Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (7): 669-678.DOI: 10.17521/cjpe.2015.0407
• Research Articles • Previous Articles Next Articles
Wei-Feng WANG*(), Yu-Xi DUAN, Li-Xin ZHANG, Bo WANG, Xiao-Jing LI
Received:
2015-11-18
Accepted:
2016-04-23
Online:
2016-07-10
Published:
2016-07-07
Contact:
Wei-Feng WANG
Wei-Feng WANG, Yu-Xi DUAN, Li-Xin ZHANG, Bo WANG, Xiao-Jing LI. Effects of different rotations on carbon sequestration in Chinese fir plantations[J]. Chin J Plant Ecol, 2016, 40(7): 669-678.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0407
主要参数 Major parameters | 立地条件好 Rich site condition (SI = 27) | 立地条件差 Poor site condition (SI = 17) |
---|---|---|
氮浓度(新叶/老叶/死叶) Nitrogen concentration in leaves (young/old/dead) (%) | 1.53 / 1.36 / 1.13 | 1.21 / 1.11 / 0.93 |
氮浓度(茎边材/茎心材) Nitrogen concentration in stems (sapwood/heartwood) (%) | 0.14 / 0.03 | 0.12 / 0.03 |
氮浓度(活树皮/死树皮) Nitrogen concentration in barks (live/dead) (%) | 0.44 / 0.27 | 0.37 / 0.24 |
氮浓度(活树枝/死树枝) Nitrogen concentration in branches (live/dead) (%) | 0.67 / 0.52 | 0.55 / 0.47 |
氮浓度(根边材/根心材) Nitrogen concentration in root (sapwood/heartwood) (%) | 0.37 / 0.06 | 0.35 / 0.06 |
氮浓度(活细根/死细根) Nitrogen concentration in fine roots (live/dead) (%) | 1.17 / 0.97 | 0.96 / 0.79 |
遮阴的叶最大生物量 Shading by maximum foliage biomass (%, full light) | 8 | 30 |
占据土壤体积最大的细根生物量 Soil volume occupied at maximum fine root biomass (%) | 100 | 95 |
根获取氮的效率 Efficiency of N root capture (%) | 98 | 100 |
保留时间(新叶/老叶/枯死枝) Retention time for young/old foliage/dead branches (a) | 1 /2 / 40 | 1 / 2/ 40 |
细根周转 Fine roots turnover (a) | 0.95 | 1.35 |
边材分解率 Decomposition rates of sapwood (by litter age) (%·a-1) | 1-5 a (2.0); 6-10 a (10.0); 11-15 a (30.0); 16-20 a (20.0); >20 a (4.0) | |
心材分解率 Decomposition rates of heartwood (%·a-1) | 1-10 a (0.4); 11-15 a (10.0); 16-25 a (15.0); 25-40 a (10.0); >40 a (2.0) | |
树皮分解率 Decomposition rates of bark (%·a-1) | 1-5 a (2.0); 6-20 a (12.0); 20-40 a (20.0); >40 a (4.0) | |
树枝和粗根分解率 Decomposition rates of branches and large roots (%·a-1) | 1-5 a (10.0); 6-10 a (45.0); 11-15 a (35.0); >15 a (4.0) | |
针叶分解率 Decomposition rates of needles (%·a-1) | 1-2 a (27.0); 3-5 a (30.0); 6-10 a (40.0); >10 a (3.0) | 1-2 a (20.0); 3-5 a (30.0); 6-10 a (40.0); >10 a (2.0) |
细根分解率 Decomposition rates of fine roots (%·a-1) | 1-2 a (30.0); 3-4 a (50.0); >4 a (9.0) |
Table 1 Values used to calibrate FORECAST major parameters
主要参数 Major parameters | 立地条件好 Rich site condition (SI = 27) | 立地条件差 Poor site condition (SI = 17) |
---|---|---|
氮浓度(新叶/老叶/死叶) Nitrogen concentration in leaves (young/old/dead) (%) | 1.53 / 1.36 / 1.13 | 1.21 / 1.11 / 0.93 |
氮浓度(茎边材/茎心材) Nitrogen concentration in stems (sapwood/heartwood) (%) | 0.14 / 0.03 | 0.12 / 0.03 |
氮浓度(活树皮/死树皮) Nitrogen concentration in barks (live/dead) (%) | 0.44 / 0.27 | 0.37 / 0.24 |
氮浓度(活树枝/死树枝) Nitrogen concentration in branches (live/dead) (%) | 0.67 / 0.52 | 0.55 / 0.47 |
氮浓度(根边材/根心材) Nitrogen concentration in root (sapwood/heartwood) (%) | 0.37 / 0.06 | 0.35 / 0.06 |
氮浓度(活细根/死细根) Nitrogen concentration in fine roots (live/dead) (%) | 1.17 / 0.97 | 0.96 / 0.79 |
遮阴的叶最大生物量 Shading by maximum foliage biomass (%, full light) | 8 | 30 |
占据土壤体积最大的细根生物量 Soil volume occupied at maximum fine root biomass (%) | 100 | 95 |
根获取氮的效率 Efficiency of N root capture (%) | 98 | 100 |
保留时间(新叶/老叶/枯死枝) Retention time for young/old foliage/dead branches (a) | 1 /2 / 40 | 1 / 2/ 40 |
细根周转 Fine roots turnover (a) | 0.95 | 1.35 |
边材分解率 Decomposition rates of sapwood (by litter age) (%·a-1) | 1-5 a (2.0); 6-10 a (10.0); 11-15 a (30.0); 16-20 a (20.0); >20 a (4.0) | |
心材分解率 Decomposition rates of heartwood (%·a-1) | 1-10 a (0.4); 11-15 a (10.0); 16-25 a (15.0); 25-40 a (10.0); >40 a (2.0) | |
树皮分解率 Decomposition rates of bark (%·a-1) | 1-5 a (2.0); 6-20 a (12.0); 20-40 a (20.0); >40 a (4.0) | |
树枝和粗根分解率 Decomposition rates of branches and large roots (%·a-1) | 1-5 a (10.0); 6-10 a (45.0); 11-15 a (35.0); >15 a (4.0) | |
针叶分解率 Decomposition rates of needles (%·a-1) | 1-2 a (27.0); 3-5 a (30.0); 6-10 a (40.0); >10 a (3.0) | 1-2 a (20.0); 3-5 a (30.0); 6-10 a (40.0); >10 a (2.0) |
细根分解率 Decomposition rates of fine roots (%·a-1) | 1-2 a (30.0); 3-4 a (50.0); >4 a (9.0) |
指标 Index | 优势木高 Top height | 优势木胸径 Dominant DBH | 地上生物量 Total tree biomass | 地被物量 Ground cover biomass |
---|---|---|---|---|
平均偏差 Average bias | 0.66 m | -0.47 cm | -5.89 Mg·hm-2 | 0.01 Mg·hm-2 |
平均绝对偏差 Mean absolute deviation | 1.01 m | 0.98 cm | 11.38 Mg·hm-2 | 0.59 Mg·hm-2 |
皮尔森系数 Pearson’s r | 0.97 | 0.96 | 0.95 | 0.82 |
泰尔系数 Theil’s r | 0.07 | 0.07 | 0.13 | 0.21 |
模型效率 Modeling efficiency | 0.96 | 0.92 | 0.95 | 0.85 |
最大可信度 Relaxed e* (α = 0.05) | 1.63 m | 1.69 cm | 21.91 Mg·hm-2 | 1.03 Mg·hm-2 |
最小可信度 Exigent e* (α = 0.20) | 1.23 m | 1.27 cm | 15.94 Mg·hm-2 | 0.78 Mg·hm-2 |
Table 2 Comparison of FORECAST model simulation with field data in Chinese fir plantations
指标 Index | 优势木高 Top height | 优势木胸径 Dominant DBH | 地上生物量 Total tree biomass | 地被物量 Ground cover biomass |
---|---|---|---|---|
平均偏差 Average bias | 0.66 m | -0.47 cm | -5.89 Mg·hm-2 | 0.01 Mg·hm-2 |
平均绝对偏差 Mean absolute deviation | 1.01 m | 0.98 cm | 11.38 Mg·hm-2 | 0.59 Mg·hm-2 |
皮尔森系数 Pearson’s r | 0.97 | 0.96 | 0.95 | 0.82 |
泰尔系数 Theil’s r | 0.07 | 0.07 | 0.13 | 0.21 |
模型效率 Modeling efficiency | 0.96 | 0.92 | 0.95 | 0.85 |
最大可信度 Relaxed e* (α = 0.05) | 1.63 m | 1.69 cm | 21.91 Mg·hm-2 | 1.03 Mg·hm-2 |
最小可信度 Exigent e* (α = 0.20) | 1.23 m | 1.27 cm | 15.94 Mg·hm-2 | 0.78 Mg·hm-2 |
轮伐期 Rotation (a) | 平均年固碳量 Mean annual carbon sequestration (Mg·hm-2·a-1) | 每个轮伐期固碳量 Each rotation carbon sequestration (Mg·hm-2) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ABCS | UBCS | TBCS | SOC | TCS | ABCS | UBCS | TBCS | SOC | TCS | |||||||||||||
SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | |||
15 | 1.08 | 2.68 | 0.27 | 0.67 | 1.36 | 3.34 | 1.05 | 2.25 | 2.41 | 5.59 | 16.30 | 40.13 | 4.11 | 10.00 | 20.40 | 50.17 | 15.70 | 33.70 | 36.10 | 83.90 | ||
25 | 1.06 | 2.77 | 0.26 | 0.68 | 1.32 | 3.45 | 0.73 | 1.51 | 2.05 | 4.96 | 26.50 | 69.36 | 6.53 | 16.90 | 33.10 | 86.27 | 18.10 | 37.80 | 51.20 | 124.00 | ||
50 | 0.86 | 2.15 | 0.17 | 0.05 | 1.03 | 2.20 | 0.47 | 0.88 | 1.50 | 3.08 | 42.80 | 107.30 | 8.73 | 2.69 | 51.50 | 110.00 | 23.30 | 44.20 | 74.80 | 154.00 |
Table 3 Effect of rotation on annual average carbon sequestration and each rotation carbon sequestration
轮伐期 Rotation (a) | 平均年固碳量 Mean annual carbon sequestration (Mg·hm-2·a-1) | 每个轮伐期固碳量 Each rotation carbon sequestration (Mg·hm-2) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ABCS | UBCS | TBCS | SOC | TCS | ABCS | UBCS | TBCS | SOC | TCS | |||||||||||||
SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | SI = 17 | SI = 27 | |||
15 | 1.08 | 2.68 | 0.27 | 0.67 | 1.36 | 3.34 | 1.05 | 2.25 | 2.41 | 5.59 | 16.30 | 40.13 | 4.11 | 10.00 | 20.40 | 50.17 | 15.70 | 33.70 | 36.10 | 83.90 | ||
25 | 1.06 | 2.77 | 0.26 | 0.68 | 1.32 | 3.45 | 0.73 | 1.51 | 2.05 | 4.96 | 26.50 | 69.36 | 6.53 | 16.90 | 33.10 | 86.27 | 18.10 | 37.80 | 51.20 | 124.00 | ||
50 | 0.86 | 2.15 | 0.17 | 0.05 | 1.03 | 2.20 | 0.47 | 0.88 | 1.50 | 3.08 | 42.80 | 107.30 | 8.73 | 2.69 | 51.50 | 110.00 | 23.30 | 44.20 | 74.80 | 154.00 |
1 | Bi J, Blanco JA, Seely B, Kimmins JP, Ding Y, Welham C (2007). Yield decline in Chinese fir plantations: A simulation investigation with implications for model complexity.Canadian Journal of Forest Research, 37, 1615-1630. |
2 | Blanco JA, González E (2010). Exploring the sustainability of current management prescriptions for Pinus caribaea plantations in Cuba: A modelling approach.Journal of Tropical Forest Science, 22, 139-154. |
3 | Blanco JA, Seely B, Welham C, Kimmins JP, Seebacher TM (2007). Testing the performance of a forest ecosystem model (FORECAST) against 29 years of field data in a Pseudotsuga menziesii plantation.Canadian Journal of Forest Research, 37, 1808-1820. |
4 | Bravo F, Lemay V, Jandl R, Gadow KV (Translated by Wang XP, Yang XH, Liu JL, Zhou CX, He GM) (2013). Forest Ecosystem Management Under Climate Change Challenge. Higher Education Press, Beijing. 4-6. (in Chinese)[Bravo F, Lemay V, Jandl R, Gadow KV (王小平, 杨晓晖, 刘晶岚, 周彩贤, 何桂梅 (译)) (2013). 气候变化挑战下的森林生态系统经营管理. 高等教育出版社, 北京. 4-6.] |
