Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (8): 788-797.DOI: 10.17521/cjpe.2016.0003
• Research Articles • Previous Articles Next Articles
Ling HAN, Cheng-Zhang ZHAO*(), Ting XU, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG
Online:
2016-08-10
Published:
2016-08-23
Contact:
Cheng-Zhang ZHAO
Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG. Trade-off between leaf size and vein density of Achnatherum splendens in Zhangye wetland[J]. Chin J Plant Ecol, 2016, 40(8): 788-797.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0003
密度 Density | 株高 Plant high (cm) | 分枝数 Twig number | Pn (μmol CO2·m-2·s-1) | Tr (mmol H2O·m-2·s-1) | PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|
> 12 bundle·m-2 (I) | 161.00 ± 10.24a | 113.33 ± 5.29d | 13.20 ± 0.12c | 6.45 ± 0.02c | 636.30 ± 14.18d |
8-12 bundle·m-2 (II) | 149.67 ± 8.62b | 203.67 ± 12.34b | 13.83 ± 0.17a | 6.58 ± 0.09a | 839.20 ± 27.95c |
4-8 bundle·m-2 (III) | 140.34 ± 7.50b | 273.33 ± 15.83a | 14.12 ± 0.18a | 6.67 ± 0.10a | 918.80 ± 36.94b |
<4 bundle·m-2 (IV) | 130.67 ± 5.56c | 165.33 ± 11.90c | 13.77 ± 0.13b | 6.53 ± 0.03b | 1 105.10 ± 40.62a |
Table 1 Photosynthetic physiological and biological characteristics of Achnatherum splendens under different densities (mean ± SE)
密度 Density | 株高 Plant high (cm) | 分枝数 Twig number | Pn (μmol CO2·m-2·s-1) | Tr (mmol H2O·m-2·s-1) | PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|
> 12 bundle·m-2 (I) | 161.00 ± 10.24a | 113.33 ± 5.29d | 13.20 ± 0.12c | 6.45 ± 0.02c | 636.30 ± 14.18d |
8-12 bundle·m-2 (II) | 149.67 ± 8.62b | 203.67 ± 12.34b | 13.83 ± 0.17a | 6.58 ± 0.09a | 839.20 ± 27.95c |
4-8 bundle·m-2 (III) | 140.34 ± 7.50b | 273.33 ± 15.83a | 14.12 ± 0.18a | 6.67 ± 0.10a | 918.80 ± 36.94b |
<4 bundle·m-2 (IV) | 130.67 ± 5.56c | 165.33 ± 11.90c | 13.77 ± 0.13b | 6.53 ± 0.03b | 1 105.10 ± 40.62a |
Fig. 1 Change of leaf morphological traits and soil physical and chemical properties of Achnatherum splendens on different densities (mean ± SE). Different lowercase letters indicate significant differences of different density treatments (p < 0.05). I, high density (>12 bundle·m-2); II, medium density (8-12 bundle·m-2); III, medium density (4-8 bundle·m-2); IV, low density (< 4 bundle·m-2).
Fig. 2 Relationship between leaf area and vein density of Achnatherum splendens under different levels of densities. I, high density (>12 bundle·m-2); II, medium density (8-12 bundle·m-2); III, medium density (4-8 bundle·m-2); IV, low density (<4 bundle·m-2).
Fig. 3 Relationship between leaf dry mass and vein density of Achnatherum splendens under different levels of densities. I, high density (>12 bundle·m-2); II, medium density (8-12 bundle·m-2); III, medium density (4-8 bundle·m-2); IV, low density (<4 bundle·m-2).
[1] | Berlyn GP, Miksche JP (1976). Botanical Microtechnique and Cytochemistry. Iowa State University Press, Ames, USA. |
[2] | Brodribb TJ, Feild TS, Sack L (2010). Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology, 37, 488-498. |
[3] | Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448. |
[4] | Castro-Díez P, Puyravaud JP, Cornelissen JHC (2000). Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia, 124, 476-486. |
[5] | Cheplick GP (2006). A modular approach to biomass allocation in an invasive annual (Microstegium vimineum; Poaceae). American Journal of Botany, 93, 539-545. |
[6] | Cipollini DF, Bergelson J (2001). Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus. Journal of Chemical Ecology, 27, 593-610. |
[7] | Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG (2014). Variations with slope in stem and leaf traits of Melica przewalskyi in alpine grassland. Chinese Journal of Plant Ecology, 38, 1307-1314. (in English with Chinese abstract)[党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚 (2014). 高寒草地甘肃臭草茎-叶性状的坡度差异性. 植物生态学报, 38, 1307-1314] |
[8] | Falster DS, Warton DI, Wright IJ (. |
[9] | Funk JL, Vitousek PM (2007). Resource-use efficiency and plant invasion in low-resource systems. Nature, 446, 1079-1081. |
[10] | Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions. Chinese Journal of Plant Ecology, 39, 300-308. (in English with Chinese abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.] |
[11] | Harvey PH, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK. |
[12] | Japhet W, Zhou DW, Zhang HX, Zhang HX, Yu T (2009). Evidence of phenotypic plasticity in the response of Fagopyrum esculentum to population density and sowing date. Journal of Plant Biology, 52, 303-311. |
[13] | Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032. (in Chinese with English abstract)[金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.] |
[14] | Li L, Zeng H, Guo DL (2013). Leaf venation functional traits and their ecological significance. Chinese Journal of Plant Ecology, 37, 691-698. (in English with Chinese abstract)[李乐, 曾辉, 郭大立 (2013). 叶脉网络功能性状及其生态学意义. 植物生态学报, 37, 691-698.] |
[15] | Li L, Zhou DW (2011). Density-dependent regulation of above- and below-ground modules in Allium cepa var. proliferum populations. Chinese Journal of Plant Ecology, 35, 284-293. (in English with Chinese abstract)[黎磊, 周道玮 (2011). 红葱种群地上和地下构件的密度制约调节. 植物生态学报, 35, 284-293.] |
[16] | Liu MH, Xin ZM, Xu J, Sun F, Dou LJ, Li YH (2013). Influence of leaf size of plant on leaf transpiration and temperature in arid regions. Chinese Journal of Plant Ecology, 37, 436-442. (in English with Chinese abstract)[刘明虎, 辛智鸣, 徐军, 孙非, 窦立军, 李永华 (2013). 干旱区植物叶片大小对叶表面蒸腾及叶温的影响. 植物生态学报, 37, 436-442.] |
[17] | Mcdonald PG, Fonseca CR, Overton JM, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57. |
[18] | Nardini A, Raimondo F, Lo Gullo MA (2010). Leafminers help us understand leaf hydraulic design. Plant, Cell & Environment, 33, 1091-1100. |
[19] | Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007). “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 104, 8891-8896. |
[20] | Pitman EJG (1939). A note on normal correlation. Biometrika, 31, 9-12. |
[21] | Reich PB, Cornelissen H (2014). The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 102, 275-301. |
[22] | Ren QJ, Li HL, Bu HY (2015). Comparison of physiological and leaf morphological traits for photosynthesis of the 51 plant species in the Maqu alpine swamp meadow. Chinese Journal of Plant Ecology, 39, 593-603.[任青吉, 李宏林, 卜海燕 (2015). 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较. 植物生态学报, 39, 593-603.] |
[23] | Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 87, 483-491. |
[24] | Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983-1000. |
[25] | Sack L, Scoffoni C, McKown AD (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 3, 837. |
[26] | Shi YC, Zhao CZ, Song QH, Du J, Chen NJ, Wang JW (2015). Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou. Chinese Journal of Plant Ecology, 39, 362-370. (in English with Chinese abstract)[史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟 (2015). 兰州北山刺槐枝叶性状的坡向差异性. 植物生态学报, 39, 362-370.] |
[27] | Silvertown J, Charlesworth D (2001). Introduction to Plant Population Biology. Blackwell, London. |
[28] | Sun SJ, Li FL, Bao WK (2015). Advances on construction of leaf venation system and its significance of phylogeny. Journal of Tropical and Subtropical Botany, 23, 353-360. (in English with Chinese abstract)[孙素静, 李芳兰, 包维楷 (2015). 叶脉网络系统的构建和系统学意义研究进展. 热带亚热带植物学报, 23, 353-360.] |
[29] | Uhl D, Mosbrugger V (1999). Leaf venation density as a climate and environmental proxy: A critical review and new data. Palaeoecology, 149, 15-26. |
[30] | Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216. (in Chinese with English abstract)[王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.] |
[31] | Wang J, Cheng JM, Wan HE, Fang F (2004). Study on soil moisture characteristics and water use efficiency of Achnatherum splendens grassland in Loess Plateau. Arid Meteorology, 22, 51-55. |
[32] | Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174. |
[33] | Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291. |
[34] | Weiner J (2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215. |
[35] | West GB, Brown JH, Enquist BJ (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122-126. |
[36] | Westoby M, Falster DS, Moles AT (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology Systematics, 33, 125-159. |
[37] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The world- wide leaf economics spectrum. Nature, 428, 821-827. |
[38] | Wu GL, Chen M, Du GZ (2008). Effects of nutrient and lighton seedlings morphological plasticity of four Saussurea species with different ecological breadth. Chinese Journal of Applied Ecology, 19, 1708-1713. (in Chinese with English abstract)[武高林, 陈敏, 杜国祯 (2008). 营养和光照对不同生态幅风毛菊属植物幼苗形态可塑性的影响. 应用生态学报, 19, 1708-1713.] |
[39] | Wu HW, Li XY, Jing ZY, Li J, Zheng XR, Zhao DZ (2015). Variations in water use for Achnatherum splendens in Lake Qinghai watershed based on δD and δ18O. Acta Ecologica Sinica, 35, 8174-8183. (in English with Chinese abstract)[吴华武, 李小雁, 蒋志云, 李静, 郑肖然, 赵殿智 (2015). 基于δD、δ18O的青海湖流域芨芨草水分利用来源变化研究. 生态学报, 35, 8174-8183.] |
[40] | Wu ZS, Guo BZ (1989). Flora Repubulicae Popularis Sinicae. (Tomus 9). Science Press, Beijing. 1087. (in Chinese)[吴征镒, 郭本兆 (1989). 中国植物志(第九卷). 科学出版社, 北京. 1087.] |
[41] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change. Chinese Journal of Ecology, 31, 702-713. (in English with Chinese abstract)[杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] |
[42] | Zhan YF, Ma L, Li XY, Teng YF, Lu YF, Tian XP (2012). Niches of dominant populations of wetland plants in Zhangye section of Heihe River. Journal of Northeast Forestry University, 40(10), 61-66. (in English with Chinese abstract)[占玉芳, 马力, 李小燕, 滕玉风, 鲁延芳, 田晓萍 (2012). 黑河流域(张掖段)湿地植物群落优势种群生态位. 东北林业大学学报, 40(10), 61-66.] |
[43] | Zhang MJ, Liu MS, Xu C, Chi T, Hong C (2012). Spatial pattern responses of Achnatherum splendens to environmental stress in different density levels. Acta Ecologica Sinica, 32, 595-604. (in English with Chinese abstract)[张明娟, 刘茂松, 徐驰, 池婷, 洪超 (2012). 不同密度条件下芨芨草空间格局对环境胁迫的响应. 生态学报, 32, 595-604.] |
[44] | Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H (2012). Evolutionary association of stomatal traits with leaf vein- density in Paphiopedilum, Orchidaceae. PLOS ONE, 7, e40080. doi: 10.1371/journal.pone.0040080. |
[45] | Zhang YF, Wang W, Liang CZ, Wang LX, Pei H, Wang CY, Wang WF (2012). Suitable habitat for the Achnatherum splendens community in typical steppe region of Inner Mongolia. Acta Ecologica Sinica, 32, 1193-1201. (in English with Chinese abstract)[张翼飞, 王炜, 梁存柱, 王立新, 裴浩, 王成燕, 王伟峰 (2012). 内蒙古典型草原区芨芨草群落适生生境. 生态学报, 32, 1193-1201.] |
[46] | Zhang YQ, Liang CZ, Wang W, Wang LX, Peng JT, Yan JC, Jia JC (2010). Soil salinity and Achnatherum splendens distribution. Chinese Journal of Ecology, 29, 2438-2443. (in English with Chinese abstract)[张雅琼, 梁存柱, 王炜, 王立新, 彭江涛, 闫建成, 贾成朕 (2010). 芨芨草群落土壤盐分特征. 生态学杂志, 29, 2438-2443.] |
[47] | Zhou HH, Li WH (2105). Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratica. Chinese Journal of Plant Ecology, 39, 81-91. (in English with Chinese abstract)[周洪华, 李卫红 (2015). 胡杨木质部水分传导对盐胁迫的响应与适应. 植物生态学报, 39, 81-91.] |
[1] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[2] | LI Yao-Qi, WANG Zhi-Heng. Functional biogeography of plants: research progresses and challenges [J]. Chin J Plant Ecol, 2023, 47(2): 145-169. |
[3] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[4] | CHENG Si-Qi, JIANG Feng, JIN Guang-Ze. Leaf economics spectrum of broadleaved seedlings and its relationship with defense traits in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 678-686. |
[5] | ZHAI Jiang-Wei, LIN Xin-Hui, WU Rui-Zhe, XU Yi-Xin, JIN Hao-Hao, JIN Guang-Ze, LIU Zhi-Li. Trade-offs between petiole and lamina of different functional plants in Xiao Hinggan Mountains, China [J]. Chin J Plant Ecol, 2022, 46(6): 700-711. |
[6] | WANG Guang-Ya, CHEN Bing-Hua, HUANG Yu-Chen, JIN Guang-Ze, LIU Zhi-Li. Effects of growing position on leaflet trait variations and its correlations in Fraxinus mandshurica [J]. Chin J Plant Ecol, 2022, 46(6): 712-721. |
[7] | HAN Xu-Li, ZHAO Ming-Shui, WANG Zhong-Yuan, YE Lin-Feng, LU Shi-Tong, CHEN Sen, LI Yan, XIE Jiang-Bo. Adaptation of xylem structure and function of three gymnosperms to different habitats [J]. Chin J Plant Ecol, 2022, 46(4): 440-450. |
[8] | QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(2): 208-219. |
[9] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
[10] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[11] | DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land [J]. Chin J Plant Ecol, 2022, 46(11): 1376-1387. |
[12] | LIU Chao, LI Ping, WU Yun-Tao, PAN Sheng-Nan, JIA Zhou, LIU Ling-Li. Estimation of grassland aboveground biomass using digital photograph and canopy structure measurements [J]. Chin J Plant Ecol, 2022, 46(10): 1280-1288. |
[13] | LIU Bing-Bing, WEI Jian-Xin, HU Tian-Yu, YANG Qiu-Li, LIU Xiao-Qiang, WU Fa-Yun, SU Yan-Jun, GUO Qing-Hua. Validation and uncertainty analysis of satellite remote sensing products for monitoring China’s forest ecosystems—Based on massive UAV LiDAR data [J]. Chin J Plant Ecol, 2022, 46(10): 1305-1316. |
[14] | FANG Jing, YE Lin-Feng, CHEN Sen, LU Shi-Tong, PAN Tian-Tian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats [J]. Chin J Plant Ecol, 2021, 45(6): 650-658. |
[15] | NI Ming-Yuan, ARITSARA Amy Ny Aina, WANG Yong-Qiang, HUANG Dong-Liu, XIANG Wei, WAN Chun-Yan, ZHU Shi-Dan. Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical karst region [J]. Chin J Plant Ecol, 2021, 45(4): 394-403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn