Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (6): 554-564.doi: 10.17521/cjpe.2015.0053

• Orginal Article • Previous Articles     Next Articles

Characteristics of carbon sequestration during natural restoration of Maolan karst forest ecosystems

HUANG Zong-Sheng1, YU Li-Fei2,*(), FU Yu-Hong3, YANG Rui4   

  1. 1City Planing and Architecture College of Guizhou University, Guiyang 550025, China
    2College of Life Sciences, Guizhou University, Guiyang 550025, China
    3School of Chemistry and Life Science, Guizhou Normal College, Guiyang 550018, China
    4Forestry College of Guizhou University, Guiyang 550025, China
  • Received:2014-08-12 Accepted:2015-05-20 Online:2015-07-02 Published:2015-06-01
  • Contact: Li-Fei YU E-mail:gdyulifei@163.com
  • About author:

    # Co-first authors

Abstract: <i>Aims</i>

The objective of this study was to characterize the ecosystem carbon sequestration during natural restoration process of karst forest vegetation.

<i>Methods</i>

We adopted the “space for time” approach to examine the pattern of carbon sequestration in karst forest ecosystems along the natural restoration process. Forest vegetation types representing six typical successional stages were selected and investigated, which include herb stage, herb to shrub stage, shrub stage, shrub to arbor stage, arbor stage, and climax stage. Twenty-four plots of 30 m × 30 m were established on sites of the six forest types, and samples of plants, litter and soil were collected in each plot.

<i>Important findings</i>

The total vegetation biomass increased from 7.97 to 166.83 t·hm-2 with advancement of restoration stages, corresponding to the trend of changes in biomass for the arbor layer (from 41.77 to 164.59 t·hm-2), but with declining biomass for the herb layer (from 8.45 t·hm-2 at the herb to shrub stage to 0.68 t·hm-2 at the climax stage) and the shrub layer (from 32.87 t·hm-2 at the shrub stage to 1.56 t·hm-2 at the climax stage). The ratio of above ground to belowground biomass in karst vegetation was relatively low (varying between 1.26 and 2.03), especially for the shrub layer (varying between 1.23 and 1.45). The weighted average carbon content increased from 36.76% to 48.74% with the process of restoration. In the process of the natural restoration, the carbon density in the arbor layer increased from 19.44 to 80.40 t·hm-2, but decreased from 3.19 t·hm-2 at the herb to shrub stage to 0.23 t·hm-2 at the climax stage in the herb layer and from 15.13 t·hm-2 at the shrub stage to 0.69 t·hm-2 at the climax stage in the shrub layer. The overall carbon density showed an increasing trend from the early stages (herb and herb to shrub stages), through the middle stages (shrub and shrub to arbor stages), to the late stages (arbor and climax stages) at levels of ecosystems (from 15.72 to 99.37 t·hm-2), vegetation (from 2.93 to 81.31 t·hm-2), and soil (from 8.26 to 18.80 t·hm-2), accompanied by a reduction in litter (from 4.97 to 1.53 t·hm-2). It can be concluded that vegetation, especially the component of woody plants, has the greatest influence on ecosystem carbon stocks during the recovery progress of karst forests, with little effects of soils. Therefore, it is important to facilitate the recovery of vegetation for enhancing karst ecosystem carbon sink.

Key words: carbon sequestration, karst forest ecosystem, natural restoration, degraded karst forest, carbon density

Table 1

Basic information of the vegetation at various restoration stages"

恢复阶段Restoration
stage
坡度和海拔Slope and
elevation
坡向
Aspect
植被特征
Vegetation characteristics
优势种
Dominant species
岩石裸露率
Bare rock (%)
生境
Habitat
草本阶段Herb stage 30°-40°, 840 m NW 群落层次只有草本层, 高约1.0 m, 盖度达80%以上, 有极少数先锋树种, 地上覆盖有3-6 cm枯枝落叶层。
The vertical structure of the community has an herb layer with height of 1.0 m and coverage of more than 80%. There are a handful of pioneer trees. The thickness of litter layer is 3-6 cm on the ground.
密毛蕨 Pteridium revolutum, 白茅Imperata cylindrical var. major, 金丝草Pogonatherum crinitum, 三毛草 Trisetum bifidum 77.52 土面、石缝、石沟
Earth flatland, crevice, gully
草灌阶段Herb to shrub stage 30°-40°, 820 m SW 群落层次一层, 由草本和灌木共同组成, 盖度达80%以上, 草本、灌木盖度约各占一半, 高度1.5-2.0 m, 地表有少量藤刺, 群落下覆盖有2-5 cm枯枝落叶层。
The vertical structure of the community has only a single layer, which was dominated by shrubs and herbs. The mean height and coverage of community are 1.5-2.0 m and more than 80%, respectively. The coverage of community is about equally divided into shrub and herb. There are a small amount of thorns and ferns on the ground. The thickness of litter layer is 2-5 cm.
盐肤木 Rhus chinensis, 野牡丹 Mlastoma candidum, 腊莲绣球 Hydrangea strigosa, 算盘子 Glochidion puberum, 密毛蕨Pteridium revolutum,白茅 Imperata cylindrical var. major, 金丝草 Pogonatherum crinitum 75.61 土面、石缝、石沟
Earth flatland, crevice, gully
灌木阶段Shrub stage 30°-40°, 820 m SW 林分垂直结构单一, 无或有少量乔木, 主要以灌木层为主, 高度2.0-4.0 m, 覆盖度达80%以上, 地表有较多藤刺, 林下覆盖的枯枝落叶层2-4 cm。
The vertical structure of the stand is simple and dominated by the shrub layer, without tree layer or with a small amount of trees. The mean height and coverage of shrub layer are 2.0-4.0 m and more than 80%, respectively. There are a lot of thorns and ferns on the ground. The thickness of litter layer was 2-4 cm on forest-floor.
火棘 Pyracantha fortuneana, 南天竹Nandina domestica,
香叶树 Lindera communis, 齿叶铁仔 Myrsine semiserrata, 齿叶黄皮Clausena dunniana, 榔榆 Ulmus parvifolia
73.22 石面、石缝、土面、石沟
Rocky flatland, crevice, earth flatland, gully
灌乔阶段Shrub to arbor stage 30°-40°, 820 m SW 林分层次结构分化, 乔木层高7.0-12.0 m, 木本植物盖度达80%以上; 林下草本盖度较低, 地表有较多藤刺, 林下枯枝落叶层厚3-5 cm。
The stand structure is stratified with mean height of the tree layer varying between 7.0 and 12.0 m, and the coverage of woody plants at more than 80%. The coverage of herb layer is low. There are a lot of thorns and ferns on the ground. The thickness of litter layer is 3-5 cm on forest-floor.
圆果化香树 Platycarya longipes, 香叶树 Lindera communis, 天峨槭 Acer wangchii, 鸡仔木 Sinoadina racemosa, 川钓樟 Lindera pulcherima var. hemsleyana, 青冈Cyclobalanopsis glauca 73.94 石面、石缝、土面、石沟
Rocky flatland, crevice, earth flatland, gully
乔木阶段Arbor stage 30°-40°, 840 m SW 层次结构分化明显, 乔木层、灌木层比较发达, 乔木层高14.0-18.0 m, 乔木层覆盖达80%以上; 灌木层高2.0-3.0 m, 盖度10%, 地表有少量藤刺、蕨类、地衣苔藓等分布, 林下枯枝落叶层厚1-3 cm。
The stand structure is clearly stratified, with well-developed tree layer and shrub layer. The mean tree height and coverage of tree layer are 14.0-18.0 m and more than 80%, respectively. The shrub layer has a coverage of 10% and height of 2.0-3.0 m. The land is covered by a small amount of thorns, ferns, lichens and mosses, and the thickness of litter layer is 1-3 cm on forest-floor.
光皮梾木 Swida wilsoniana, 黔桂润楠Machilus chienkweiensis, 香叶树 Lindera communis, 翅荚香槐 Cladrastis platycarpa,南酸枣 Choerospondias axillaris, 短萼海桐 Pittosporum brevicalyx 72.81 土面、石面、石缝、石沟
Earth flatland, rocky flatland, crevice, gully
顶极阶段 Climax stage 30°-40°, 850 m SW 层次结构完整, 乔木层、灌木层和草本层植物之间分化清晰, 以乔木林为主, 高15.0-20.0 m, 乔木层覆盖率达80%以上; 灌木层高4.0-7.0 m, 盖度10%-20%; 林下覆盖有1-3 cm枯枝落叶层。
The stand structure is complete and clearly divided into tree layer, shrub layer and herb layer, with dominance of the tree layer. The mean tree height and coverage of the tree layer are 15.0-20.0 m and more than 80%, respectively. The height of shrub layer has a coverage of 10%-20% and height of 4.0-7.0 m. The thickness of litter layer is 1-3 cm on forest-floor.
光皮梾木 Swida wilsoniana, 短萼海桐Pittosporum brevicalyx, 多脉青冈Cyclobalanopsis multiervis, 天峨槭 Acer wangchii, 云贵鹅耳枥 Carpinus pubescens, 粗柄楠 Phoebe crassipedicella 71.20 石面、石缝、土面、石沟
Rocky flatland, crevice, earth flatland, gully

Table 2

Equations for the relationships of the mass (kg) for different components of arbor (W) with diameter (cm) at breast height (D) and tree height (m)(H)"

乔木各部位
Component of arbor
方程
Equation
R2 p
干 Stem W = 0.09120 (D2H)0.816 0.988 <0.001
枝 Branch W = 0.01510 (D2H)0.844 0.986 <0.001
叶 Leaf W = 0.01442 (D2H)0.693 0.972 <0.001
地上 Aboveground W = 0.11749 (D2H)0.814 0.989 <0.001
地下 Underground W = 0.03811 (D2H)0.896 0.951 <0.001
总 Total W = 0.15524 (D2H)0.841 0.987 <0.001

Table 3

Vegetation biomass at different restoration stages (t·hm-2)"

恢复阶段
Restoration stage
草本层 Herb layer 灌木层 Shrub layer 乔木层 Arbor layer 植被 Vegetation
地上Aboveground 地下Belowground 合计
Total
地上Aboveground 地下Below
ground
合计Total 地上
Aboveground
地下Below
ground
合计Total 地上Aboveground 地下Below
ground
合计Total
草本阶段
Herb stage
5.16a 2.81a 7.97a - - - - - - 5.16a 2.81a 7.97a
草灌阶段
Herb to shrub stage
5.82b 2.63b 8.45b 1.16a 0.80a 1.96a - - - 6.98b 3.43b 10.41b
灌木阶段
Shrub stage
0.89c 0.52c 1.41c 18.13b 14.74b 32.87b - - - 19.02c 15.26c 34.28c
灌乔阶段
Shrub to arbor stage
0.99d 0.43d 1.42c 9.02c 7.10c 16.12c 26.52a 15.25a 41.77a 36.53d 22.78d 59.31d
乔木阶段
Arbor stage
0.63e 0.39e 1.02d 5.04d 3.61d 8.65d 56.17b 33.44b 89.61b 61.84e 37.44e 99.28e
顶极阶段
Climax stage
0.41f 0.27f 0.68e 0.88e 0.68e 1.56e 101.58c 63.01c 164.59c 102.87f 63.96f 166.83f

Table 4

The ratio of aboveground biomass to below ground biomass of the vegetation"

恢复阶段
Restoration stage
草本层
Herb layer
灌木层
Shrub layer
乔木层
Arbor layer
三层合计
Total of three layers
草本阶段 Herb stage 1.84a - - 1.84a
草灌阶段 Herb to shrub stage 2.21b 1.45a - 2.03b
灌木阶段 Shrub stage 1.71c 1.23b - 1.26c
灌乔阶段 Shrub to arbor stage 2.30d 1.27bc 1.74a 1.60d
乔木阶段 Arbor stage 1.63e 1.39d 1.68a 1.65d
顶极阶段 Climax stage 1.52f 1.29c 1.61b 1.61d

Table 5

Vegetation carbon content at different restoration stages (%)"

恢复阶段 Restoration stage 草本层 Herb layer 灌木层 Shrub layer 乔木层 Arbor layer 加权平均含碳率
The weighted average of carbon content
地上
Aboveground
地下
Belowground
地上
Aboveground
地下
Belowground

Stem

Branch

Leaf

Root
草本阶段 Herb stage 38.64a 33.30a - - - - - - 36.76a
草灌阶段 Herb to shrub stage 37.61b 38.06b 43.25a 42.34a - - - - 38.71b
灌木阶段 Shrub stage 34.32c 31.63c 46.68b 45.26b - - - - 45.51c
灌乔阶段 Shrub to arbor stage 35.74d 36.59d 46.33bc 46.17b 47.98a 44.23a 45.68a 46.53a 46.55d
顶极阶段 Arbor stage 33.68ce 34.88e 44.52d 42.61a 48.66a 45.11a 46.34a 47.39ab 47.24e
顶极阶段 Climax stage 33.27e 33.62a 45.36cd 43.22a 49.35a 46.81b 42.13b 49.26b 48.74f

Table 6

Vegetation carbon density at different restoration stages (t·hm-2)"

恢复阶段
Restoration stage
草本层 Herb layer 灌木层 Shrub layer 乔木层 Arbor layer 植被 Vegetation
地上Aboveground 地下
Below-
ground
小计
Total
地上Aboveground 地下Below-
ground
小计Total 地上
Aboveground
地下Below-
ground
小计
Total
地上Aboveground 地下Below-
ground
合计Total
草本阶段
Herb stage
1.99a 0.94a 2.93a - - - - - - 1.99a 0.94a 2.93a
草灌阶段
Herb to shrub stage
2.19b 1.00b 3.19b 0.50a 0.34a 0.84a - - - 2.69b 1.34b 4.03b
灌木阶段
Shrub stage
0.31c 0.16c 0.47c 8.46b 6.67b 15.13b - - - 8.77c 6.83c 15.60c
灌乔阶段
Shrub to arbor stage
0.35d 0.16c 0.51c 4.18c 3.28c 7.46c 12.54a 7.10a 19.64a 17.07d 10.54d 27.61d
乔木阶段
Arbor stage
0.21e 0.14d 0.35d 2.24d 1.54d 3.78d 26.92b 15.85b 42.77b 29.37e 17.53e 46.90e
顶极阶段
Climax stage
0.14f 0.09e 0.23e 0.40e 0.29e 0.69e 49.36c 31.03c 80.40c 49.90f 31.41f 81.31f

Table 7

Ecosystems carbon density at different restoration stages (t·hm-2)"

恢复阶段
Restoration stage
碳密度 Carbon density 生态系统
Ecosystems
植被
Vegetation
凋落物
Litter
土壤
Soil
草本阶段 Herb stage 2.93a 4.97a 10.71a 18.61a
草灌阶段 Herb to shrub stage 4.03b 3.43b 8.26b 15.72b
灌木阶段 Shrub stage 25.60c 1.81c 12.36c 29.77c
灌乔阶段 Shrub to arbor stage 27.61d 1.88d 17.60d 47.09d
乔木阶段 Arbor stage 46.90e 1.64e 18.80e 67.34e
顶极阶段 Climax stage 81.31f 1.53f 16.53f 99.37f

Table 8

The carbon sequestration rate of ecosystem during natural restoration process"

恢复阶段
Restoration stage
恢复时间Restoration time (a) 碳吸存速率
Carbon sequestration rate (t·hm-2·a-1)
始于草本阶段
From herb stage
始于草灌阶段
From herb to shrub stage
始于灌木阶段
From shrub stage
始于灌乔阶段
From shrub to arbor stage
始于乔木阶段
From arbor stage
草本阶段 Herb stage 5 - - - - -
草灌阶段 Herb to shrub stage 9 -0.72
(0.28, -0.39, -0.61)
- - - -
灌木阶段 Shrub stage 15 1.12 2.34
(1.93, -0.27, 0.68)
- - -
灌乔阶段 Shrub to arbor stage 23 1.58 2.24 2.17
(1.50, 0.01, 0.66)
- -
乔木阶段 Arbor stage 34 1.68 2.06 1.98 1.84
(1.75, -0.02, 0.11)
-
顶极阶段 Climax stage 103 0.82 0.89 0.79 0.65 0.46
(0.50, -0.01 ,-0.03)
[1] An MT (2008). Community Structure and Forest Health Assessment in Natural Restoration of Maolan Degraded Karst Vegetation. Master degree dissertation, Guizhou University, Guiyang.(in Chinese with English abstract)
[安明态 (2008). 茂兰喀斯特植被恢复过程群落结构与健康评价. 硕士学位论文, 贵州大学, 贵阳.]
[2] Bao SD (1999). Agricultural Chemistry Analysis of Soil. 3rd edn. China Agriculture Press, Beijing.(in Chinese)
[鲍士旦 (1999). 土壤农化分析(第三版). 中国农业出版社, 北京.]
[3] Dixon RK, Winjum JK, Schroeder PE (1993). Conservation and sequestration of carbon: The potential of forest and agriforest management practices.Global Environmental Change, 2, 159-173.
[4] Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems.Science, 263, 185-190.
[5] Dong D, Ni J (2011). Modeling changes of net primary productivity of karst vegetation in southwestern China using the CASA model.Acta Ecologica Sinica, 31, 1855-1866.(in Chinese with English abstract)
[董丹, 倪健 (2011). 利用CASA模型模拟西南喀斯特植被净第一性生产力. 生态学报, 31, 1855-1866.]
[6] Dong M (1996). Investigation and Analysis of the Terrestrial Biological Community. Standards Press of China, Beijing.(in Chinese)
[董鸣 (1996). 陆地生物群落调查观测与分析. 中国标准出版社, 北京.]
[7] Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 292, 2320-2322.
[8] Fang JY, Liu GH, Xu SL (1996). Biomass and net production of forest vegetation in China.Acta Ecologica Sinica, 16, 497-508.(in Chinese with English abstract)
[方精云, 刘国华, 徐嵩龄 (1996). 我国森林植被的生物量和净生产量. 生态学报, 16, 497-508.]
[9] Fang YT, Mo JM, Peng SL, Li DJ (2003). Role of forest succession on carbon sequestration of forest ecosystems in lower subtropical China.Acta Ecologica Sinica, 23, 1685-1694.(in Chinese with English abstract)
[方运霆, 莫江明, 彭少麟, 李德军 (2003). 森林演替在南亚热带森林生态系统碳吸存中的作用. 生态学报, 23, 1685-1694.]
[10] Gong C, Wang SL, Zeng ZQ, Deng SJ, Chen JP, Long KS (2011). Carbon storage and its distribution pattern of evergreen broad-leaved forests at different succession stages in mid-subtropical China.Chinese Journal of Ecology, 30, 1935-1941.(in Chinese with English abstract)
[宫超, 汪思龙, 曾掌权, 邓仕坚, 陈建平, 龙康寿 (2011). 中亚热带常绿阔叶林不同演替阶段碳储量与格局特征. 生态学杂志, 30, 1935-1941.]
[11] Huang DZ (2006). Biomass characteristics of secondary forest community of Cyclobalanopsis chungii in the lower Minjiang River.Protection Forest Science and Technology, (1), 16-18.(in Chinese with English abstract)
[黄典忠 (2006). 闽江下游福建青冈次生林群落的生物量特征. 防护林科技, (1), 16-18.]
[12] Huang M, Ji JJ, Cao MK, Li KR (2006). Modeling study of vegetation shoot and root biomass in China.Acta Ecologica Sinica, 26, 4156-4163.(in Chinese with English abstract)
[黄玫, 季劲钧, 曹明奎, 李克让 (2006). 中国区域植被地上与地下生物量模拟. 生态学报, 26, 4156-4163.]
[13] Huang WL, Tu YL, Yang L (1988). Guizhou Vegetation. Guizhou People’s Publishing House, Guiyang.(in Chinese)
[黄威廉, 屠玉麟, 杨龙 (1988). 贵州植被. 贵州人民出版社, 贵阳.]
[14] Huang ZS, Fu YH, Yu LF (2013a). Characteristic evolution of soil organic carbon pool with the process of natural restoration of karst forest vegetation.Acta Pedologica Sinica, 50, 306-314.(in Chinese with English abstract)
[黄宗胜, 符裕红, 喻理飞 (2013a). 喀斯特森林植被自然恢复过程中土壤有机碳库特征演化. 土壤学报, 50, 306-314.]
[15] Huang ZS, Fu YH, Yu LF (2013b). Evolution of litterfall accumulation and the characteristics of its carbon pool in the process of natural restoration of karst forest vegetation.Forest Research, 26, 8-14.(in Chinese with English abstract)
[黄宗胜, 符裕红, 喻理飞 (2013b). 喀斯特森林植被自然恢复中凋落物现存量及其碳库特征演化. 林业科学研究, 26, 8-14.]
[16] Körner C (2000). Biosphere responses to CO2 enrichment.Ecological Application, 10, 1590-1619.
[17] Li YD, Wu ZM, Zeng QB, Zhou GY, Chen BF, Fang JY (1998). Estimation of community productivity and net CO2 accumulation of a tropical mountain rain forest in Jianfengling, Hainan Island, China.Acta Phytoecologica Sinica, 22, 127-134.(in Chinese with English abstract)
[李意德, 吴仲民, 曾庆波, 周光益, 陈步锋, 方精云 (1998). 尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究. 植物生态学报, 22, 127-134.]
[18] Lin F (2006). Biomass characteristics and allocation of Castanopsis fargesii natural stand in Wuyishan Mountains.Acta Agriculturae Universitatis Jiangxiensis, 28(1), 74-77.(in Chinese with English abstract)
[林芳 (2006). 武夷山丝栗栲天然林群落的生物量及其分配规律. 江西农业大学学报, 28(1), 74-77.]
[19] Liu CC, Wei YF, Liu YG, Guo K (2009). Biomass of canopy and shrub layers of karst forests in Puding, Guizhou, China.Chinese Journal of Plant Ecology, 33, 698-705.(in Chinese with English abstract)
[刘长成, 魏亚芬, 刘玉国, 郭柯 (2009). 贵州普定喀斯特次生林乔灌层地上生物量. 植物生态学报, 33, 698-705.]
[20] Luo DH (2009). Biomass and Net Primary Productivity in Different Successional Stages of Karst Vegetation in Maolan, Guizhou Province, SW China. Master degree dissertation, East China Normal University, Shanghai.(in Chinese with English abstract)
[罗东辉 (2009). 贵州茂兰喀斯特植被不同演替阶段的生物量与净初级生产力. 硕士学位论文, 华东师范大学, 上海.]
[21] Luo DH, Xia J, Yuan JW, Zhang ZH, Zhu JD, Ni J (2010). Root biomass of karst vegetation in a mountainous area of southwestern China.Chinese Journal of Plant Ecology, 34, 611-618.(in Chinese with English abstract)
[罗东辉, 夏婧, 袁婧薇, 张忠华, 祝介东, 倪健 (2010). 我国西南山地喀斯特植被的根系生物量初探. 植物生态学报, 34, 611-618.]
[22] Ni JP, Yuan DX, Xie DT, Wei CF (2009). Estimation of soil organic carbon storage and the characteristic of carbon spatial distributions in karst area, Chongqing, China.Acta Ecologica Sinica, 29, 6292-6301.(in Chinese with English abstract)
[倪九派, 袁道先, 谢德体, 魏朝富 (2009). 重庆岩溶区土壤有机碳库的估算及其空间分布特征. 生态学报, 29, 6292-6301.]
[23] Protocols for Standard Biological Observation and Measurement in Terrestrial Ecosystems Editorial Board (2007). Protocols for Standard Biological Observation and Measurement in Terrestrial Ecosystems. China Environmental Sciences Press, Beijing.(in Chinese)
[中国生态系统研究网络科学委员会 (2007). 陆地生态系统生物观测规范. 中国环境科学出版社, 北京.]
[24] Qiu XZ, Xie SC, Jin GF (1984). A preliminary study on biomass of Lithocarpus xylocarpus forest in Xujiaba region, Ailao Mountains, Yunnan.Acta Botanica Yunnanica, 6, 85-92.(in Chinese with English abstract)
[邱学忠, 谢寿昌, 荆桂芬 (1984). 云南哀牢山徐家坝地区木果石栎林生物量的初步研究. 云南植物研究, 6, 85-92.]
[25] Tang XL, Zhou GY, Wen DZ, Zhang DQ, Yan JH (2003). Distribution of carbon storage in a lower subtropical monsoon evergreen broad-leaved forest in Dinghushan Nature Reserve.Acta Ecologica Sinica, 23, 90-97.(in Chinese with English abstract)
[唐旭利, 周国逸, 温达志, 张德强, 闫俊华 (2003). 鼎湖山南亚热带季风常绿阔叶林植被C贮量分布. 生态学报, 23, 90-97.]
[26] Tian DL, Wang XK, Fang X, Yan WD, Ning XB, Wang GJ (2011). Carbon storage and spatial distribution in different vegetation restoration patterns in karst area, Guizhou Province.Scientia Silvae Sinicae, 47(9), 7-14.(in Chinese with English abstract)
[田大伦, 王新凯, 方晰, 闫文德, 宁晓波, 王光军 (2011). 喀斯特地区不同植被恢复模式幼林生态系统碳储量及其空间分布. 林业科学, 47(9), 7-14.]
[27] Wang L, Niu KC, Yang YH, Zhou P (2010). Patterns of above- and below-ground biomass allocation in China’s grasslands: Evidence from individual-level observations.Science China: Life Sciences, 53, 851-857.(in Chinese)
[王亮, 牛克昌, 杨元合, 周鹏 (2010). 中国草地生物量地上-地下分配格局: 基于个体水平的研究. 中国科学: 生命科学, 40, 642-649.]
[28] Wang SQ, Zhou CH, Luo CW (1999). Studying carbon storage spatial distribution of terrestrial natural vegetation in China.Progress in Geography, 18, 238-244.(in Chinese with English abstract)
[王绍强, 周成虎, 罗承文 (1999). 中国陆地自然植被碳量空间分布特征探讨. 地理科学进展, 18, 238-244.]
[29] Wang XK (2011). Study of Biomass and Carbon Sequestration on Urban Forests in Karst Landform. PhD dissertation, Central South University of Forestry and Technology, Changsha.(in Chinese)
[王新凯 (2011). 喀斯特城市森林生物量及其碳吸存功能研究. 博士学位论文, 中南林业科技大学, 长沙.]
[30] Wang XK, Feng ZW, Ouyang ZY (2001). Vegetation carbon storage and density of forest ecosystems in China.Chinese Journal of Applied Ecology, 12, 13-16.(in Chinese with English abstract)
[王效科, 冯宗炜, 欧阳志云 (2001). 中国森林生态系统的植物碳储量和碳密度研究. 应用生态学报, 12, 13-16.]
[31] Wen SZ, Tian DL, Yang LL, Fang X (2010). Carbon density carbon stock and carbon sequestration in Alnus cremastogyne plantation.Scientia Silvae Sinicae, 46(6), 15-21.(in Chinese with English abstract)
[文仕知, 田大伦, 杨丽丽, 方晰 (2010). 桤木人工林的碳密度、碳库及碳吸存特征. 林业科学, 46(6), 15-21.]
[32] Whittaker RH, Likens GE (1973). Carbon in the Biota. In: Woodlwell GM, Pecan EV eds. Carbon and the Biosphere. United States Atomic Energy Commission, Springfield, USA. 281-302.
[33] Yang HK, Cheng SZ (1991). Study on biomass of the karst forest community in Maolan, Guizhou Province.Acta Ecologica Sinica, 11, 307-312.(in Chinese with English abstract)
[杨汉奎, 程世泽 (1991). 贵州茂兰喀斯特森林群落生物量研究. 生态学报, 11, 307-311.]
[34] Yang TH, Da LJ, Li XP (2007). Biomass of evergreen broad-leaved forest in Tiantong National Forest Park, Zhejiang Province (II): Aboveground biomass and its allocation pattern.Journal of Zhejiang Forestry College, 24, 389-395.(in Chinese with English abstract)
[杨同辉, 达良俊, 李修鹏 (2007). 浙江天童国家森林公园常绿阔叶林生物量研究(II): 群落生物量及其分配规律. 浙江林学院学报, 24, 389-395.]
[35] Yu LF, Zhu SQ, Wei LM, Chen ZR, Xiong ZB (1998). Study on the natural restoration process of degraded karst communities―Successional sere.Journal of Mountain Agriculture and Biology, 17(2), 71-77.(in Chinese with English abstract)
[喻理飞, 朱守谦, 魏鲁明, 陈正仁, 熊志斌 (1998). 退化喀斯特群落自然恢复过程研究―自然恢复演替系列. 山地农业生物学报, 17(2), 71-77.]
[36] Yu LF, Zhu SQ, Ye JZ, Wei LM, Chen ZR (2000). A study on evaluation of natural restoration for degraded karst forest.Scientia Silvae Sinicae, 36(6), 12-19.(in Chinese with English abstract)
[喻理飞, 朱守谦, 叶镜中, 魏鲁明, 陈正仁 (2000). 退化喀斯特森林自然恢复评价研究. 林业科学, 36(6), 12-19.]
[37] Yu WL, Dong D, Ni J (2010). Comparisons of biomass and net primary productivity of karst and non-karst forests in mountainous areas, Southwestern China.Journal of Subtropical Resources and Environment, 5(2), 25-30.(in Chinese with English abstract)
[于维莲, 董丹, 倪健 (2010). 中国西南山地喀斯特与非喀斯特森林的生物量与生产力比较. 亚热带资源与环境学报, 55(2), 25-30.]
[38] Zhang L, Luo TX, Deng KM, Dai Q, Huang Y, Jiang ZF, Tao MY, Zeng KY (2004). Biomass and net primary productivity of secondary evergreen broad-leaved forest in Huangmian Forest Farm, Guangxi.Chinese Journal of Applied Ecology, 15, 2029-2033.(in Chinese with English abstract)
[张林, 罗天祥, 邓坤枚, 戴强, 黄永, 蒋正富, 陶明友, 曾开益 (2004). 广西黄冕林场次生常绿阔叶林生物量及净第一性生产力. 应用生态学报, 15, 2029-2033.]
[39] Zheng WJ, Bao WK, Gu B, He X, Leng L (2007). Carbon concentration and its characteristics in terrestrial higher plants.Chinese Journal of Ecology, 26, 307-313.(in Chinese with English abstract)
[郑帷婕, 包维楷, 辜彬, 何晓, 冷俐 (2007). 陆生高等植物碳含量及其特点. 生态学杂志, 26, 307-313.]
[40] Zhou YR, Yu ZL, Zhao SD (2000). Carbon storage and budget of major Chinese forest types.Acta Phytoecologica Sinica, 24, 518-522.(in Chinese with English abstract)
[周玉荣, 于振良, 赵士洞 (2000). 我国主要森林生态系统碳贮量和碳平衡. 植物生态学报, 24, 518-522.]
[41] Zhou ZX (1987). Scientific Survey of the Maolan Karst Forest. Guizhou People’s Publishing House, Guiyang.(in Chinese)
[周政贤 (1987). 茂兰喀斯特森林科学考察集. 贵州人民出版社, 贵阳.]
[42] Zhu SQ, Wei LM, Chen ZR, Zhang CG (1995). A preliminary study on biomass components of karst forest in Maolan of Guizhou Province, China.Acta Phytoecologica Sinica, 19, 358-367.(in Chinese with English abstract)
[朱守谦, 魏鲁明, 陈正仁, 张从贵 (1995). 茂兰喀斯特森林生物量构成初步研究. 植物生态学报, 19, 358-367.]
[1] Zhao-Zhong FENG Li Pin You GuoZhang Zheng-zhen Li Qin Ping Long JinPeng Shuo Liu. Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: Problems and prospective [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[2] Zhao-Zhong FENG Xiangyang Yuan Li Pin Bo Shang Qin Ping Tingjian Hu Shuo Liu. Progress in the Effects of Elevated Ground-Level Ozone on Terrestrial Ecosystem [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[3] WEI Hong, MAN Xiu-Ling. Carbon storage and its allocation in Betula platyphylla forests of different ages in cold temperate zone of China [J]. Chin J Plant Ecol, 2019, 43(10): 843-852.
[4] CHEN Ke-Yu, ZI Hong-Biao, ADE Luji, HU Lei, WANG Gen-Xu, WANG Chang-Ting. Current stocks and potential of carbon sequestration of the forest tree layer in Qinghai Province, China [J]. Chin J Plan Ecolo, 2018, 42(8): 831-840.
[5] LI Yong-Qiang, DONG Zhi, DING Chen-Xi, WANG Ya-Mei, JIA Ji-Wen, ZHANG Jia-Nan, JIAO Shu-Ying. Carbon stock and seasonal dynamics of carbon flux in warm-temperature tussock ecosystem in Shandong Province, China [J]. Chin J Plan Ecolo, 2018, 42(3): 277-287.
[6] YANG Hao-Tian, WANG Zeng-Ru, JIA Rong-Liang. Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China [J]. Chin J Plan Ecolo, 2018, 42(3): 288-296.
[7] CEN Yu, WANG Cheng-Dong, ZHANG Zhen, REN Xia, LIU Mei-Zhen, YANG Fan. Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China [J]. Chin J Plan Ecolo, 2018, 42(3): 265-276.
[8] YAN Bao-Long, WANG Zhong-Wu, QU Zhi-Qiang, WANG Jing, HAN Guo-Dong. Effects of enclosure on carbon density of plant-soil system in typical steppe and desert steppe in Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(3): 327-336.
[9] Shuyu Deng, Xiangzhong Dong, Mingzhe Ma, Zhenhua Zang, Wenting Xu, Changming Zhao, Zongqiang Xie, Guozhen Shen. Evaluating the effectiveness of Shennongjia National Nature Reserve based on the dynamics of forest carbon pools [J]. Biodiv Sci, 2018, 26(1): 27-35.
[10] Xi LI, Fang WANG, Yang CAO, Shou-Zhang PENG, Yun-Ming CHEN. Soil carbon storage and its determinants in the forests of Shaanxi Province, China [J]. Chin J Plan Ecolo, 2017, 41(9): 953-963.
[11] Juan XING, Cheng-Yang ZHENG, Chan-Ying FENG, Fa-Xu ZENG. Change of growth characters and carbon stocks in plantations of Pinus sylvestris var. mongolica in Saihanba, Hebei, China [J]. Chin J Plan Ecolo, 2017, 41(8): 840-849.
[12] Guang-Shuai CUI, Lin ZHANG, Wei SHEN, Xin-Sheng LIU, Yuan-Tao WANG. Biomass allocation and carbon density of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River, Xizang, China [J]. Chin J Plan Ecolo, 2017, 41(1): 53-61.
[13] Lu-Cun YANG, Chang-Bin LI, Yi NING, Xiu-Qing NIE, Wen-Hua XU, Guo-Ying ZHOU. Carbon density and its spatial distribution in the Potentilla fruticosa dominated alpine shrub in Qinghai, China [J]. Chin J Plan Ecolo, 2017, 41(1): 62-70.
[14] Wei-Feng WANG, Yu-Xi DUAN, Li-Xin ZHANG, Bo WANG, Xiao-Jing LI. Effects of different rotations on carbon sequestration in Chinese fir plantations [J]. Chin J Plan Ecolo, 2016, 40(7): 669-678.
[15] Yin LI, Guo-Ke CHEN, Dun-Mei LIN, Bin CHEN, Lei-Ming GAO, Xing JIAN, Bo YANG, Wu-Bing XU, Hong-Xin SU, Jiang-Shan LAI, Xi-Hua WANG, Hai-Bo YANG, Ke-Ping MA. Carbon storage and its distribution of forest ecosystems in Zhejiang Province, China [J]. Chin J Plan Ecolo, 2016, 40(4): 354-363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chin Bull Bot, 2004, 21(03): 360 -366 .
[5] . [J]. Chin Bull Bot, 1994, 11(专辑): 76 .
[6] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[7] Sun Zhen-xiao Xia Guang-min Chen Hui-min. Karyotype Analysis of Psathyrostachys juncea[J]. Chin Bull Bot, 1995, 12(01): 56 .
[8] . [J]. Chin Bull Bot, 1994, 11(专辑): 8 -9 .
[9] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chin Bull Bot, 2009, 44(03): 371 -378 .
[10] Zili Wu, Mengyao Yu, Lu Chen, Jing Wei, Xiaoqin Wang, Yong Hu, Yan Yan, Ping Wan. Transcriptome Analysis of Physcomitrella patens Response to Cadmium Stress by Bayesian Network[J]. Chin Bull Bot, 2015, 50(2): 171 -179 .