5 | Cao J, Yan WD, Xiang WH, Chen XY, Lei PF (2015). Stoichiometry characterization of soil C, N, and P of Chinese fir plantations at three different ages in Huitong, Hunan Province, China.Scientia Silvae Sinicae, 51(7), 1-8. (in Chinese with English abstract)[曹娟, 闫文德, 项文化, 谌小勇, 雷丕锋 (2015). 湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征. 林业科学, 51(7), 1-8.] |
6 | Chen LS, Zhang JC, Lu Q, Si DY, Zhuo WJ, Li MH, Li SC (2014). Effects of continuous planting of poplars on soil biological activity and nutrients. Journal of Nanjing Forestry University (Natural Sciences Edition), 38(5), 85-90. (in Chinese with English abstract)[陈莉莎, 张金池, 陆茜, 司登宇, 卓为君, 李梅花, 李世昌 (2014). 杨树多代连作对土壤养分特征和生物活性的影响. 南京林业大学学报(自然科学版), 38(5), 85-90.] |
7 | Feng RF, Yang WQ, Zhang J (2006). Artificial forest management for global change mitigation.Acta Ecologica Sinica, 26, 3870-3877. (in Chinese with English abstract)[冯瑞芳, 杨万勤, 张健 (2006). 人工林经营与全球变化减缓. 生态学报, 26, 3870-3877.] |
8 | Guo Q, Wang XJ, Yi XD (2014). Correlation of understory biomass and soil under Cunninghamia lanceolata pure forest of different age.Journal of Northeast Forestry University, 42(3), 85-88, 98. (in Chinese with English abstract)[郭琦, 王新杰, 衣晓丹 (2014). 不同林龄杉木纯林林下生物量与土壤理化性质的相关性. 东北林业大学学报, 42(3), 85-88, 98.] |
9 | He ZM, Fan SH, Chen QS, Yang X, Ying JH (2003). Effects of site management measures on growth of 4-year-old, second- rotation Chinese fir plantation.Scientia Silvae Sinicae, 39(4), 54-58. (in Chinese with English abstract)[何宗明, 范少辉, 陈清山, 杨旭, 应金花 (2003). 立地管理措施对2代4年生杉木林生长的影响. 林业科学, 39(4), 54-58.] |
10 | Jiang H, Apps MJ, Peng CH (2002). Modeling the influence of harvesting on Chinese boreal forest carbon dynamics.Forest Ecology and Management, 169, 65-68. |
11 | Jie JL, Zan YS, Wu KX (2000). Study on reasonable rotation of Chinese fir plantation in Jiangxi Province.Journal of Jiangxi Forestry Science and Technology, (6), 4-8. (in Chinese with English abstract)[揭建林, 詹有生, 吴克选 (2000). 江西省杉木人工林合理轮伐期的研究. 江西林业科技, (6), 4-8.] |
12 | Kimmins JP, Blanco JA, Seely B, Welham C, Scoullar K (2008). Complexity in modelling forest ecosystems: How much is enough?Forest Ecology and Management, 256, 1646-1658. |
13 | Kimmins JP, Mailly D, Seely B (1999). Modelling forest ecosystem net primary production: The hybrid simulation approach used in FORECAST.Ecological Modelling, 122, 195-224. |
14 | Kimmins JP, Rempel RS, Welham C, Seely B (2007). Biophysical sustainability, process-based monitoring and forest ecosystem management decision support systems.The Forestry Chronicle, 83, 502-514. |
