Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (8): 775-787.doi: 10.17521/cjpe.2015.0288

• Research Articles • Previous Articles     Next Articles

Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow

Jing GAO1,2, Jin-Niu WANG1,3,*(), Bo XU1,2, Yu XIE1,2, Jun-Dong HE1,2, Yan WU1,*()   

  1. 1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    3International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal
  • Online:2016-08-23 Published:2016-08-10
  • Contact: Jin-Niu WANG,Yan WU E-mail:wangjn@cib.ac.cn;wuyan@cib.ac.cn

Abstract:

Aims In the cold life zones, snow cover is a comprehensive environmental factor that directly influences soil temperature, soil water content, light and nutrient availability. Plants in these zones develop a series of unique mechanisms involving phenological characteristics, reproductive strategies, physiology and morphology to adapt to environmental changes. This paper is focused on the responses of plant leaf traits, height and biomass partitioning to variations in snow cover thickness, in order to better understand the responses of plant functional traits and specific adaptation strategies under global climate change scenarios. Methods Three transects were established along a gradient of snow cover in an alpine meadow of Mt. Kaka, in the eastern Qinghai-Xizang Plateau. Primula purdomii, Pedicularis kansuensis and Ranunculus tanguticus, which are three widely distributed and dominant ephemerals, were sampled and studied, particularly at their blooming stages. Plant height, specific leaf area (SLA) and biomass partitioning were measured accordingly. Important findings The values of SLA in Pedicularis kansuensis and R. tanguticus were relatively greater under better soil conditions; it was smaller in Primula purdomii with thick snow cover. The relationship between aboveground biomass and belowground biomass in Primula purdomii was allometric at sites with both thick and thin snow cover. No significant relationships were found between aboveground biomass and belowground biomass in Pedicularis kansuensis and R. tanguticus at some individual sites. However, when samples of the three species were pooled, the relationships between aboveground biomass and belowground biomass were allometric at all sites, which did not support isometric scaling hypothesis. In addition, on sites with either thick or thin snow cover, aboveground biomass had greater rate of accumulation than belowground biomass; whereas on sites with medium snow cover, the rate of biomass accumulation was greater for belowground component than aboveground component. Functional traits and biomass variables were better correlated in Primula purdomii and Pedicularis kansuensis than in R. tanguticus.

Key words: snow cover thickness, ephemeral plant, special leaf area, plant height, biomass partitioning, allometric scaling

Table 1

Basic information on snow cover at the study sites"

雪被厚度
Levels of snow cover thickness
雪被形成日期
Date of snow cover formation
雪被消失日期
Date of snow cover disappearance
雪被持续天数
Lasting days of snow cover (d)
雪被最大厚度
Maximum depth of snow cover (cm)
浅 Thin 2012-01-14 2013-04-28 106 46
中 Medium 2012-01-09 2013-05-01 114 61
厚 Thick 2012-02-28 2013-05-13 138 115

Fig. 1

Temporal dynamics of soil temperatures at study sites. A, Thin snow. B, Medium snow. C, Thick snow."

Table 2

Comparisons of soil nutrients and water contents among sites of different levels of snow cover (mean ± SE)"

雪被厚度
Levels of snow cover thickness
土壤有机碳
含量
SOC (g·kg-1)
土壤全氮
含量
STN (g·kg-1)
土壤全磷
含量
STP (g·kg-1)
土壤含水量
SWC (%)
浅 Thin 43.28 ± 6.36b 3.63 ± 0.47b 0.88 ± 0.07a 65.76 ± 0.90ab
中 Medium 44.12 ± 2.24b 3.78 ± 0.16b 1.15 ± 0.26a 68.68 ± 0.57a
厚 Thick 71.54 ± 7.27a 5.34 ± 0.48a 1.31 ± 0.06a 62.88 ± 1.22b

Table 3

Effects of snow cover on plant height and leaf functional traits"

植物功能性状
Plant functional traits
自由度
df
均方
Mean
squares
F p
物种
Species
单叶质量
Individual leaf mass
2 1.674 54.180 <0.000 1
单叶面积
Individual leaf area
2 3.689 101.290 <0.000 1
比叶面积
Specific leaf area
2 0.443 52.446 <0.000 1
株高
Plant height
2 1.811 177.241 <0.000 1
雪被
Snow
cover
单叶质量
Individual leaf mass
2 0.299 9.682 <0.000 1
单叶面积
Individual leaf area
2 0.058 1.582 0.210 0
比叶面积
Specific leaf area
2 0.166 19.625 <0.000 1
株高
Plant height
2 0.296 29.004 <0.000 1
物种×
雪被
Species ×
snow
cover
单叶质量
Individual leaf mass
2 0.566 18.331 <0.000 1
单叶面积
Individual leaf area
2 0.085 2.338 0.101 0
比叶面积
Specific leaf area
2 0.236 27.977 <0.000 1
株高
Plant height
2 0.519 50.762 <0.000 1

Table 4

Comparisons of plant height and leaf traits among three plant species (mean ± SE)"

物种
Species
雪被
Snow cover
样本量
No. of samples
单叶质量
Individual leaf mass (g)
单叶面积
Individual leaf area (cm2)
比叶面积
Specific leaf area (cm2·g-1)
株高
Plant height (cm)
紫罗兰报春
Primula purdomii
厚 Thick 23* 0.038 4 ± 0.004 0a 7.252 6 ± 0.670 7a 198.22 ± 9.21b 12.29 ± 0.64a
浅 Thin 20 0.020 7 ± 0.002 1b 6.100 3 ± 0.568 1a 316.29 ± 23.54a 10.65 ± 0.57a
甘肃马先蒿 Pedicularis kansuensis 厚 Thick 20 0.008 6 ± 0.000 6b 1.512 4 ± 0.125 9a 176.64 ± 4.58a 2.89 ± 0.13b
中 Medium 20 0.009 1 ± 0.000 9ab 1.617 7 ± 0.150 5a 195.39 ± 6.18a 3.39 ± 0.17b
浅 Thin 20 0.012 4 ± 0.001 4a 1.784 4 ± 0.219 9a 141.45 ± 5.78b 6.87 ± 0.32a
高原毛茛 Ranunculus tanguticus 中 Medium 20 0.009 8 ± 0.000 9b 2.221 9 ± 0.306 7a 226.50 ± 18.86a 5.07 ± 0.26b
浅 Thin 12 0.019 9 ± 0.001 9a 2.936 7 ± 0.257 6a 150.45 ± 5.46b 6.14 ± 0.46a

Table 5

Biomass of different organs, total biomass and root/shoot ratio of three plant species under different levels of snow cover (mean ± SE)"

物种
species
雪被
Snow cover
样本量
No. of
samples
根生物量
Root biomass
(g)
茎生物量
Shoot biomass
(g)
叶生物量
Leaf biomass
(g)
花生物量
Flower biomass
(g)
根冠比
Root/shoot
ratio
总生物量
Total biomass
(g)
紫罗兰报春
Primula
purdomii
厚 Thick 23* 0.388 6 ± 0.059 5a 0.312 0 ± 0.070 6a 0.476 0 ± 0.050 0a 0.024 8 ± 0.005 8a 0.473 9 ± 0.022 2a 1.183 1 ± 0.165 1a
浅 Thin 20 0.128 7 ± 0.017 7b 0.043 1 ± 0.006 5b 0.310 8 ± 0.047 1b 0.026 7 ± 0.003 5a 0.386 2 ± 0.074 8b 0.509 3 ± 0.070 1b
甘肃马先蒿
Pedicularis
kansuensis
厚 Thick 20 0.132 0 ± 0.016 2a 0.022 7 ± 0.002 3a 0.063 1 ± 0.008 6a 0.053 5 ± 0.004 7a 1.070 4 ± 0.143 9a 0.267 4 ± 0.026 5a
中 Medium 20 0.109 3 ± 0.016 1a 0.027 7 ± 0.001 9a 0.048 9 ± 0.005 6a 0.055 4 ± 0.005 9a 0.849 2 ± 0.092 0a 0.241 3 ± 0.022 4a
浅 Thin 20 0.056 8 ± 0.006 6b 0.009 6 ± 0.001 2b 0.034 3 ± 0.003 4ab - 1.421 7 ± 0.200 1a 0.100 7 ± 0.009 1b
高原毛茛
Ranunculus
tanguticus
中 Medium 20 0.009 4 ± 0.002 6b 0.015 7 ± 0.001 5b 0.035 5 ± 0.003 6b 0.021 5 ± 0.001 3 0.113 9 ± 0.024 0b 0.082 1 ± 0.007 6b
浅 Thin 12 0.063 2 ± 0.008 7a 0.030 7 ± 0.005 8a 0.065 7 ± 0.007 4a - 0.707 7 ± 0.085 4a 0.159 6 ± 0.016 7a

Fig. 2

Standardized major axis regression analysis between specific leaf area and plant height on sites with different levels of snow cover."

Fig. 3

Biomass partitioning of three plant species under different levels of snow cover (mean ± SE)."

Fig. 4

Linear regressions (log10-log10) between aboveground biomass (AGB) and belowground biomass (BGB) of the three plant species. A, Primula purdomii. B, Pedicularis kansuensis. C, Ranunculus tanguticus. D, All species."

Table 6

Allometric scaling exponents and the test of isometry between above- and below-ground biomass in three plant species under different levels of snow cover"

物种
Species
雪被厚度
Levels of snow cover thickness
R2 p 斜率(95%置信区间)
Slope (95% confidence interval)
截距(95%置信区间)
Intercept (95% confidence interval)
等速生长检验
Test of isometry
F p
紫罗兰报春
Primula purdomii
厚 Thick 0.883 <0.001 1.184 (1.014, 1.382)a -0.303 9 (-0.361 5, -0.246 3) 5.152 0.034
浅 Thin 0.410 0.002 1.137 (0.784, 1.650)a -0.413 3 (-0.644 7, 0.182 0) 0.508 0.485
甘肃马先蒿
Pedicularis kansuensis
厚 Thick 0.338 0.007 1.017 (0.686, 1.506)a -0.006 8 (-0.393 2, -0.379 6) 0.007 0.933
中 Medium 0.133 0.114 1.572 (1.006, 2.456)a 0.395 5 (-0.269 3, 1.060 3) 4.547 0.047
浅 Thin 0.178 0.064 1.480 (0.958, 2.287)a 0.749 2 (-0.187 7, 1.686 1) 3.541 0.076
高原毛茛
Ranunculus tanguticus
中 Medium 0.499 <0.001 2.962 (2.101, 4.176)a 1.205 8 (-0.009 0, 2.425 9) 61.917 <0.001
浅 Thin 0.194 0.152 1.008 (0.555, 1.830)b -0.178 6 (-0.858 5, 0.501 4) 0.001 0.979
全部物种
All species
厚 Thick 0.751 <0.001 0.779 (0.666, 0.912)b -0.305 1 (-0.389 4, -0.220 8) 10.427 0.002
中 Medium 0.631 <0.001 3.607 (2.958, 4.397)a 2.094 9 (1.337 9, 2.851 8) 285.420 <0.001
浅 Thin 0.467 <0.001 0.643 (0.524, 0.791)b -0.540 4 (-0.684 1, - 0.396 7) 19.463 <0.001

Table 7

Correlations among plant height, leaf traits and biomass of the three plant species"

株高
PH
紫罗兰报春
Primula purdomii
甘肃马先蒿
Pedicularis kansuensis
高原毛茛
Ranunculus tanguticus
比叶面积
SLA
单叶质量
ILM
单叶面积
ILA
株高
PH
比叶面积
SLA
单叶质量
ILM
单叶面积
ILA
株高
PH
比叶面积
SLA
单叶质量
ILM
单叶面积
ILA
株高 PH -0.487** -0.742** 0.595** -0.449** 0.489** 0.311* -0.185 0.416* 0.196
地上生物量 AGB 0.671** -0.497** 0.726** 0.549** -0.560** 0.354** 0.137 -0.002 0.341 -0.166 0.700** 0.591**
地下生物量 BGB -0.565** -0.454** 0.674** 0.460** -0.358** 0.212 -0.006 0.109 0.306 -0.425* 0.818** 0.437**
花生物量 FB 0.083 -0.099 0.616** 0.605** 0.183 -0.094 0.270 0.339* -0.090 0.031 0.908** 0.710**
根冠比 R/S -0.178 0.408** -0.003 0.094 0.330** -0.137 0.275* 0.245 0.236 -0.418* 0.639** 0.293
[1] Allen SE (1989). Chemical Analysis of Ecological Material. 2nd edn. Blackwell, Oxford, UK.
[2] Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing. (in Chinese)[鲍士旦 (2000). 土壤农化分析(第3版). 中国农业出版社, 北京.]
[3] Beniston M (2005). Mountain climates and climatic change: An overview of processes focusing on the European Alps. Pure and Applied Geophysics, 162, 1587-1606.
[4] Bernard-Verdier M, Navas ML, Vellend M (2012). Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterra- nean rangeland. Journal of Ecology, 100, 1422-1433.
[5] Bertalanffy LV (1952). Problems of Life: An Evaluation of Modern Biological and Scientific Thought. Harper, New York.
[6] Chen WN, Wu Y, Wu N, Luo P (2009). Changes of five alpine species individual growth along snowmelt gradient. Journal of Wuhan Botanical Research, 27, 629-636. (in Chinese with English abstract)[陈文年, 吴彦, 吴宁, 罗鹏 (2009). 五种高山植物的个体生长在融雪梯度上的变化. 武汉植物学研究, 27, 629-636.]
[7] Chen WN, Wu Y, Wu N, Luo P (2011a). Variation in phenology and population distribution pattern of three alpine species along the snowmelt gradient. Bulletin of Botanical Research, 31, 206-212. (in Chinese with English abstract)[陈文年, 吴彦, 吴宁, 罗鹏 (2011a). 3种高山植物的物候和种群分布格局在融雪梯度上的变化. 植物研究, 31, 206-212.]
[8] Chen WN, Wu Y, Wu N, Luo P, Wang Q (2011b). Effects of snowmelt timing on individual growth and reproduction of Pedicularis davidii var. pentodon on the eastern Tibetan Plateau. Acta Ecologica Sinica, 13, 3621-3628. (in Chinese with English abstract)[陈文年, 吴彦, 吴宁, 罗鹏, 王乾 (2011b). 融雪时间对大卫马先蒿生长和繁殖特性的影响. 生态学报, 13, 3621-3628.]
[9] Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153. (in Chinese with English abstract)[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
[10] Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
[11] Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Edita (1963). Flora Reipublicae Popularis Sinicae. Science Press, Beijing. (in Chinese)[中国科学院中国植物志编辑委员会 (1963). 中国植物志. 科学出版社, 北京.]
[12] Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Edita (1980). Flora Reipublicae Popularis Sinicae. Science Press, Beijing. (in Chinese)[中国科学院中国植物志编辑委员会 (1980). 中国植物志. 科学出版社, 北京.]
[13] Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Edita (1990). Flora Reipublicae Popularis Sinicae. Science Press, Beijing. (in Chinese)[中国科学院中国植物志编辑委员会 (1990). 中国植物志. 科学出版社, 北京.]
[14] Ding JL, Han Y, Bao WK, Xiang S (2014). Biomass allocation strategies of Lilium regale and their altitudinal effects. Chinese Journal of Applied and Environmental Biology, 20, 254-260. (in Chinese with English abstract)[丁建林, 韩越, 包维楷, 向双 (2014). 岷江百合的生物量分配对策及其海拔效应. 应用与环境生物学报, 20, 254-260.]
[15] Dye DG (2002). Variability and trends in the annual snow-cover cycle in northern hemisphere land areas, 1972-2000. Hydrological Processes, 16, 3065-3077.
[16] Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520.
[17] Falster DS, Warton DI, Wright IJ (.
[18] Falster DS, Westoby M (2003). Plant height and evolutionary games. Trends in Ecology & Evolution, 18, 337-343.
[19] Fang YM (1996). Plant Reproductive Ecology. Shandong University Press, Jinan. (in Chinese)[方炎明 (1996). 植物生殖生态学. 山东大学出版社, 济南.]
[20] Groisman PY, Karl TR, Knight RW, Stenchikov GL (1994). Changes of snow cover, temperature, and radiative heat- balance over the northern-hemisphere. Journal of Climate, 7, 1633-1656.
[21] Hao HD, Tian QS, Shi FL, Bian XY, Li F (2009). Allocated dynamics of aboveground biomass and structural biomass in Bromus inermis Leyss. Chinese Journal of Grassland, 31(4), 85-90. (in Chinese with English abstract)[郝虎东, 田青松, 石凤翎, 卞晓燕, 李芳 (2009). 无芒雀麦地上生物量及各构件生物量分配动态. 中国草地学报, 31(4), 85-90.]
[22] He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY (2013). Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest. Chinese Journal of Plant Ecology, 37, 306-316. (in Chinese with English abstract)[何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 (2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.]
[23] Hiltbrunner E, Schwikowski M, Korner C (2005). Inorganic nitrogen storage in alpine snow pack in the Central Alps (Switzerland). Atmospheric Environment, 39, 2249-2259.
[24] Hu X, Wu N, Wu Y, Zuo WQ, Guo HX, Wang JN (2012). Effects of snow cover on the decomposition and nutrient dynamics of Sibiraea angustata leaf litter in Western Sichuan Plateau, Southwest China.Chinese Journal of Applied Ecology, 23, 1226-1232. (in Chinese with English abstract)[胡霞, 吴宁, 吴彦, 左万庆, 郭海霞, 王金牛 (2012). 川西高原季节性雪被覆盖对窄叶鲜卑花凋落物分解和养分动态的影响. 应用生态学报, 23, 1226-1232.]
[25] IPCC (Intergovernmental Panel on Climate Change) (2001). Contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding Y, Griggs DG, Noguer M, Linden PJ, Xiaosu D eds. Climate Change in 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK.
[26] Jones HG, Pomeroy JW, Walker DA, Hoham R (2001). Snow Ecology: An Interdisciplinary Examination of Snow- Covered Ecosystems. Cambridge University Press, Cambridge, UK.
[27] Körner C (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin.
[28] Li CP, Li G, Xiao CW (2007). The application of allometric relationships in biomass estimation in terrestrial ecosystems. World Sci-Tech R & D, 29(2), 51-57. (in Chinese with English abstract)[李春萍, 李刚, 肖春旺 (2007). 异速生长关系在陆地生态系统生物量估测中的应用. 世界科技研究与发展, 29(2), 51-57.]
[29] Li YL, Cui JY, Su YZ (2005). Specific leaf area and leaf dry matter content of some plants in different dune habitats. Acta Ecologica Sinica, 25, 304-311. (in Chinese with English abstract)[李玉霖, 崔建垣, 苏永中 (2005). 不同沙丘生境主要植物比叶面积和叶干物质含量的比较. 生态学报, 25, 304-311.]
[30] Lipson DA, Schadt CW, Schmidt SK (2002). Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microbial Ecology, 43, 307-314.
[31] Liu L, Wu Y, Wu N, Xu JJ, Mao Y, Luo P, Zhang L (2010). Effects of freezing and freeze-thaw cycles on soil microbial biomass and nutrient dynamics under different snow gradients in an alpine meadow (Tibetan Plateau). Polish Journal of Ecology, 58, 717-728.
[32] Liu QJ, Xu QQ, Zhang GC (2009). Impact of alpine snowpacks on primary productivity in Rhododendron aureum community in Changbai Mountain, China. Acta Ecologica Sinica, 29, 4035-4044. (in Chinese with English abstract)[刘琪璟, 徐倩倩, 张国春 (2009). 高山带雪斑对牛皮杜鹃群落生产力的影响. 生态学报, 29, 4035-4044.]
[33] Lu XM, Zhou CF, An SQ, Fang C, Zhao H, Yang Q, Yan C (2007). Phenotypic plasticity, allometry and invasiveness of plants. Chinese Journal of Ecology, 26, 1438-1444. (in Chinese with English abstract)[陆霞梅, 周长芳, 安树青, 方超, 赵晖, 杨茜, 颜超 (2007). 植物的表型可塑性、异速生长及其入侵能力. 生态学杂志, 26, 1438-1444.]
[34] Niklas KJ (2005). Modelling below- and above-ground biomass for non-woody and woody plants. Annals of Botany, 95, 315-321.
[35] Niklas KJ, Enquist BJ (2001). Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences of the United States of America, 98, 2922-2927.
[36] Pauli H, Gottfried M, Lamprecht A, Niessner S, Rumpf S, Winkler M, Steinbauer K, Grabherr G (2015). The GLORIA Field Manual—Standard Multi-Summit Approach, Supplementary Methods and Extra Approaches. 5th edn. GLORIA-Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences, Vienna.
[37] Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
[38] Rixen C, Haeberli W, Stoeckli V (2004). Ground temperatures under ski pistes with artificial and natural snow. Arctic Antarctic and Alpine Research, 36, 419-427.
[39] Rozendaal DMA, Hurtado VH, Poorter L (2006). Plasticity in leaf traits of 38 tropical tree species in response to light: Relationships with light demand and adult stature. Functional Ecology, 20, 207-216.
[40] Schimel JP, Bilbrough C, Welker JA (2004). Increased snow depth affects microbial activity and nitrogen mineralization in two arctic tundra communities. Soil Biology & Biochemistry, 36, 217-227.
[41] Serreze MC, Hurst CM (2000). Representation of mean arctic precipitation from NCEP-NCAR and ERA reanalyses. Journal of Climate, 13, 182-201.
[42] Shi YC, Zhao CZ, Song QH, Du J, Chen J, Wang JW (2015). Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou. Chinese Journal of Plant Ecology, 39, 362-370. (in Chinese with English abstract)[史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟 (2015). 兰州北山刺槐枝叶性状的坡向差异性. 植物生态学报, 39, 362-370.]
[43] Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392.
[44] Sultan SE (1992). Phenotypic plasticity and the neo-Darwinian legacy. Evolutionary Trends in Plants, 6, 61-71.
[45] Tao Y, Zhang YM (2014). Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China. Acta Prataculturae Sinica, 23(2), 38-48. (in Chinese with English abstract)[陶冶, 张元明 (2014). 准噶尔荒漠6种类短命植物生物量分配与异速生长关系. 草业学报, 23(2), 38-48.]
[46] Totland O, Alatalo JM (2002). Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia, 133, 168-175.
[47] Vile D, Garnier E, Shipley B, Laurent G, Navas ML, Roumet C, Lavorel S, Diaz S, Hodgson JG, Lloret F, Midgley GF, Poorter H, Rutherford MC, Wilson PJ, Wright IJ (2005). Specific leaf area and dry matter content estimate thick- ness in laminar leaves. Annals of Botany, 96, 1129-1136.
[48] Wang JN, Shi FS, Xu B, Wang Q, Wu Y, Wu N (2014). Uptake and recovery of soil nitrogen by bryophytes and vascular plants in an alpine meadow. Journal of Mountain Science, 11, 475-484.
[49] Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174.
[50] Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews of the Cambridge Philosophical Society, 81, 259-291.
[51] Weiner J (2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology Evolution and Systematics, 6, 207-215.
[52] Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628.
[53] Wijk S (1986). Performance of Salix herbacea in an alpine snow-bed gradient. Journal of Ecology, 74, 675-684.
[54] Wipf S (2010). Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations. Plant Ecology, 207, 53-66.
[55] Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434.
[56] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hi- kosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The world- wide leaf economics spectrum. Nature, 428, 821-827.
[57] Wu GL, Chen M, Du GZ (2010). Response of biomass allocation and morphological characteristics to light and nutrient resources for seedlings of three alpine species. Acta Ecological Sinica, 30, 60-66. (in Chinese with English abstract)[武高林, 陈敏, 杜国祯 (2010). 三种高寒植物幼苗生物量分配及性状特征对光照和养分的响应. 生态学报, 30, 60-66.]
[58] Wu GL, Du GZ (2007). Advances in plant morphological growth strategy. World Sci-Tech R & D, 29(4), 47-51. (in Chinese with English abstract)[武高林, 杜国祯 (2007). 植物形态生长对策研究进展. 世界科技研究与发展, 29(4), 47-51.]
[59] Wu Y (2005). Effects of seasonal snow cover on plant community. Journal of Mountain Science, 23, 40-46. (in Chinese with English abstract)[吴彦 (2005). 季节性雪被覆盖对植物群落的影响. 山地学报, 23, 40-46.]
[60] Wu Y, Onipchenko VG (2007). The impact of snow-cover on alpine vegetation type of different aspects in the west of Sichuan Province. Acta Ecological Sinica, 27, 5120-5129. (in Chinese with English abstract)[吴彦, Onipchenko VG (2007). 雪被对川西高山植被坡向性分异的影响. 生态学报, 27, 5120-5129.]
[61] Xiao Y, Tao Y, Zhang YM (2014). Biomass allocation and leaf stoichiometric characteristics in four desert herbaceous plants during different growth periods in the Gurbantünggüt Desert, China. Chinese Journal of Plant Ecology, 38, 929-940. (in Chinese with English abstract)[肖遥, 陶冶, 张元明 (2014). 古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征. 植物生态学报, 38, 929-940.]
[62] Yang YH, Rao S, Hu HF, Chen AP, Ji CJ, Zhu B, Zuo WY, Li XR, Shen HH, Wang ZH, Tang YH, Fang JY (2004). Plant species richness of alpine grasslands in relation to environmental factors and biomass on the Tibetan Plateau. Biodiversity Science, 12, 200-205. (in Chinese with English abstract)[杨元合, 饶胜, 胡会峰, 陈安平, 吉成均, 朱彪, 左闻韵, 李轩然, 沈海花, 王志恒, 唐艳鸿, 方精云 (2004). 青藏高原高寒草地植物物种丰富度及其与环境因子和生物量的关系. 生物多样性, 12, 200-205.]
[63] Yang YL, Wu FZ, He ZH, Xu ZF, Liu Y, Yang WQ, Tan B (2012). Effects of snow pack removal on soil microbial biomass carbon and nitrogen and the number of soil culturable microorganisms during wintertime in alpine Abies faxoniana forest of western Sichuan, Southwest China. Chinese Journal of Applied Ecology, 23, 1809-1816. (in Chinese with English abstract)[杨玉莲, 吴福忠, 何振华, 徐振锋, 刘洋, 杨万勤, 谭波 (2012). 雪被去除对川西高山冷杉林冬季土壤微生物生物量碳氮和可培养微生物数量的影响. 应用生态学报, 23, 1809-1816.]
[1] Wen-Jing CHEN, Lu GONG, Yu-Tong LIU. Effects of seasonal snow cover on decomposition and carbon, nitrogen and phosphorus release of Picea schrenkiana leaf litter in Mt. Tianshan, Northwest China [J]. Chin J Plan Ecolo, 2018, 42(4): 487-497.
[2] Zhiwen Guo, Jingming Zheng. Predicting modes of seed dispersal using plant life history traits [J]. Biodiv Sci, 2017, 25(9): 966-971.
[3] Liu Jianguo, Liu Weiguo, Zhu Yuanyuan, Huo Jusong, Maria?Nurlan. Seasonal Variation of N and P Stoichiometric Characteristics in Leaves of Certain Ephemeral Plants in the Gurbantunggut Desert, China [J]. Chin Bull Bot, 2017, 52(6): 756-763.
[4] Rongqian Zheng, Zhenzhen Hou, Aiqin Zhang. The Schedule of Pollen Presentation and Pollination Adaption in an Early Spring Ephemeral Plant Gagea nigra [J]. Chin Bull Bot, 2016, 51(5): 594-600.
[5] Shao-An PAN, Guo-Quan PENG, Dong-Mei YANG. Biomass allocation strategies within a leaf: Implication for leaf size optimization [J]. Chin J Plant Ecol, 2015, 39(10): 971-979.
[6] XIAO Yao, TAO Ye, and ZHANG Yuan-Ming. Biomass allocation and leaf stoichiometric characteristics in four desert herbaceous plants during different growth periods in the Gurbantünggüt Desert, China [J]. Chin J Plan Ecolo, 2014, 38(9): 929-940.
[7] HOU Zhao-Jiang, ZHAO Cheng-Zhang, LI Yu, ZHANG Qian, and MA Xiao-Li. Trade-off between height and branch numbers in Stellera chamaejasme on slopes of different aspects in a degraded alpine grassland [J]. Chin J Plan Ecolo, 2014, 38(3): 281-288.
[8] Jinyan Zhu, Chaoqiu Ji, Yong Zhou, Jun Wang, Zhongde Wang, Jie Yang, Fangjun Fan, Guohua Liang, Weigong Zhong. Identification of Plant Height Quantitative Trait Loci with Single Segment Substituted Lines in Rice [J]. Chin Bull Bot, 2011, 46(6): 632-641.
[9] Wenxing Long, Runguo Zang, Yi Ding. Community characteristics of tropical montane evergreen forest and tropical montane dwarf forest in Bawangling National Nature Reserve on Hainan Island, South China [J]. Biodiv Sci, 2011, 19(5): 558-566.
[10] Yang Zhang, Dunyan Tan. Breeding system and pollination biology of Crocus alatavicus (Iridaceae), a geocarpic subalpine plant of the western Tianshan Mountains [J]. Biodiv Sci, 2009, 17(5): 468-475.
[11] GONG Ji-Rui, HUANG Yong-Mei, GE Zhi-Wei, DUAN Qing-Wei, YOU Xin, AN Ran, ZHANG Xin-Shi. ECOLOGICAL RESPONSES TO SOIL WATER CONTENT IN FOUR HYBRID POPULUS CLONES [J]. Chin J Plan Ecolo, 2009, 33(2): 387-396.
[12] Haiping Tang, Lijuan Yan, Xinshi Zhang. Biodiversity conservation and a conception for a national desert park in Dzungaria Basin, Xinjiang [J]. Biodiv Sci, 2008, 16(6): 618-626.
[13] LI Ya-Nan, YANG Dong-Mei, SUN Shu-Cun, GAO Xian-Ming. EFFECTS OF TWIG SIZE ON BIOMASS ALLOCATION WITHIN TWIGS AND ON LAMINA AREA SUPPORTING EFFICIENCY IN RHODODENDRON: ALLOMETRIC SCALING ANALYSES [J]. Chin J Plan Ecolo, 2008, 32(5): 1175-1183.
[14] HAN Wen-Xuan, FANG Jing-Yun. REVIEW ON THE MECHANISM MODELS OF ALLOMETRIC SCALING LAWS: 3/4 VS. 2/3 POWER [J]. Chin J Plan Ecolo, 2008, 32(4): 951-960.
[15] CHEN Zhi-Chao, SHI Zhao-Yong, TIAN Chang-Yan, FENG Gu. EFFECTS OF ARBUSCULAR MYCORRHIZAL FUNGAL INOCULATION ON GROWTH AND NUTRIENT UPTAKE OF TWO EPHEMERAL PLANTS [J]. Chin J Plan Ecolo, 2008, 32(3): 648-653.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Hong Jian Ling-cheng Sun Long-hua. The Roles of the Cold-Resister for Accelerating the Growth and Development, and the Cold-Stability of the Tissue and Cell Structure of Plant Leaves[J]. Chin Bull Bot, 1994, 11(特辑): 163 -167 .
[2] OU Zhi-Ying PENG Chang-LianLIN Gui-Zhu WEN Xue. The Characters and Mechanism of Photooxidation Tolerance in Leaves of Peiai64S/E32, a Super High-yielding Hybrid Rice (Oryza sativa L.)[J]. Chin Bull Bot, 2003, 20(05): 558 -564 .
[3] Lubin Li;Xiaojun Guo;Zhenhua Peng;Guanshui Liu;Hongshui Yuan;Baocheng Zhu;Kai Yang*. Effect of the Quantity of AFLP Primer Combinations on Accurately Identifying Bamboo Genetic Relationships[J]. Chin Bull Bot, 2008, 25(04): 449 -454 .
[4] Hong Jian-ming;Yin Li-ping and Qiu Ze-sheng. Progress of Genetic Engineering for Plant Diseases Resistance[J]. Chin Bull Bot, 1997, 14(03): 40 -46 .
[5] Yi Tian;Xinzhong Zhang;Zhihong Zhang;Peihua Cong*;Guodong Kang . Analysis of Non-gel Sieving Capillary Electrophoresis in Protein Changes Pattern in Development Phase Shift in Apple[J]. Chin Bull Bot, 2008, 25(05): 585 -590 .
[6] Xiaobo Qin;Jihai Gao;Ying Xu*;Jinping Zhang;Caixia Shao;Sha Lin;Shuwen Zhang;Luding Jiang;Yueqin Li;Fang Chen . Isolation of Curcin Promoter from Jatropha curcas and Analysis in Transgenic Tobacco Plants[J]. Chin Bull Bot, 2008, 25(04): 407 -414 .
[7] Huixia Yang;Yiping Tong;Daowen Wang . Latest Advances in Understanding the Molecular Genetic Mechanism of Low Phosphate Responses in Arabidopsis thaliana[J]. Chin Bull Bot, 2007, 24(06): 726 -734 .
[8] Yun Zhu Meng Wang Zhiwei Jia Yun Lian Ying Jin Guoying Wang . An Effective Method for Extracting Total RNA from Young Ears of Maize[J]. Chin Bull Bot, 2007, 24(05): 624 -628 .
[9] Zhili Zhang Yun Yang Kuancan Liu Huosheng Su. A Rapid and Efficient Protocol for Total RNA Isolation from Latex of Hevea brasiliensis[J]. Chin Bull Bot, 2007, 24(04): 516 -520 .
[10] Ding Bing- yang;He Yao-hua;Miao Jing and Huang Tao. The Germinating Experiment of the Seeds of Rhododendromn huadingense[J]. Chin Bull Bot, 1997, 14(01): 53 -54 .