Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (9): 925-932.doi: 10.17521/cjpe.2015.0417

• Research Articles • Previous Articles     Next Articles

Effect of different species of endophytes on fungal disease resistance of Achnatherum sibiricum

Yi NIU, Yuan GAO, Ge-Ping LI, An-Zhi REN*(), Yu-Bao GAO   

  1. College of Life Sciences, Nankai University, Tianjin 300071, China
  • Received:2015-11-22 Accepted:2016-04-22 Online:2016-09-29 Published:2016-09-10
  • Contact: An-Zhi REN E-mail:renanzhi@nankai.edu.cn

Abstract:

AimsAchnatherum sibiricum, a native grass species, is widely distributed in the steppe of Nei Mongol, China. In this study, three endophytic fungi, i.e., Neotyphodium sibiricum, N. gansuensis and Epichloë gansuensis, were isolated from A. sibiricum and examined the effect of the endophytes on the resistance of A. sibiricum to fungal disease.
Methods Three fungi: Curvularia lunata, Bipolaris sorokiniana and Cladosporium sp. were chosen as the target pathogens. Three experiments were carried out to evaluate the effects of endophytic inoculation of A. sibiricum on its pathogen resistance: 1) endophye in vitro, 2) inoculated detached leaves and 3) intact plants. They were infected with the three pathogens above mentioned, separately. Seven days later, inhibition rates, the number of lesions, lesion length and concentration of spores were measured.
Important findings The results showed that all endophytes significantly reduced the growth of pathogens fungi in vitro, and N. sibiricums had the strongest effect: its bacteriostasis rate to Curvularia lunata, B. sorokiniana and Cladosporium sp. were 47.8%, 40.1% and 39.4%, respectively. Culture filtration of three endophytes also effectively reduced pathogen spore germination, in which N. gansuensis showed the strongest impact. The germination rates of Curvularia lunata, B. sorokiniana and Cladosporium sp. were only 9.8%, 8.7% and 8.5%, respectively. Neotyphodium sibiricum and N. gansuensis could reduce lesion number and spore concentration of detached host leaves after the pathogens inoculation. Epichloë gansuensis reduced lesion number of detached leaves after inoculation with Curvularia lunata and Cladosporium sp., and decreased spore concentration of the pathogens fungi of Cladosporium sp. In the intact leaves, three endophytes reduced lesion number, lesion length and spore concentration as well after inoculation of the pathogens with those infected with N. sibiricum showing the strongest resistance, while with Epichloë gansuensis, the weakest resistance.

Key words: fungal pathogen, endophyte, Achnatherum sibiricum, pathogens-fungi resistance

Table 1

Two-way ANOVA for pathogens fungi resistance of different morphotypes of endophytes"

抑菌率
Inhibition rate (%)
平均孢子萌发率
Average spore germination rate (%)
F p F p
E 131.323 0.000 643.791 0.000
P 0.837 0.441 12.453 0.000
E × P 14.210 0.010 5.788 0.000

Fig. 1

Mean inhibition rate of different morphotypes of endophytes on three species of pathogens fungi (mean ± SE). Different small letters indicate significant difference (p < 0.05). Eg, Epichloë gansuensis; Ng, Neotyphodium gansuensis; Ns, Neotyphodium sibiricum. "

Fig. 2

Effect of culture filtrate on germination rate of the pathogenic fungi spores (mean ± SE). CK, control; Eg, Epi- chloë gansuensis; Ng, Neotyphodium gansuensis; Ns, Neotyphodium sibiricum. Different small letters indicate significant difference (p < 0.05)."

Fig. 3

Influence of culture filtrate of Neotyphodium gansuensis on spore germination of Bipolaris sorokiniana. Bipolaris sorokiniana spore germination is inhibited in the left picture, germination rate is low."

Table 2

Two-way ANOVA for three resistances of pathogenic fungi of intact plants infected different endophyte"

离体实验 Detached experiment 在体实验 Intact experiment
病斑数
Mean number of
lesions
病斑长度
Mean length of
lesions
孢子浓度
Spore concentration of
pathogens fungi
病斑数
Mean number of
lesions
病斑长度
Mean length of
lesions
孢子浓度
Spore concentration of
pathogens fungi
F P F P F P F P F P F P
E 8.94 0.000 6.65 0.001 107.20 0.000 11.25 0.000 5.14 0.011 17.90 0.000
P 109.50 0.000 485.30 0.000 677.50 0.000 20.90 0.000 37.57 0.000 66.43 0.000
E × P 3.21 0.010 4.05 0.002 17.32 0.000 9.25 0.000 14.70 0.000 4.28 0.000

Fig. 4

Mean number and length of lesions and spore concentration on detached leaves of Achnatherum sibiricum after inoculation with pathogens-fungi (mean ± SE). Different small letters indicate significant difference (p < 0.05). CK, control; Eg, Epichloë gansuensis; Ng, Neotyphodium gansuensis; Ns, Neotyphodium sibiricum."

Fig. 5

Mean number and length of lesions and spore concentra- tion on intact leaves of A. sibiricum after inoculation with pathogens-fungi (mean ± SE). Different small letters indicate significant difference (p < 0.05). CK, control; Eg, Epichloë gansuensis; Ng, Neotyphodium gansuensis; Ns, Neotyphodium sibiricum."

1 Bonos SA, Wilson MM, Meyer WA, Funk CR (2005). Suppression of red thread in fine fescues through endophyte- mediated resistance.Applied Turfgrass Science, doi:10.1094/ATS-2005-0725-01-RS.
2 Brem D, Leuchtmann A (2001). Epichloëgrass endophytes increase herbivore resistance in the woodland grass Brachypodium sylvaticum.Oecologia, 126, 522-530.
3 Burpee LL, Bouton JH (1993). Effect of eradication of the endophyte Acremonium coenophialum on epidemics of Rhizoctonia blight in tall fescue.Plant Disease, 77, 157-159.
4 Carroll G (1988). Fungal endophytes in stems and leaves: From latent pathogen to mutualistic symbiont. Ecology, 69, 2-9.
5 Cassandra LS, Thomas RG (2015). Endophytic association of the pine pathogen Fusarium circinatum with corn (Zea mays). Fungal Ecology, 13, 120-129.
6 Cheplick GP, Faeth SH (2009). Ecology and Evolution of the Grass-endophyte Symbiosis. Oxford University Press, Oxford, UK.
7 Christensen MJ (1996). Antifungal activity in grasses infected with Acre monium and Epichloë endophytes. Australasian Plant Pathology, 25(3), 186-191.
8 Clay K, Schardl C (2002). Evolutionary origins and ecological consequences of endophyte symbiosis with grasses.The American Naturalist, 160, 99-127.
9 Ewald PW (1987). Transmission modes and evolution of the parasitism-mutualism continuum .Annals of the New York Academy of Sciences, 503, 295-306.
10 Ewald PW (1994). Evolution of Infectious Disease. Oxford University Press, Oxford, UK.
11 Fletcher LR (1999). “Non-toxic” endophytes in ryegrass and their effects on livestock health and production. In: Woodfield DR, Matthew C eds. Ryegrass Endophyte: An Essential New Zealand Symbiosis. Grassland Research and Practice Series No. 7. New Zealand Grassland Association, Palmerston North. 133-139.
12 Iannone L, Pinget A, Nagabhyru P (2012). Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass.Grass and Forage Science, 67, 382-390.
13 Krauss J, Harri SA, Bush L, Husi R, Bigler L, Power SA, Muller C (2007). Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies.Functional Ecology, 21, 107-116.
14 Leuchtmann A, Bacon CW, Schardl CL (2014). Nomenclatural realignment of Neotyphodium species with genus Epichloë.Mycologia, 106, 202-215.
15 Leuchtmann A, Oberhofer M (2013). The Epichloë endophytes associated with the woodland grass Hordelymus europaeus including four new taxa.Mycologia, 105, 1315-1324.
16 Leuchtmann A, Schmidt D, Bush LP (2000). Different levels of protective alkaloids in grasses with stroma-forming and seed-transmitted Epichloe/Neotyphodium endophytes.Journal of Chemical Ecology, 26, 1025-1036.
17 Li X, Han R, Ren AZ, Gao YB (2010). Using high-temperature treatment to construct endophyte-free Achnatherum sibiricum.Microbiology China, 37, 1395-1400. (in Chinese with English abstract)[李夏, 韩荣, 任安芝, 高玉葆 (2000). 高温处理构建不感染内生真菌羽茅种群的方法探讨. 微生物学通报, 37, 1395-1400.]
18 Liu XG, Gao KX, Gu JC, Du JL, Tang XG (1999). Testing on the antagonism of the dominant of endophytic fungi from Populus tomentosa, Chaetomium ND35 in the laboratory.Scientia Silvae Sinicae, 35, 57-62. (in Chinese with English abstract)[刘晓光, 高克祥, 谷建才, 杜建玲, 唐秀光 (1999). 毛白杨内生菌优势种毛壳ND35室内拮抗作用的研究. 林业科学, 35, 57-62.]
19 Nan ZB, Li CJ (2000). Neotyphodium in native grasses in China and observations on endophyte/host interaction. Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium. Soest, Germany. 41-50.
20 Niones JT, Takemoto D (2014). An isolate of Epichloë festucae, an endophytic fungus of temperate grasses, has growth inhibitory activity against selected grass pathogens.Journal of General Plant Pathology, 80, 337-347.
21 Perez LI, Gundel PE, Ghersa CM, Omacini M (2013). Family issues: Fungal endophyte protects host grass from the closely related pathogen Claviceps purpurea.Fungal Ecology, 6, 379-386.
22 Reddy MN, Faeth SH (2010). Damping-off of Festuca arizonica caused by Fusarium.American Journal of Plant Sciences, 1, 104-105.
23 Siegel MR, Latch GCM (1991). Expression of antifungal activity in agar culture by isolates of grass endophytes.Mycologia, 83, 529-537.
24 Sullivan TJ, Faeth SH (2004). Gene flow in the endophyte Neotyphodium and implications for coevolution with Festuca arizonica.Molecular Ecology, 13, 649-656.
25 Vignale MV, Astiz-Gasso MM, Novas MV, Iannone LJ (2013). Epichloidendophytes confer resistance to the smut Ustilago Bullata in the wild grass Bromus auleticus (Trin.).Biological Control, 67, 1-7.
26 Wali PR, Helander M, Nissinen O, Saikkonen K (2006). Susceptibility of endophyte-infected grasses to winter pathogens (snow molds).Canadian Journal of Botany, 84, 1043-1051.
27 Wang XY, Zhou Y, Ren AZ, Gao YB (2014). Effect of endophyte infection on fungal disease resistance of Leymuschinensis.Acta Ecologica Sinica, 34, 6789-6796. (in Chinese with English abstract)[王欣禹, 周勇, 任安芝, 高玉葆 (2014). 内生真菌感染对宿主羊草抗病性的影响. 生态学报, 34, 6789-6796.]
28 Xia C, Zhang X, Christensen MJ, Nan ZB, Li CJ (2015). Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians).Fungal Ecology, 16, 26-33.
29 Xie FX, Ren AZ, Wang YH, Lin F, Gao YB (2008). A comparative study of the inhibitive effect of fungal endophytes on turf grass fungus pathogens.Acta Ecologica Sinica, 28, 3913-3920. (in Chinese with English abstract)[谢凤行, 任安芝, 王银华, 林枫, 高玉葆 (2008). 内生真菌对草坪植物病原真菌抑制作用的比较. 生态学报, 28, 3913-3920.]
30 Zhang GM, Wang ZF, Liu YR, Zhang XG, Jiang JM (1995). Study on selectivity toxicity to tobacco of cultural filtrates from pathogen of tobacco black death.Journal of Shandong Agricultural University, 26, 131-136. (in Chinese with English abstract)[张广民, 王智发, 刘延荣, 张修国, 姜金明 (1995). 烟草低头黑病菌培养滤液对烟草毒性及作用特性的研究. 山东农业大学学报, 26, 131-136.]
[1] WU Man, LI Juan-Juan, LIU Jin-Ming, REN An-Zhi, GAO Yu-Bao. Effects of Epichloë infection on the diversity and productivity of Achnatherum sibiricum community under various nutrient and mowing conditions [J]. Chin J Plant Ecol, 2019, 43(2): 85-93.
[2] LI Chun-Jie, YAO Xiang, NAN Zhi-Biao. Advances in research of Achnatherum inebrians-Epichloë endophyte symbionts [J]. Chin J Plan Ecolo, 2018, 42(8): 793-805.
[3] Qian SUN, Zi-Ke XUE, Lin-Lin XIE, Xue-Li HE, Li-Li ZHAO. Diversity of dark septate endophyte in the roots of Ammopiptanthus mongolicus and its companion plants [J]. Chin J Plan Ecolo, 2017, 41(7): 729-737.
[4] SUN Qian,HE Chao,HE Xue-Li,ZHAO Li-Li. Colonization of dark septate endophytes in roots of Ammopiptanthus mongolicus and its associated plants as influenced by soil properties [J]. Chin J Plan Ecolo, 2015, 39(9): 878-889.
[5] LIU Hui, CHEN Wei, ZHOU Yong, LI Xia, REN An-Zhi, GAO Yu-Bao. Effects of endophyte and arbuscular mycorrhizal fungi on growth of Leymus chinensis [J]. Chin J Plan Ecolo, 2015, 39(5): 477-485.
[6] YAN Jiao, HE Xue-Li, ZHANG Ya-Juan, XU Wei, ZHANG Juan, and ZHAO Li-Li. Colonization of arbuscular mycorrhizal fungi and dark septate endophytes in roots of desert Salix psammophila [J]. Chin J Plan Ecolo, 2014, 38(9): 949-958.
[7] ZHOU Yong, ZHENG Lu-Yu, ZHU Min-Jie, LI Xia, REN An-Zhi, and GAO Yu-Bao. Effects of fungal endophyte infection on soil properties and microbial communities in the host grass habitat [J]. Chin J Plan Ecolo, 2014, 38(1): 54-61.
[8] ZHANG Ye, LIAO Yi, CHEN Shang-Wu, MA Hui-Qin. Isolation, preliminary identification and nitrogen-fixation activity of endophytes from roots of one- and two-year-old Xanthoceras sorbifolia plants [J]. Chin J Plan Ecolo, 2010, 34(7): 839-844.
[9] WEI Yu-Kun, GAO Yu-Bao. REVIEW OF THE DIVERSITY OF ENDOPHYTE GENETICS AND SYMBIOTIC INTERACTIONS WITH GRASSES [J]. Chin J Plan Ecolo, 2008, 32(2): 512-520.
[10] Yongcheng Li;Wenyi Tao*. Effect of Endophytic Fungus Culture Broth on the Growth and Paclitaxel Accumulation of Taxus cuspidata Cells [J]. Chin Bull Bot, 2008, 25(05): 552-558.
[11] WEI Yu-Kun, GAO Yu-Bao, LI Chuan, XU Hua, Ren An-Zhi. GENETIC DIVERSITY OF NEOTYPHODIUM ENDOPHYTES ISOLATED FROM ACHNATHERUM SIBIRICUM POPULATIONS IN MID_ AND EASTERN INNER MONGOLIA STEPPE, CHINA [J]. Chin J Plan Ecolo, 2006, 30(4): 640-649.
[12] WANG Jin-Long GAO Yu-Bao② REN An-Zhi WANG Wei ZHAO Nian-Xi. Effects of Endophyte Infection on Photosynthesis, Transpiration and Biomass of Lolium perenne L. at DifferentNitrogen Levels [J]. Chin Bull Bot, 2004, 21(05): 539-546.
[13] LIANG Yu, CHEN Shi-Ping, GAO Yu-Bao, REN An-Zhi. Effects of Endophyte Infection on the Growth of Lolium perenne L.Under drought Stress [J]. Chin J Plan Ecolo, 2002, 26(5): 621-626.
[14] REN An-Zhi, GAO Yu-Bao, GAO Wen-Sheng. Effects of Endophyte Infection on Seed Germination, Seedling Growth and Osmotic Stress Resistance of Perennial Ryegrass (Lolium perenne L.) [J]. Chin J Plan Ecolo, 2002, 26(4): 420-426.
[15] LIANG Yu, GAO Yu-Bao, CHEN Shi-Ping, REN An-Zhi. Effects of Endophyte Infection on Photosynthesis, Transpiration and Water Use Efficiency of Lolium perenne L. Under Drought Stress [J]. Chin J Plan Ecolo, 2001, 25(5): 537-543.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] KONG Ling-Shao, WANG Qi-Bing, GUO Ke. Characteristics and Quantitative Analysis of Elements in Plants in Alashan Area, Nei Mongol[J]. J Integr Plant Biol, 2001, 43(5): 534 -540 .
[2] Zhigang Jiang. Non-detrimental Findings should be enhanced for the management of international trade in endangered species of wild fauna and flora[J]. Biodiv Sci, 2011, 19(5): 495 -496 .
[3] HE Qing-Hai, YANG Shao-Zong, LI Yin-Gang, SHEN Xin, LIU Xin-Hong. Phenotypic variations in seed and fruit traits of Liquidambar formosana populations[J]. Chin J Plan Ecolo, 2018, 42(7): 752 -763 .
[4] Qiaoling Zhu, Jiayi Leng, Qingsheng Ye. Photosynthetic Characteristics of Dendrobium williamsonii and D. longicornu[J]. Chin Bull Bot, 2013, 48(2): 151 -159 .
[5] Yue-Zhi PAN, Xun GONG, Yang YANG. Phylogenetic position of the genus Dobinea: Evidence from nucleotide sequences of the chloroplast gene rbcL and the nuclear ribosomal ITS region
[J]. J Syst Evol, 2008, 46(4): 586 -594 .
[6] YE Zi-Piao, YU Qiang. MECHANISM MODEL OF STOMATAL CONDUCTANCE[J]. Chin J Plan Ecolo, 2009, 33(4): 772 -782 .
[7] Shanshan Tan, Renren Wang, Xiaoling Gong, Jiayao Cai, Guochun Shen. Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama[J]. Biodiv Sci, 2017, 25(10): 1054 -1064 .
[8] Chun Woon-Young. New Species of Machilus from South China[J]. J Syst Evol, 1952, 2(3): 163 -171 .
[9] ZHU Yu-Ping, ZHANG Zhi-Yun. Stachyurus himalaicus ssp.purpureus,a new subspecies of Stachyuraceae from eastern Himalaya[J]. J Syst Evol, 2004, 42(5): 460 -463 .
[10] Fang Ding. Some new taxa of Zingiberaceae from Kwangsi[J]. J Syst Evol, 1978, 16(3): 47 -53 .