15 | Lin GY, Fan SH, He ZM, Yang XJ, Ying JH, Lu ST (2001). A study on the influence of site management measures on the growth of 3-year-old Cunninghamia lanceolata plantation of second-generation.Forest Research, 14, 403-407. (in Chinese with English abstract)[林光耀, 范少辉, 何宗明, 杨旭静, 应金花, 卢善土 (2001). 不同立地管理措施对2代杉木人工林3年生林分生长影响的研究. 林业科学研究, 14, 403-407.] |
16 | Lu NN, Gao ZX, Zhang P, Xu XL, Wang XJ (2015). Path analysis between soil properties and undergrowth vegetation in pure Chinese fir Forest. Journal of Northeast Forestry University, 43(7), 73-77. (in Chinese with English abstract)[卢妮妮, 高志雄, 张鹏, 徐雪蕾, 王新杰 (2015). 杉木纯林土壤性质与林下植被的通径分析. 东北林业大学学报, 43(7), 73-77.] |
17 | Luo YJ, Zhang XQ (2007). The assessment of soil degradation in successive rotations of Chinese fir plantation and the soil amelioration of mixed plantation of Chinese fir and broad-leaved.Acta Ecologica Sinica, 27, 715-724. (in Chinese with English abstract)[罗云建, 张小全 (2007). 杉木(Cunninghamia lanceolata)连栽地力退化和杉阔混交林的土壤改良作用. 生态学报, 27, 715-724.] |
18 | Ma XQ, Ye SJ, Chen SS (2000). Effects of rotation on site productivity maintenance of Chinese fir plantation.Scientia Silvae Sinicae, 36(6), 47-52. (in Chinese with English abstract)[马祥庆, 叶世坚, 陈绍栓 (2000). 轮伐期对杉木人工林地力维护的影响. 林业科学, 36(6), 47-52.] |
19 | Nichols JD, Bristow M, Vanclay JK (2006). Mixed-species plantations: Prospects and challenges.Forest Ecology and Management, 233, 383-390. |
20 | Peng CH, Jiang H, Apps MJ, Zhang YL (2002). Effects of harvesting regimes on carbon and nitrogen dynamics of boreal forests in central Canada: A process model simulation.Ecological Modelling, 155, 177-189. |
21 | Seely B, Hawkins C, Blanco JA, Welham C, Kimmins JP (2008). Evaluation of a mechanistic approach to mixedwood modeling.The Forestry Chronicle, 84, 181-193. |
22 | Seely B, Welham C, Kimmins JP (2002). Carbon sequestration in a boreal forest ecosystem: Results from the ecosystem simulation model, FORECAST.Forest Ecology and Management, 169, 123-135. |
23 | Sheng WT, Fan SH (2002). Impact of growth and development characters of Chinese fir and its plantation on the long- term site productivity.Forest Research, 15, 629-636. (in Chinese with English abstract)[盛炜彤, 范少辉 (2002). 杉木及其人工林自身特性对长期立地生产力的影响. 林业科学研究, 15, 629-636.] |
24 | Sheng WT, Fan SH (2005). Mechanism Study of Productivity Keeping for a Long Time of Chinese Fir Plantation. Science Press, Beijing. 15-68. (in Chinese)[盛炜彤, 范少辉 (2005). 杉木人工林长期生产力保持机制研究. 科学出版社, 北京. 15-68.] |
25 | Sheng WT, Hui GY, Zhang SG (2004). Optimization Cultivation Mode of Chinese Fir Plantation. Chinese Science and Technology Press, Beijing. 23-27. (in Chinese)[盛炜彤, 惠刚盈, 张守攻 (2004). 杉木人工林优化栽培模式. 中国科学技术出版社, 北京. 23-27.] |
26 | Shi XC, Wang HY, Huang WZ, Yan HX (2009). Study on the cutting age of Chinese fir plantation in the Southern area of Henan Province.Journal of Fujian Forestry Science and Technology, 36(3), 49-53. (in Chinese with English abstract)[施新程, 王洪友, 黄旺志, 鄢洪星 (2009). 豫南杉木人工林主伐年龄研究. 福建林业科技, 36(3), 49-53.] |
27 | Sun DJ (2011). The Effects on Biomass, Species Diversity and Soil Fertility of Cunninghamia lanceolata Plantation by Intermediate Cuttings and Interplanted with Broad-leaved Tree. Master degree dissertation, Guangxi University, Nanning. 27-32. (in Chinese with English abstract)[孙冬婧 (2011). 间伐和套种阔叶树对杉木人工林生物量、物种多样性及地力的影响. 硕士学位论文, 广西大学, 南宁. 27-32.] |
28 | Tian DL (2011). Observation and Research Data Sets of Chinese Ecosystem: Chinese Fir Eco-station in Huitong, Hunan (1982-2009). Chinese Agriculture Press, Beijing. 13-87. (in Chinese)[田大伦 (2011). 中国生态系统定位观测与研究数据集: 湖南会同杉木林站(1982-2009). 中国农业出版社, 北京. 13-87.] |
29 | Tian DL, Kang WX, Wen SZ (2003). Ecosystemology of Chinese Fir Forest. Science Press, Beijing. 22-59. (in Chinese)[田大伦, 康文星, 文仕知 (2003). 杉木林生态系统学. 科学出版社, 北京. 22-59.] |
30 | Tian X, Liu YQ, Wei XH, Zhang H, Wang WF, Zheng J, Hu JY (2014). Simulation of the effects of various mixing proportions on NPP and carbon storage in the mixedwood plantations of Phoebe bournei with Cunninghamia lanceolata.Acta Agriculturae Universitatis Jiangxiensis, 36(1), 122-130. (in Chinese with English abstract)[田晓, 刘苑秋, 魏晓华, 张桧, 王伟峰, 郑吉, 胡靖宇 (2014). 模拟楠木杉木人工混交林不同混交比例对净生产力和碳储量的影响. 江西农业大学学报, 36(1), 122-130.] |
31 | Wang WF, Duan YX, Zhang LX, Wang B, Li XJ (2016). Reviews on forest carbon sequestration counting methodology under global climate change. Journal of Nanjing Forestry University (Natural Sciences Edition), 40(3), 170-176. (in Chinese with English abstract)[王伟峰, 段玉玺, 张立欣, 王博, 李晓晶 (2016). 适应全球气候变化的森林固碳计量方法评述. 南京林业大学学报(自然科学版), 40(3), 170-176.] |
32 | Wang WF, Wei XH, Liao WM, Blanco JA, Liu YQ, Liu SR, Liu GH, Zhang L, Guo XM, Guo SM (2013). Evaluation of the effects of forest management strategies on carbon sequestration in evergreen broad-leaved (Phoebe bournei) plantation forests using FORECAST ecosystem model.Forest Ecology and Management, 300, 21-32. |
33 | Wei XH, Blanco JA (2014). Significant increase in ecosystem C can be achieved with sustainable forest management in subtropical plantation forests.PLOS ONE, 9(2), e89688. doi: 10.1371/journal.pone.0089688. |
34 | Wei XH, Kimmins JP, Zhou GY (2003). Disturbances and the sustainability of long-term site productivity in Lodgepole pine forests in the central interior of British Columbia —An ecosystem modeling approach. Ecological Modelling, 164, 239-256. |
35 | Wei XH, Zheng J, Liu GH, Liu SR, Wang WF, Liu YQ, Blanco JA (2015). The concept and application of carbon sequestration potentials in plantation forests.Acta Ecologica Sinica, 35, 3881-3885. (in Chinese with English abstract)[魏晓华, 郑吉, 刘国华, 刘世荣, 王伟峰, 刘苑秋, Blanco JA (2015). 人工林碳汇潜力新概念及应用. 生态学报, 35, 3881-3885.] |
36 | Welham C, Rees KV, Seely B, Kimmins H (2007). Projected long-term productivity in Saskatchewan hybrid poplar plantations: Weed competition and fertilizer effects.Canadian Journal of Forest Research, 37, 356-370. |
37 | Xiao X, Wang XT, Ouyang XZ (2015). The characteristic of soil organic carbon and relationship with litter quality in Pinus massoniana plantation. Journal of Nanjing Forestry University (Natural Sciences Edition), 39(6), 105-111. (in Chinese with English abstract)[肖欣, 王雄涛, 欧阳勋志 (2015). 马尾松人工林土壤有机碳特征及其与凋落物质量的关系. 南京林业大学学报(自然科学版), 39(6), 105-111.] |
38 | Xin ZH, Jiang H, Jie CY, Wei XH, Blanco JA, Zhou GM (2011). Simulated nitrogen dynamics for a Cunninghamia lanceolata plantation with selected rotation ages.Journal of Zhejiang Forestry College, 28, 855-862. (in Chinese with English abstract)[辛赞红, 江洪, 接程月, 魏晓华, Blanco JA, 周国模 (2011). 模拟轮伐期长短对杉木人工林氮动态的影响. 浙江林学院学报, 28, 855-862.] |
39 | Yao LH, Kang WX, Zhao ZH, He JN (2015). Carbon fixed characteristics of plant of Chinese fir (Cunninghamia lanceolata) plantation at different growth stages in Huitong.Acta Ecologica Sinica, 35, 1187-1197. (in Chinese with English abstract)[姚利辉, 康文星, 赵仲辉, 何介南 (2015). 会同杉木人工林不同生长阶段植物固碳特征. 生态学报, 35, 1187-1197.] |
40 | Zhang XQ, Kirschbaumb MUF, Hou ZH, Guo ZH (2004). Carbon stock changes in successive rotations of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations.Forest Ecology and Management, 202, 131-147. |
41 | Zhou J, Yuan HM, Li JY, Zhang W, Long HL, Li XQ, Chen Z (2015). Effect of Cunninghamia lanceolata-Betula luminifera mixed forests on soil microbial biomass and enzyme activity.Journal of Northeast Forestry University, 43(3), 83-86, 123. (in Chinese with English abstract)[周静, 袁华明, 李佳泳, 张炜, 龙汉利, 李晓清, 陈忠 (2015). 杉木-光皮桦混交林对微生物量碳氮与酶活性的影响. 东北林业大学学报, 43(3), 83-86, 123.] |
[1] | FANG Jing-Yun. Ecological perspectives of carbon neutrality [J]. Chin J Plant Ecol, 2021, 45(11): 1173-1176. |
[2] | FENG Zhao-Zhong, YUAN Xiang-Yang, LI Pin, SHANG Bo, PING Qin, HU Ting-Jian, LIU Shuo. Progress in the effects of elevated ground-level ozone on terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(5): 526-542. |
[3] | FENG Zhao-Zhong, LI Pin, ZHANG Guo-You, LI Zheng-Zhen, PING Qin, PENG Jin-Long, LIU Shuo. Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: problems and prospective [J]. Chin J Plant Ecol, 2020, 44(5): 461-474. |
[4] | WEI Hong, MAN Xiu-Ling. Carbon storage and its allocation in Betula platyphylla forests of different ages in cold temperate zone of China [J]. Chin J Plant Ecol, 2019, 43(10): 843-852. |
[5] | CHEN Ke-Yu, ZI Hong-Biao, ADE Luji, HU Lei, WANG Gen-Xu, WANG Chang-Ting. Current stocks and potential of carbon sequestration of the forest tree layer in Qinghai Province, China [J]. Chin J Plant Ecol, 2018, 42(8): 831-840. |
[6] | LI Yong-Qiang, DONG Zhi, DING Chen-Xi, WANG Ya-Mei, JIA Ji-Wen, ZHANG Jia-Nan, JIAO Shu-Ying. Carbon stock and seasonal dynamics of carbon flux in warm-temperature tussock ecosystem in Shandong Province, China [J]. Chin J Plant Ecol, 2018, 42(3): 277-287. |
[7] | Juan XING, Cheng-Yang ZHENG, Chan-Ying FENG, Fa-Xu ZENG. Change of growth characters and carbon stocks in plantations of Pinus sylvestris var. mongolica in Saihanba, Hebei, China [J]. Chin J Plant Ecol, 2017, 41(8): 840-849. |
[8] | Wei ZHAO, Zhong-Min HU, Hao YANG, Lei-Ming ZHANG, Qun GUO, Zhi-Yan WU, De-Yi LIU, Sheng-Gong LI. Carbon density characteristics of sparse Ulmus pumila forest and Populus simonii plantation in Onqin Daga Sandy Land and their relationships with stand age [J]. Chin J Plant Ecol, 2016, 40(4): 318-326. |
[9] | Yu-He JI, Ke GUO, Jian NI, Xiao-Niu XU, Zhi-Gao WANG, Shu-Dong WANG. Current forest carbon stocks and carbon sequestration potential in Anhui Province, China [J]. Chin J Plant Ecol, 2016, 40(4): 395-404. |
[10] | Yan-Long JIA, Qian-Ru LI, Zhong-Qi XU, Wei-Guo SANG. Carbon cycle of larch plantation based on CO2FIX model [J]. Chin J Plant Ecol, 2016, 40(4): 405-415. |
[11] | Jin-Hong GUAN, Sheng DU, Ji-Min CHENG, Chun-Rong WU, Guo-Qing LI, Lei DENG, Jian-Guo ZHANG, Qiu-Yue HE, Wei-Yu SHI. Current stocks and rate of sequestration of forest carbon in Gansu Province, China [J]. Chin J Plant Ecol, 2016, 40(4): 304-317. |
[12] | Jian WANG, Gen-Xu WANG, Chang-Ting WANG, Fei RAN, Rui-Ying CHANG. Carbon storage and potentials of the broad-leaved forest in alpine region of the Qinghai- Xizang Plateau, China [J]. Chin J Plant Ecol, 2016, 40(4): 374-384. |
[13] | Chun-Nan FAN, Shi-Jie HAN, Zhong-Ling GUO, Jin-Ping ZHENG, Yan CHENG. Present status and rate of carbon sequestration of forest vegetation in Jilin Province, Northeast China [J]. Chin J Plan Ecolo, 2016, 40(4): 341-353. |
[14] | HUANG Zong-Sheng,YU Li-Fei,FU Yu-Hong,YANG Rui. Characteristics of carbon sequestration during natural restoration of Maolan karst forest ecosystems [J]. Chin J Plan Ecolo, 2015, 39(6): 554-564. |
[15] | HU Hai-Qing,LUO Bi-Zhen,WEI Shu-Jing,WEI Shu-Wei,SUN Long,LUO Si-Sheng,MA Hong-Bin. Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxing’an Mountains, China [J]. Chin J Plan Ecolo, 2015, 39(2): 140-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn