plant Ecol, 2011, 35(2): 214-222. |
[10] | LIU Chen-Feng, ZHANG Zhi-Qiang, SUN Ge, ZHA Tong-Gang, ZHU Jin-Zhao, SHEN Li-Hua, CHEN Jun, FANG Xian-Rui, CHEN Ji-Quan. QUANTIFYING EVAPOTRANSPIRATION AND BIOPHYSICAL REGULATIONS OF A POPLAR PLANTATION ASSESSED BY EDDY COVARIANCE AND SAP-FLOW METHODS [J]. Chin J Plant Ecol, 2009, 33(4): 706-718. |
[11] | GONG Ji-Rui, HUANG Yong-Mei, GE Zhi-Wei, DUAN Qing-Wei, YOU Xin, AN Ran, ZHANG Xin-Shi. ECOLOGICAL RESPONSES TO SOIL WATER CONTENT IN FOUR HYBRID POPULUS CLONES [J]. Chin J Plant Ecol, 2009, 33(2): 387-396. |
[12] | SU Pei-Xi, ZHANG Li-Xin, DU Ming-Wu, BI Yu-Rong, ZHAO Ai-Fen, LIU Xin-Min. Photosynthetic Character and Water Use Efficiency of Different Leaf Shapes of Populus Euphratica and Their Response to Co2 Enrichment [J]. Chin J Plan Ecolo, 2003, 27(1): 34-40. |
[13] | ZHANG Shou-Ren, GAO Rong-Fu. Ecophysiological Characteristics of Photosynthesis of Hybrid Poplar Clones Under Light Stress [J]. Chin J Plan Ecolo, 2000, 24(5): 528-533. |
[14] | LIU Shi-Rong. Effects of Seabuckthorn on Tree Growth and Biomass Production Poplar Plantations in a in a Subhumid-arid Area of China [J]. Chin J Plan Ecolo, 2000, 24(2): 169-174. |
[15] | Yang Minsheng, Pei Baohua, Cheng Zhipeng. Physiologic Indexes of Cold Resistance in Hybrid White Poplar Clons [J]. Chin J Plan Ecolo, 1997, 21(4): 367-375. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn