Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (6): 965-974.DOI: 10.17521/cjpe.2023.0222 cstr: 32100.14.cjpe.2023.0222
• Research Articles • Previous Articles Next Articles
MA Teng-Fei1,2,3, HAO Jie1,2,3, DIAO Hua-Jie1,2,3, NING Ya-Nan1,2,3, $\boxed{\hbox{WANG Chang-Hui}}$ 1,2,3,*(), DONG Kuan-Hu1,2,3,*
Received:
2023-08-03
Accepted:
2024-05-06
Online:
2025-06-20
Published:
2024-05-07
Contact:
$\boxed{\hbox{WANG Chang-Hui}}$ , DONG Kuan-Hu
Supported by:
MA Teng-Fei, HAO Jie, DIAO Hua-Jie, NING Ya-Nan, $\boxed{\hbox{WANG Chang-Hui}}$ , DONG Kuan-Hu. Seasonal variations of soil inorganic nitrogen contents and their responses to changing grazing intensity in grasslands of an agro-pastoral ecotone in northern Shanxi, China[J]. Chin J Plant Ecol, 2025, 49(6): 965-974.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0222
Fig. 2 Soil temperature and moisture content during the growing season from 2017 to 2021. Each data point is the average of the monthʼs observations. HG, heavy grazing; LG, light grazing; MG, moderate grazing; UG, ungrazing.
Fig. 3 Dynamic changes of soil ammonium nitrogen (NH4+-N) (A, D), nitrate nitrogen (NO3--N) (B, E) and inorganic nitrogen (C, F) contents (mean ± SE) in the growing season under different grazing intensities from 2017 to 2021. HG, heavy grazing; LG, light grazing; MG, moderate grazing; UG, ungrazing. * and ** indicated significant differences among treatments at the levels of p < 0.05 and p < 0.01, respectively.
Fig. 4 Inorganic nitrogen contents at different grazing intensities from 2017 and 2021 (mean ± SE). HGNH4+, ammonium nitrogen content under heavy grazing treatment; HGNO3-, nitrate nitrogen content under heavy grazing treatment; LGNH4+, ammonium nitrogen content under light grazing treatment; LGNO3-, nitrate nitrogen content under light grazing treatment; MGNH4+, ammonium nitrogen content under moderate grazing treatment; MGNO3-, nitrate nitrogen content under moderate grazing treatment; UGNH4+, ammonium nitrogen content under non-grazing treatment; UGNO3-, nitrate nitrogen content under non-grazing treatment. Different lowercase letters indicated significant differences among different grazing intensity treatments in the same year (p < 0.05); different uppercase letters indicate significant differences in the inorganic nitrogen content among different years (p < 0.05).
铵态氮 NH4+-N | 硝态氮 NO3--N | 无机氮 IN | |
---|---|---|---|
年际 Year (Y) | <0.001 | <0.001 | <0.001 |
放牧强度 Grazing intensity (G) | 0.342 | 0.232 | 0.417 |
Y × G | 0.068 | 0.050 | 0.066 |
Table 1 Two way ANOVA of the effects of year, grazing intensity and their interactions on soil ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and inorganic nitrogen (IN) contents (p value)
铵态氮 NH4+-N | 硝态氮 NO3--N | 无机氮 IN | |
---|---|---|---|
年际 Year (Y) | <0.001 | <0.001 | <0.001 |
放牧强度 Grazing intensity (G) | 0.342 | 0.232 | 0.417 |
Y × G | 0.068 | 0.050 | 0.066 |
2017 | 2018 | 2019 | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | |
日期 Date (D) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
放牧强度 Grazing intensity (G) | 0.256 | 0.144 | 0.283 | 0.426 | 0.141 | 0.870 | 0.075 | <0.050 | <0.050 | 0.347 |
D × G | 0.104 | <0.050 | 0.311 | 0.632 | 0.725 | 0.709 | 0.152 | 0.238 | 0.086 | 0.919 |
Table 2 Effects of sampling date, grazing intensity and their interactions on soil ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N) contents (p value)
2017 | 2018 | 2019 | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | |
日期 Date (D) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
放牧强度 Grazing intensity (G) | 0.256 | 0.144 | 0.283 | 0.426 | 0.141 | 0.870 | 0.075 | <0.050 | <0.050 | 0.347 |
D × G | 0.104 | <0.050 | 0.311 | 0.632 | 0.725 | 0.709 | 0.152 | 0.238 | 0.086 | 0.919 |
Fig. 5 Box plots of the relationships between aboveground biomass (A) and belowground biomass (B) of plants under different grazing intensities from 2017 to 2021 (mean ± SE). HG, heavy grazing; LG, light grazing; MG, moderate grazing; UG, ungrazing. Different lowercase letters indicate significant differences among different grazing intensity treatments in the same year (p < 0.05).
Fig. 6 Linear correlation analysis of the relationships between soil inorganic nitrogen content and aboveground biomass (A, B, C) and between soil inorganic nitrogen content and belowground biomass (D, E, F) under different grazing intensities from 2017 to 2021. NH4+-N, ammonium nitrogen; NO3--N, nitrate nitrogen.
Fig. 7 Redundancy analysis of soil ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N) contents and air temperature and soil moisture. MAP, mean annual precipitation; MAT, mean annual air temperature; ST, soil temperature; SW, soil moisture.
[1] | A ML, Zhao ML, Han GD, Jia L, Dong T (2011). Influences of grazing intensity on carbon and nitrogen contents in desert steppe. Chinese Journal of Grassland, 33(3), 115-118. |
[阿穆拉, 赵萌莉, 韩国栋, 贾乐, 董亭 (2011). 放牧强度对荒漠草原地区土壤有机碳及全氮含量的影响. 中国草地学报, 33(3), 115-118.] | |
[2] | Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Körner C, de Boeck H, Christensen JH, Leuzinger S, Janssens IA, Hansen K (2012). Precipitation manipulation experiments—Challenges and recommendations for the future. Ecology Letters, 15, 899-911. |
[3] | Centeri C (2022). Effects of grazing on water erosion, compaction and infiltration on grasslands. Hydrology, 9, 34. DOI: 10.3390/hydrology9020034. |
[4] |
Connell JH (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1310.
DOI PMID |
[5] | Dai Z, Yu M, Chen H, Zhao H, Huang Y, Su W, Xiao F, Chang SX, Brookes PC, Dahlgren RA, Xu J (2020). Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biology, 26, 5267-5276. |
[6] | Deng X, Xu T, Xue L, Hou P, Xue L, Yang L (2023). Effects of warming and fertilization on paddy N2O emissions and ammonia volatilization. Agriculture, Ecosystems & Environment, 347, 108361. DOI: 10.1016/j.agee.2023.108361. |
[7] | Du ZY, Cai YJ, Wang XD, Zhang B, Du Z (2019). Research progress on grazing livestock dung decomposition and its influence on the dynamics of grassland soil nutrients. Acta Ecologica Sinica, 39, 4627-4637. |
[杜子银, 蔡延江, 王小丹, 张斌, 杜忠 (2019). 放牧牲畜粪便降解及其对草地土壤养分动态的影响研究进展. 生态学报, 39, 4627-4637.] | |
[8] | Du ZY, Cai YJ, Zhang B, Hong JT, Wang XD (2022). Research progress on livestock excreta returning on soil nitrogen transformation and nitrous oxide emission in grasslands. Acta Ecologica Sinica, 42, 45-57. |
[杜子银, 蔡延江, 张斌, 洪江涛, 王小丹 (2022). 牲畜排泄物返还对草地土壤氮转化和氧化亚氮(N2O)排放的影响研究进展. 生态学报, 42, 45-57.] | |
[9] | Gao XF, Han GD, Zhang G, Zhao ML, Lu P (2007). Effects of grazing on soil microorganisms and their seasonal changes in desert steppe. Chinese Journal of Soil Science, 38, 145-148. |
[高雪峰, 韩国栋, 张功, 赵萌莉, 卢萍 (2007). 放牧对荒漠草原土壤微生物的影响及其季节动态研究. 土壤通报, 38, 145-148.] | |
[10] | Han XL, Huang CG, Zhang YX, Guo JP (2020). nirS-type denitrifiers community composition and function in different riparian vegetation types in upper Wenyuhe watershed. Acta Ecologica Sinica, 40, 1977-1989. |
[韩晓丽, 黄春国, 张芸香, 郭晋平 (2020). 文峪河上游河岸带不同植被类型土壤nirS反硝化菌群结构及功能. 生态学报, 40, 1977-1989.] | |
[11] | Hou JJ, Wang JZ, Sun P, Zhu WY, Xu J, Lu CA (2022). Spatiotemporal patterns in nitrogen response efficiency of aboveground productivity across China’s grasslands. Scientia Agricultura Sinica, 55, 1811-1821. |
[侯将将, 王金洲, 孙平, 朱文琰, 徐靖, 卢昌艾 (2022). 中国草地地上生产力氮素敏感性的时空变化. 中国农业科学, 55, 1811-1821.]
DOI |
|
[12] |
Jiang J, Song MH (2010). Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chinese Journal of Plant Ecology, 34, 979-988.
DOI |
[蒋婧, 宋明华 (2010). 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 34, 979-988.]
DOI |
|
[13] | Jiao YQ (2022). Research status of spatial and temporal changes of soil inorganic nitrogen (ammonium nitrogen, nitrate nitrogen). Modern Salt and Chemical Industry, 49(1), 20-22. |
[焦亚青 (2022). 土壤无机氮(铵态氮、硝态氮)时空变化研究现状. 现代盐化工, 49(1), 20-22.] | |
[14] |
Li CY, Kong XQ, Dong HZ (2020). Nitrate uptake, transport and signaling regulation pathways. Journal of Nuclear Agricultural Sciences, 34, 982-993.
DOI |
[李晨阳, 孔祥强, 董合忠 (2020). 植物吸收转运硝态氮及其信号调控研究进展. 核农学报, 34, 982-993.]
DOI |
|
[15] |
Li T, Zhang Y, Zhao JL, Yan RR, Xin XP, Wang X, Chen JQ, Wu DX, Li LH, Zhao M (2021). Effects of grazing intensity on soil water-heat regime and above-ground biomass in a meadow steppe. Acta Agrestia Sinica, 29, 2577-2582.
DOI |
[李彤, 张宇, 赵晋灵, 闫瑞瑞, 辛晓平, 王旭, 陈金强, 吴冬秀, 李凌浩, 赵曼 (2021). 放牧对草甸草原土壤水热状况和地上生物量的影响. 草地学报, 29, 2577-2582.]
DOI |
|
[16] | Liu H, Zhang A, Liu C, Zhao Y, Zhao A, Wang D (2021). Analysis of the time-lag effects of climate factors on grassland productivity in Inner Mongolia. Global Ecology and Conservation, 30, e01751. DOI: 10.1016/j.gecco.2021.e01751. |
[17] | Lv P, Sun SS, Zhao XY, Li YQ, Zhao SL, Zhang J, Hu Y, Guo AX, Yue P, Zuo XA (2023). Effects of altered precipitation patterns on soil nitrogen transformation in different landscape types during the growing season in northern China. Catena, 222, 106813. DOI: 10.1016/j.catena.2022.106813. |
[18] | Ouyang Y, Evans SE, Friesen ML, Tiemann LK (2018). Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: a meta-analysis of field studies. Soil Biology & Biochemistry, 127, 71-78. |
[19] | Ren YJ, Liu XL, Wang HL, Diao HJ, Wang CH, Dong KH (2020). Response of soil net nitrogen mineralization rates to different grazing intensities in Leymus secalinus communities of the agro-pastoral ecotone of northern China. Acta Agrestia Sinica, 28, 328-337. |
[任雨佳, 刘夏琳, 王惠玲, 刁华杰, 王常慧, 董宽虎 (2020). 北方农牧交错带赖草草地土壤氮矿化对不同放牧强度的响应. 草地学报, 28, 328-337.]
DOI |
|
[20] | Shan YM, Wen C, Chang H, Zhang PJ, Ye RH, Mu L, Wang CH, Huang JH, Bai YF, Sun HL, Chen HJ (2019). The study on seasonal dynamics of soil nitrogen mineralization under different grazing intensities in desert steppe. Ecology and Environmental Sciences, 28, 723-731. |
[单玉梅, 温超, 常虹, 张璞进, 晔薷罕, 木兰, 王常慧, 黄建辉, 白永飞, 孙海莲, 陈海军 (2019). 不同放牧强度下荒漠草原土壤氮矿化季节性动态研究. 生态环境学报, 28, 723-731.]
DOI |
|
[21] |
Tegeder M, Masclaux-Daubresse C (2018). Source and sink mechanisms of nitrogen transport and use. New Phytologist, 217, 35-53.
DOI PMID |
[22] | Vertès F, Delaby L, Klumpp K, Bloor J (2019). C-N-P uncoupling in grazed grasslands and environmental implications of management intensification//Lemaire G, de Faccio Carvalho PC, Kronberg S, Recous S. Agroecosystem Diversity. Academic Press, Cambridge, UK. 15-34. |
[23] | Wang CH, Xing XR, Han XG (2004). Advances in study of factors affecting soil N mineralization in grassland ecosystems. Chinese Journal of Applied Ecology, 15, 2184-2188. |
[王常慧, 邢雪荣, 韩兴国 (2004). 草地生态系统中土壤氮素矿化影响因素的研究进展. 应用生态学报, 15, 2184-2188.] | |
[24] |
Wang J, Wang D, Li C, Seastedt TR, Liang C, Wang L, Sun W, Liang M, Li Y (2018). Feces nitrogen release induced by different large herbivores in a dry grassland. Ecological Applications, 28, 201-211.
DOI PMID |
[25] | Wang L, Delgado-Baquerizo M, Zhao X, Zhang M, Song Y, Cai J, Chang Q, Li Z, Chen Y, Liu J, Zhu H, Wang D, Han G, Liang C, Wang C, Xin X (2020). Livestock overgrazing disrupts the positive associations between soil biodiversity and nitrogen availability. Functional Ecology, 34, 1713-1720. |
[26] | Wu DD, Jing X, Lin L, Yang XY, Zhang ZH, He JS (2016). Responses of soil inorganic nitrogen to warming and altered precipitation in an alpine meadow on the Qinghai-Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 52, 959-966. |
[武丹丹, 井新, 林笠, 杨新宇, 张振华, 贺金生 (2016). 青藏高原高寒草甸土壤无机氮对增温和降水改变的响应. 北京大学学报(自然科学版), 52, 959-966.] | |
[27] | Yu YW, Nan ZB (2008). Animal urine excretion characteristics and its effect on grassland vegetation and animal selective intake: a review. Acta Ecologica Sinica, 28, 777-785. |
[于应文, 南志标 (2008). 畜尿排泄特征及其对草地植被和家畜选择采食的作用. 生态学报, 28, 777-785.] | |
[28] | Zhang CX, Nan ZB (2010). Research progress on effects of grazing on physical and chemical characteristics of grassland soil. Acta Prataculturae Sinica, 19(4), 204-211. |
[张成霞, 南志标 (2010). 放牧对草地土壤理化特性影响的研究进展. 草业学报, 19(4), 204-211.] | |
[29] | Zhang SH, Zhang Y, Ma XY, Wang C, Ma Q, Yang XC, Xu T, Ma Y, Zheng Z (2022). Mechanisms underlying loss of plant biodiversity by atmospheric nitrogen deposition in grasslands. Acta Ecologica Sinica, 42, 1252-1261. |
[张世虎, 张悦, 马晓玉, 王聪, 马群, 杨雪纯, 徐婷, 马越, 郑智 (2022). 大气氮沉降影响草地植物物种多样性机制研究综述. 生态学报, 42, 1252-1261.] | |
[30] | Zhang Y (2021). Effects of Grazing on Soil Nitrogen Transfers and Microbial Community Traits in a Meadow Steppe Ecosystem. Master degree dissertation, Chinese Academy of Agricultural Sciences, Beijing. |
[张宇 (2021). 放牧强度对温性草甸草原土壤氮转化及微生物的影响. 硕士学位论文, 中国农业科学院, 北京.] | |
[31] | Zhang YJ, Zhu JT, Shen RN, Wang L (2020). Research progress on the effects of grazing on grassland ecosystem. Chinese Journal of Plant Ecology, 44, 553-564. |
[张扬建, 朱军涛, 沈若楠, 王荔 (2020). 放牧对草地生态系统影响的研究进展. 植物生态学报, 44, 553-564.]
DOI |
|
[32] | Zhu ZC, Huang Y, Xu FW, Xing W, Zheng SX, Bai YF (2017). Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland. Chinese Journal of Plant Ecology, 41, 938-952. |
[朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞 (2017). 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响. 植物生态学报, 41, 938-952.]
DOI |
|
[33] |
Zhu YZ, Li YY, Han JG, Yao HY (2019). Effects of changes in water status on soil microbes and their response mechanism: a review. Chinese Journal of Applied Ecology, 30, 4323-4332.
DOI |
[朱义族, 李雅颖, 韩继刚, 姚槐应 (2019). 水分条件变化对土壤微生物的影响及其响应机制研究进展. 应用生态学报, 30, 4323-4332.]
DOI |
[1] | CUI Dong-Qing, TIAN Chen, Song Huiming, Lu Xiaoming, Qiri SA, Guoqing XU, YANG Pei-Zhi, BAI Yong-Fei, TIAN Jian-Qing. Response Mechanisms of Rhizosphere Bacterial Community Diversity and Functional Groups Composition of Dominant Plants in Typical Grasslands to Long-term Grazing [J]. Chin J Plant Ecol, 2025, 49(7): 1-. |
[2] | QIN Jia-Chen, WANG Huan, ZHU Jiang, WANG Yang, TIAN Chen, BAI Yong-Fei, YANG Pei-Zhi, ZHENG Shu-Xia. Grazing filtering effect based on intraspecific and interspecific trait variation and its scale effects [J]. Chin J Plant Ecol, 2024, 48(7): 858-871. |
[3] | SACHURA , ZHANG Xia, ZHU Lin, KANG Saruul. Leaf anatomical changes of Cleistogenes songorica under long-term grazing with different intensities in a desert steppe [J]. Chin J Plant Ecol, 2024, 48(3): 331-340. |
[4] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[5] | WANG Yan-Bing, YOU Cui-Hai, TAN Xing-Ru, CHEN Bo-Yu, XU Meng-Zhen, CHEN Shi-Ping. Seasonal and interannual variations in energy balance closure over arid and semi-arid grasslands in northern China [J]. Chin J Plant Ecol, 2022, 46(12): 1448-1460. |
[6] | LI Ying, GONG Ji-Rui, LIU Min, HOU Xiang-Yang, DING Yong, YANG Bo, ZHANG Zi-He, WANG Biao, ZHU Chen-Chen. Defense strategies of dominant plants under different grazing intensity in the typical temperate steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2020, 44(6): 642-653. |
[7] | WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92. |
[8] | TANG Yong-Kang, WU Yan-Tao, WU Kui, GUO Zhi-Wei, LIANG Cun-Zhu, WANG Min-Jie, CHANG Pei-Jing. Changes in trade-offs of grassland ecosystem services and functions under different grazing intensities [J]. Chin J Plant Ecol, 2019, 43(5): 408-417. |
[9] | MOU Jing, BIN Zhen-Jun, LI Qiu-Xia, BU Hai-Yan, ZHANG Ren-Yi, XU Dang-Hui. Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(1): 77-84. |
[10] | Li-Li YANG, Ji-Rui GONG, Yi-Hui WANG, Min LIU, Qin-Pu LUO, Sha XU, Yan PAN, Zhan-Wei ZHAI. Effects of grazing intensity and grazing exclusion on litter decomposition in the temperate steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2016, 40(8): 748-759. |
[11] | Yong-Qiang LI, Zhi-Guo LI, Zhi DONG, Zhong-Wu WANG, Zhi-Qiang QU, Guo-Dong HAN. Effects of grazing intensity on windblown sediment mass flux and particle size distribution in the desert steppe of Nei Mongol, China [J]. Chin J Plan Ecolo, 2016, 40(10): 1003-1014. |
[12] | LI Wen-Huai, ZHENG Shu-Xia, BAI Yong-Fei. Effects of grazing intensity and topography on species abundance distribution in a typical steppe of Inner Mongolia [J]. Chin J Plant Ecol, 2014, 38(2): 178-187. |
[13] | YANG Jing, CHU Peng-Fei, CHEN Di-Ma, WANG Ming-Jiu, BAI Yong-Fei. Mechanisms underlying the impacts of grazing on plant α, β and γ diversity in a typical steppe of the Inner Mongolia grassland [J]. Chin J Plant Ecol, 2014, 38(2): 188-200. |
[14] | HUANG Chen,ZHANG Yu,WANG Jing,LI Yuan-Heng,WU Shi-Liu,TA Na,ZHAO Meng-Li,HAN Guo-Dong,LANG Bada-Lahu,ZHAO Yan-Fang. Spatial heterogeneity of vegetation under different grazing intensities in a Stipa breviflora desert steppe [J]. Chin J Plant Ecol, 2014, 38(11): 1184-1193. |
[15] | WANG Hua-Tian, YANG Yang, WANG Yan-Ping, JIANG Yue-Zhong, WANG Zong-Qin. Effects of exogenous phenolic acids on nitrate absorption and utilization of hydroponic cuttings of Populus × euramericana ‘Neva’ [J]. Chin J Plant Ecol, 2011, 35(2): 214-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn