Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (8): 810-826.doi: 10.17521/cjpe.2015.0445

• Research Articles • Previous Articles     Next Articles

Water relations and photosynthetic characteristics in different functional groups of epiphytic lichens in montane forest of Ailaoshan

Tao HU1,2, Su LI1, Shuai LIU1,2, Wen-Yao LIU1,*, Xi CHEN1,2, Liang SONG1, Quan CHEN1,2   

  1. 1Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China

    2University of Chinese Academy of Sciences, Beijing 100049, China
  • Online:2016-08-23 Published:2016-08-10
  • Contact: Wen-Yao LIU

Abstract:

Aims There are abundant epiphytic lichens in the tropical and subtropical montane forest ecosystems, which are important components of forest canopy and play a vital role in biodiversity conservation, environmental monitoring and nutrient cycling. In accordance with photobiont type, growth form and reproductive strategy, the epiphytic lichens can be divided into different functional groups, with different distribution patterns. In this study we aim to explain this phenomenon from the perspective of physiological ecology. Methods The maximum water content, water loss curves, photosynthetic water and light response curves were determined in four epiphytic lichen functional groups, including cyanolichens, fruticose lichens, broadly lobed foliose lichens and narrowly lobed foliose lichens. Important findings The functional characteristics of epiphytic lichens influence their maximum water-holding capacity and rate of water loss. The cyanolichens have higher maximum water content, while the fruticose lichens have a faster water loss. The cyanolichens that are widely distributed in the moist habitats require particularly high moisture for their photosynthetic activities; their optimal water content for photosynthesis is higher in comparison with other groups. They also have a low light compensation point and a high light saturation point, which explain the wide range of light intensity of the habitat. The fruticose lichens, widely distributed in the relatively arid habitats with high irradiance, have high light compensation point and light saturation point, and low optimum water content for photosynthesis. The broadly lobed foliose lichens and the narrowly lobed foliose lichens have a high light compensation point and light saturation point; they preferably occur in habitats with strong light.

Key words: epiphytic lichen, functional groups, water relation, photosynthesis, poikilohydry

Table 1

Classification of functional groups of epiphytic lichens"

功能群 Functional group 简称 Abbreviation 功能群特征 Functional traits
蓝藻地衣 Cyanolichens CYL 共生藻为蓝藻或包含蓝藻 With cyanobacteria
枝状地衣 Fruticose lichens FRL 枝状或灌丛状, 共生藻为绿藻 Fruticose, with green algae
阔叶地衣 Broadly lobed foliose lichens BFL 大型阔叶状, 共生藻为绿藻 Broadly lobed foliose, with green algae
狭叶地衣 Narrowly lobed foliose lichens NFL 小型或中型细叶状, 共生藻为绿藻 Narrowly lobed foliose, with green algae

Table 2

Water-holding and rate of water loss in different epiphytic lichens (mean ± SE)"

物种
Species
单位干质量持水量
Water-holding capacity per dry mass (n = 10)
最大含水量
Maximum water content (% dry mass)
T80
(h)
T50
(h)
T20
(h)
皮革肾岛衣 Nephromopsis pallescens 3.01 ± 0.09cd 308.8 0.59 1.77 3.78
针芽肺衣 Lobaria isidiophora 2.84 ± 0.16d 315.1 0.61 1.83 3.86
网肺衣 Lobaria retigera 3.76 ± 0.20bcd 373.1 0.63 1.87 3.82
猫耳衣 Leptogium menziesii 10.49 ± 0.49a 1 104.1 1.03 2.94 5.64
云南袋衣 Hypogymnia yunnanensis 5.01 ± 0.30abc 473.6 0.56 1.69 3.69
白绵腹衣 Anzia leucobatoides 5.70 ± 0.19ab 514.2 1.83 4.85 8.28
多花松萝 Usnea florida 3.22 ± 0.09cd 193.6 0.4 1.26 3.14
裂髓树花 Ramalina conduplicans 6.07 ± 0.18ab 449.2 0.48 1.48 3.41

Fig. 1

Relationship between water-holding capacity (WHC) and dry mass in different epiphytic lichens (n = 10)."

Fig. 2

Water release curves for different epiphytic lichens. A, Nephromopsis pallescens. B, Lobaria isidiophora. C, Lobaria retigera. D, Leptogium menziesii. E, Hypogymnia yunnanensis. F, Anzia leucobatoides. G, Usnea florida. H, Ramalina conduplicans. WC in graphs refers to water content. Different shapes of symbols represent different samples (n = 3-5)."

Fig. 3

Water content in different epiphytic lichens at different times during water loss. Hydration (%) refers to the percentage of maximum water content."

Fig. 4

Photosynthetic water response curves for different epiphytic lichens. A, Nephromopsis pallescens. B, Lobaria isidiophora. C, Lobaria retigera. D, Leptogium menziesii. E, Hypogymnia yunnanensis. F, Anzia leucobatoides. G, Usnea florida. H, Ramalina conduplicans. Pn and WC in graphs refer to net photosynthesis rate and water content, respectively. Different shapes of symbols represent different samples (n = 4, 5)."

Fig. 5

The relationship between optimal water content and maximum water content (A), the relationship between water compensation point and optimal water content (B), and the relationship between photosynthesis and water content in different epiphytic lichens (C). Photosynthesis is expressed as the percentage of max net photosynthesis."

Table 3

Optimal water content, water compensation point, and initial slope of water content-dependent net photosynthesis in different epiphytic lichens"

物种
Species
最适水分含量
Optimal water content (% dry mass)
水分补偿点
Water compensation point (% dry mass)
初始斜率
Initial slope
皮革肾岛衣 Nephromopsis pallescens 232.6 24.2 0.75
针芽肺衣 Lobaria isidiophora 119.0 16.0 2.11
网肺衣 Lobaria retigera 172.9 44.4 1.11
猫耳衣 Leptogium menziesii 419.5 16.3 0.50
云南袋衣 Hypogymnia yunnanensis 175.0 22.3 0.98
白绵腹衣 Anzia leucobatoides 298.9 19.7 0.64
多花松萝 Usnea florida 93.0 27.0 2.59
裂髓树花 Ramalina conduplicans 139.4 33.7 1.92

Fig. 6

Photosynthetic light response curves for different epiphytic lichens. A, Nephromopsis pallescens. B, Lobaria isidiophora. C, Lobaria retigera. D, Leptogium menziesii. E, Hypogymnia yunnanensis. F, Anzia leucobatoides. G, Usnea florida. H, Ramalina conduplicans. Pn and I in graphs refer to net photosynthesis and light intensity, respectively. Different shapes of symbols represent different samples (n = 4, 5)."

Table 4

Parameters of light response curves for different epiphytic lichens (mean ± SE, n = 5)"

物种
Species
光补偿点 LCP
(μmol·m-2·s-1)
光饱和点 LSP
(μmol·m-2·s-1)
最大净光合速率 Pnmax
(μmol·m-2·s-1)
暗呼吸速率 Rd
(μmol·m-2·s-1)
皮革肾岛衣 Nephromopsis pallescens 46.6 ± 2.3a 407.5 ± 14.6b 0.88 ± 0.03e 0.66 ± 0.04ab
针芽肺衣 Lobaria isidiophora 43.4 ± 2.6ab 466.4 ± 22.7b 1.77 ± 0.06c 0.83 ± 0.03a
网肺衣 Lobaria retigera 20.3 ± 2.2c 416.3 ± 25.4b 2.85 ± 0.05a 0.63 ± 0.03ab
猫耳衣 Leptogium menziesii 23.2 ± 0.3c 322.4 ± 25.4b 1.61 ± 0.02c 0.60 ± 0.02ab
云南袋衣 Hypogymnia yunnanensis 41.1 ± 3.7ab 410.7 ± 40.6b 1.72 ± 0.05c 0.94 ± 0.16a
白绵腹衣 Anzia leucobatoides 36.0 ± 2.1b 441.7 ± 37.6b 2.17 ± 0.07b 0.90 ± 0.04a
多花松萝 Usnea florida 35.5 ± 2.2b 610.9 ± 54.3a 1.29 ± 0.07d 0.37 ± 0.01b
裂髓树花 Ramalina conduplicans 38.6 ± 2.3ab 613.4 ± 42.3a 2.10 ± 0.08b 0.95 ± 0.03a
[1] Aptroot A (1997). Lichen biodiversity in Papua New Guinea, with the report of 173 species on one tree. In: Türk R, Zore R eds. Progress and Problems in Lichenology in the Nineties. Bibliotheca Lichenologica, Berlin, Germany. 203-213.
[2] Aptroot A, Sipman HJM (1997). Diversity of lichenized fungi in the tropics. In: Hyde KD ed. Biodiversity of Tropical Microfungi. Hong Kong University Press, Hong Kong, China. 93-106.
[3] Chen K, Liu WY, Li S, Song L (2014). Photosynthetic characteristics of three epiphytic lichens under different water conditions. Plant Diversity and Resources, 36, 603-610. (in Chinese with English abstract)[陈克, 刘文耀, 李苏, 宋亮 (2014). 不同水分条件下三种附生地衣的光合作用特性. 植物分类与资源学报, 36, 603-610.]
[4] Cislaghi C, Nimis PL (1997). Lichens, air pollution and lung cancer. Nature, 387, 463-464.
[5] Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ (2007). Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry. Annals of Botany, 99, 987-1001.
[6] Cornelissen JHC, Steege HT (1989). Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. Journal of Tropical Ecology, 5, 29-35.
[7] DÍaz S, Cabido M (2001). Vive la difference: Plant functional diversity matters to ecosystem processes. Tends in Ecology & Evolution, 16, 646-655.
[8] Ellis CJ, Coppins BJ (2006). Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. Journal of Biogeography, 33, 1643-1656.
[9] Ellis CJ, Coppins BJ (2007). Changing climate and historic-woodland structure interact to control species diversity of the ‘Lobarion’ epiphyte community in Scotland. Journal of Vegetation Science, 18, 725-34.
[10] Ellis CJ, Coppins BJ (2010). Integrating multiple landscape- scale drivers in the lichen epiphyte response: Climatic setting, pollution regime and woodland spatial-temporal structure. Diversityand Distributions, 16, 43-52.
[11] Esseen PA, Olsson T, Coxson D, Gauslaa Y (2015). Morphology influences water storage in hair lichens from boreal forest canopies. Fungal Ecology, 18, 26-35.
[12] Galun M (1988). Handbook of Lichenology. CRC Press, Boca Raton, USA.
[13] Gauslaa Y, Coxson DS (2011). Interspecific and intraspecific variations in water storage in epiphytic old forest foliose lichens. Botany, 89, 787-798.
[14] Geiser LH, Neitlich PN (2007). Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environment Pollution, 145, 203-218.
[15] Giordani P (2007). Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environmental Pollution, 146, 317-323.
[16] Giordani P, Brunialti G, Bacaro G, Nascimbene J (2012). Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecological Indicators, 18, 413-420.
[17] Giordani P, Incerti G (2008). The influence of climate on the distribution of lichens: A case study in a borderline area (Liguria, NW Italy). Plant Ecology, 195, 257-272.
[18] Giordani P, Incerti G, Rizzl G, Rellini I, Nimis PL, Modenesi P (2014). Functional traits of cryptogams in Mediterranean ecosystems are driven by water, light and substrate interactions. Journal of Vegetation Science, 25, 778-792.
[19] Glime JM (. Cited: 2012-06-20.
[20] Goward T, Arsenault A (2000). Cyanolichen distribution in young unmanaged forests: A dripzone effect? The Bryologist, 103, 28-37.
[21] Gradstein SR (1992). The vanishing tropical rain forest as an environment for bryophytes and lichens. In: Bates JW, Farvner AM eds. Bryophytes and Lichens in a Changing Environment. Clarendon Press, Oxford, UK. 234-258.
[22] Green TGA, Büdel B, Meyer A, Zellner H, Lange OL (1997). Temperate rainforest lichens in New Zealand: Light response of photosynthesis. New Zealand Journal of Botany, 35, 493-504.
[23] Green TGA, Lange OL (1994). Photosynthesis of poikilohydric plants: Lichens and bryophytes—A comparison. In: Schulze DE, Caldwell MM eds. Ecophysiology of Photosynthesis. Springer-Verlag, Berlin. 319-342.
[24] Green TGA, Sancho LG, Pintado A (2011).Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Lüttge U, Beck E, Bartels D eds. Plant Desiccation Tolerance. Springer-Verlag, Berlin, Germany. 89-120.
[25] Gustafsson L, Eriksson I (1995). Factors of importance for the epiphytic vegetation aspen Populus tremula with special emphasis on chemistry and soil chemistry. Journal of Applied Ecology, 32, 412-424.
[26] Hartard B, Cuntz M, Maguas C, Lakatos M (2009). Water isotopes in desiccating lichens. Planta, 231, 179-193.
[27] Hauck M, Dulamsuren C, Mühlenberg M (2007). Lichen diversity on steppe slopes in the northern Mongolian mountain taiga and its dependence on microclimate. Flora, 202, 530-546.
[28] Hauck M, Spribille T (2005). The significance of precipitation and substrate chemistry for epiphytic lichen diversity in spruce-fir forests of the Salish Mountains, northwestern Montana. Flora, 200, 547-562.
[29] Holz I, Gradstein SR (2005). Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica—Species richness, community composition and ecology. Plant Ecology, 178, 89-109.
[30] Honegger R, Peter M, Scherrer S (1996). Drought-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens. Protoplasma, 190, 221-232.
[31] Johansson P (2008). Consequences of disturbance on epiphytic lichens in boreal and near boreal forests. Biological Conservation, 141, 1933-1944.
[32] Jovan S, McCune B (2004). Regional variation in epiphytic macrolichen communities in northern and central California forests. Bryologist, 107, 328-339.
[33] Lakatos M, Lange-Bertalot H, Büdel B (2004). Diatoms living inside the thallus of the green algal lichen Coenogonium linkii in neotropical lowland rain forests. Journal of Phycology, 40, 70-73.
[34] Lakatos M, Rascher U, Büdel B. (2006). Functional character- istics of corticolous lichens in the understory of a tropical lowland and rain forest. New Phytologist, 172, 679-695.
[35] Lange OL (1980). Moisture content and CO2 exchange in lichens. I. In?uence of temperature on moisture dependent net photosynthesis and dark respiration in Ramalina maciformis. Oecologia, 45, 82-87.
[36] Lange OL (2002). Photosynthetic productivity of the epilithic lichen Lecanora muralis: Long-term field monitoring of CO2 exchange and its physiological interpretation. I. Dependence of photosynthesis on water content, light, temperature, and CO2 concentration from laboratory measurements. Flora, 197, 233-249.
[37] Lange OL, Büdel B, Heber U, Meyer A, Zellner H, Green TGA (1993). Temperate rainforest lichens in New Zealand: High thallus water content can severely limit photosynthetic CO2 exchange. Oecologia, 95, 303-313.
[38] Lange OL, Büdel B, Meyer A, Zellner H, Zotz G (2004). Lichen carbon gain under tropical conditions: Water relations and CO2 exchange of three Lobariaceae species of a lower montane rainforest in Panama. Lichenologist, 36, 329-334.
[39] Lange OL, Green TGA, Reichenberger H, Meyer A (1996). Photosynthetic depression at high thallus water content in lichens: Concurrent use of gas exchange and fluorescence techniques with a cyanobacterial and a green algal Peltigera species. Botanica Acta, 109, 43-50.
[40] Lange OL, Matthes U (1981). Moisture-dependent CO2 exchange of lichens. Photosynthetica, 15, 555-574.
[41] Lange OL, Meyer A, Ullmann I, Zellner H (1991). Mikroklima, Wassergehalt und Photosynthese von Flechten in der küstennahen Nebelzone der Namib-Wüste: Messungen während der herbstlichen Witterungsperiod. Flora, 185, 233-266.
[42] Lange OL, Meyer A, Zellner H, Heber U (1994). Photosynthesis and water relations of lichen soil crusts—Field measurements in the coastal fog zone of the Namib Desert. Functional Ecology, 8, 253-264.
[43] Lange OL, Ziegler H (1986). Different limiting processes of photosynthesis in lichens. In: Marcelle R, Clijsters H, van Poucke M eds. Biological Control of Photosynthesis. Martinus Nijhoff Publishers, Dordrecht. 147-161.
[44] Larson DW (1981). Differential wetting in some lichens and mosses: The role of morphology. The Bryologist, 84, 1-15.
[45] Larson DW, Kershaw KA (1976). Studies on lichen-dominated systems XVIII. Morphological control of evaporation in lichens. Canadian Journal of Botany, 54, 2061-2073.
[46] Li S, Liu WY, Li DW (2013a). Bole epiphytic lichens as potential indicators of environmental change in subtropical forest ecosystems in southwest China. Ecological Indicators, 29, 93-104.
[47] Li S, Liu WY, Li DW (2013b). Epiphytic lichens in subtropical forest ecosystems in southwest China: Species diversity and implications for conservation. Biological Conservation,159, 88-95.
[48] Li S, Liu WY, Shi XM, Liu S, Hu T, Huang JB, Chen X, Song L, Wu CS (2015). Responses of the distribution of four epiphytic cyanolichens to habitat change in subtropical forests. Chinese Journal of Plant Ecology, 39, 217-228. (in Chinese with English abstract)[李苏, 刘文耀, 石贤萌, 柳帅, 胡涛, 黄俊彪, 陈曦, 宋亮, 武传胜 (2015). 亚热带森林生态系统4种附生蓝藻地衣的分布对生境变化的响应. 植物生态学报, 39, 217-228.]
[49] Li S, Liu WY, Wang LS, Ma WZ, Song L (2011). Biomass, diversity and composition of epiphytic macrolichens in primary and secondary forests in the subtropical Ailao Mountains, southwest China. Forest Ecology and Management, 261, 1760-1770.
[50] Li S, Liu WY, Wang LS, Yang GP, Li DW (2007). Species diversity and distribution of epiphytic lichens in the primary and secondary forests in Ailao Mountain, Yunnan. Biodiversity Science, 15, 445-455. (in Chinese with English abstract)[李苏, 刘文耀, 王立松, 杨国平, 李达文 (2007). 云南哀牢山原生林及次生林群落附生地衣物种多样性与分布. 生物多样性, 15, 445-455.]
[51] Liu WY, Fox JED, Xu ZF (2002). Nutrient fluxes in bulk precipitation, throughfall and stemflow in montane moist evergreen broad-leaved forest on Ailao Mountain in Yunnan, SW China. Journal of Tropical Ecology, 18, 527-548.
[52] Liu Y, Zhang YP, Liu YH, Gao F, Gong HD (2009). Climate change from 1980 to 2005 in the Ailao Mountains, Southwest China. Journal of Mountain Research, 27, 203-210. (in Chinese with English abstract)[刘洋, 张一平, 刘玉洪, 高富, 巩合德 (2009). 哀牢山北段地区气候特征及变化趋势. 山地学报, 27, 203-210.]
[53] Liu YH (1993). Study on climate characteristics of evergreen broad-leaf forest on Ailao Mountain. Scientia Silvae Sinicae, 29, 547-552. (in Chinese with English abstract)[刘玉洪 (1993). 哀牢山常绿阔叶林地的气候特征研究. 林业科学, 29, 547-552.]
[54] Ma WZ (2009). The Composition and Biomass of Epiphytic Materials and Their Relationships with Ecological Factors in Xujiaba Region form Ailao Mountain, Yunnan. PhD dissertation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming. (in Chinese)[马文章 (2009). 云南哀牢山徐家坝地区附生(植)物的组成、生物量及其与生态因子的关系. 博士学位论文, 中国科学院西双版纳热带植物园, 昆明.]
[55] Marini L, Nascimbene J, Nimis PL (2011). Large-scale patterns of epiphytic lichen species richness: Photobiont-dependent response to climate and forest structure. Science of the Total Environment, 409, 4381-4386.
[56] McCune B (1993). Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of different ages in western Oregon and Washington. The Bryologist, 96, 405-411.
[57] Montfoort D, Ek R (1990). Vertical distribution and ecology of epiphytic bryophytes and lichens in a lowland rain forest in French Guyana. PhD dissertation, University of Utrecht, Utrecht, the Netherlands.
[58] Nascimbene J, Brunialti G, Ravera S, Frati L, Caniglia G (2010). Testing Lobaria pulmonaria (L.) Hoffm as an indicator of lichen conservation importance of Italian forests. Ecological Indicators, 10, 353-360.
[59] Nimis PL, Martellos S (. Cited: 2015-12-07.
[60] Palmqvist K (2000). Carbon economy in lichens. New Phytologist, 148, 11-36.
[61] Pintado A, Valladares F, Sancho LG (1997). Exploring phenol- typic plasticity in the lichen Ramalina capitata: Morphol- ogy, water relations and chlorophyll content in north- and south-facing populations. Annals of Botany, 80, 345-353.
[62] Ricotta C, Bacaro (2010). On plot to plot dissimilarity measures based on species functional traits. Community Ecology, 11, 113-119.
[63] Rikkinen J (2009). Relations between cyanobacterial symbionts in lichens and plants. In: Pawlowski K ed. Prokaryotic Symbionts in Plants. Springer, Berlin. 265-270.
[64] Sala OE, Chapin III FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.
[65] Sancho LG, Kappen L (1989). Photosynthesis and water rela- tions and the role of anatomy in Umbilicariaceae (lichens) from Central Spain. Oecologia, 81, 473-480.
[66] Sipman HJM, Harris RC (1989). Lichens. In: Lieth H, Werger MJA eds. Tropical Rain Forest Ecosystems (Bio- geographical and Ecological Studies), Ecosystems of the World 14B. Elsevier, Amsterdam, USA. 303-309.
[67] Sipman HJM, Tan BC (1990). A field impression of the lichen and bryophyte zonation on Mount Kinabalu. Flora Malesiana Bulletin, 10, 241-244.
[68] Song L, Zhang YJ, Chen X, Li S, LU HZ, Wu CS, Tan ZH, Liu WY, Shi XM (2015). Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest. Journal of Plant Research, 128, 573-584.
[69] Travis JMJ, Brooker RW, Clark, EJ, Dytham C (2006). The distribution of positive and negative species interactions across environmental gradients on a dual-lattice model. Journal of Theoretical Biology, 241, 896-902.
[70] Webb CT, Hoeting JA, Arns GM, Pyne MI, Poff NL (2010). A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters, 13, 267-283.
[71] Xu HQ, Liu WY (2005). Species diversity and distribution of epiphytes in the montane moist evergreen broad-leaved forest in Ailao Mountain, Yunnan. Biodiversity Science, 13, 137-147.[徐海清, 刘文耀 (2005). 云南哀牢山山地湿性常绿阔叶林附生植物的多样性与分布. 生物多样性, 13, 137-147.]
[72] Yao YL, Liu WY, Ma WZ, Song L (2012). Species composition and diversity of epiphytes of several ecotones in Ailao Mountain National Nature Reserve, Yunnan. Biodiversity Science, 20, 654-664. (in Chinese with English abstract)[姚元林, 刘文耀, 马文章, 宋亮 (2012). 云南哀牢山国家保护区几个过渡带树干附生苔藓的物种组成与多样性. 生物多样性, 20, 654-664.]
[73] Ye ZP (2007). A new model for relationship between light intensity and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45, 637-640.
[74] Ye ZP (2010). A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 34, 727-740. (in Chinese with English abstract)[叶子飘 (2010). 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 34, 722-740.]
[75] You CX (1983). Classification of vegetation in Xujiaba region in Ailao Mts. In: Wu ZY ed. Research of Forest Ecosystems on Ailao Mountains, Yunnan. Yunnan Science and Technology Press, Kunming. 74-117.(in Chinese). [游承侠 (1983). 哀牢山徐家坝地区的植被分类. 见: 吴征镒主编. 云南哀牢山森林生态系统研究. 云南科技出版社, 昆明. 74-117.]
[76] Young SS, Herwitz SR (1995). Floristic diversity and co- occurrences in a subtropical broad-leaved forest and two contrasting regrowth stands in central-west Yunnan Province, China. Vegetatio, 119, 1-13.
[77] Zedda L, Kong SM, Rambold G (2011). Morphological groups as a surrogate for soil lichen biodiversity in Southern Africa. In: Bates ST, Bungartz F, Lücking R, Herrera- Campos MA, Zambrano A eds. Biomonitoring, Ecology, and Systematics of Lichens Festschrift Thomas H. Nash III, Bibliotheca Lichenologica 106. Borntraeger Verlagsbuchhandlung, Stuttgart. 391-408.
[78] Zhu H, Yan LC (2009). List of Seed Plants in the Ailao Mts. of Yunnan Province, China. Yunnan Science and Technology Press, Kunming. (in Chinese)[朱华, 闫丽春 (2009). 云南哀牢山种子植物. 云南科技出版社, 昆明.]
[79] Zotz G, Büdel B, Meyer A, Zellner H, Lange OL (1998). In situ studies of water relations and CO2 exchange of the tropical macrolichen, Sticta tomentosa. New Phytologist, 139, 525-535.
[80] Zotz G, Schultz S, Rottenberger S (2003). Are tropical lowlands a marginal habitat for macrolichens? Evidence from a field study with Parmotrema endosulphureum in Panama. Flora, 198, 71-77.
[81] Zotz Z, Winter K (1994). Photosynthesis and carbon gain of the lichen, Leptogium azureum, in lowland tropical forest. Flora, 189, 179-186.
[1] Lu ZHANG. Nitrogen utilization mechanism in C3 and C4 plants [J]. Chin Bull Bot, 2020, 55(2): 0-0.
[2] MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(7): 557-565.
[3] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[4] LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898.
[5] CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plan Ecolo, 2018, 42(5): 585-594.
[6] ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment [J]. Chin J Plan Ecolo, 2018, 42(2): 229-239.
[7] Chen Xu, Xiaolong Liu, Qian Li, Fenglou Ling, Zhihai Wu, Zhian Zhang. Effect of Salt Stress on Photosynthesis and Chlorophyll Fluorescence Characteristics of Rice Leaf for Nitrogen Levels [J]. Chin Bull Bot, 2018, 53(2): 185-195.
[8] Muqier Hasi, Xueyao Zhang, Guoxiang Niu, Yinliu Wang, Jianhui Huang. Effects of Nitrogen Addition on Ecosystem CO2 Exchange in a Meadow Steppe, Inner Mongolia [J]. Chin Bull Bot, 2018, 53(1): 27-41.
[9] Ji-Mei HAN, Wang-Feng ZHANG, Dong-Liang XIONG, Jaume FLEXAS, Ya-Li ZHANG. Mesophyll conductance and its limiting factors in plant leaves [J]. Chin J Plan Ecolo, 2017, 41(8): 914-924.
[10] Sun Wanmei, Wang Xiaozhu, Han Erqin, Han Li, Sun Liping, Peng Zaihui, Wang Bangjun. Advances in the Functions of Immunophilins in Plants [J]. Chin Bull Bot, 2017, 52(6): 808-819.
[11] Jian-Guo CAI, Meng-Qi WEI, Yi ZHANG, Yun-Long WEI. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla [J]. Chin J Plan Ecolo, 2017, 41(5): 570-576.
[12] Liang-Hua CHEN, Juan LAI, Xiang-Wei HU, Wan-Qin YANG, Jian ZHANG, Xiao-Jun WANG, Ling-Jie TAN. Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution [J]. Chin J Plan Ecolo, 2017, 41(4): 480-488.
[13] Ji-Ye ZENG, Zheng-Hong TAN, Nobuko SAIGUSA. Using approximate Bayesian computation to infer photosynthesis model parameters [J]. Chin J Plan Ecolo, 2017, 41(3): 378-385.
[14] YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China [J]. Chin J Plan Ecolo, 2017, 41(12): 1228-1238.
[15] Ping Xie. The origin of genetic codes: from energy transformation to informatiza- tion [J]. Biodiv Sci, 2017, 25(1): 94-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Li-rui and Cheng Mu-chu. Relationship between Plant Stress Resistance and Photorespiration[J]. Chin Bull Bot, 1991, 8(01): 43 -47 .
[2] . [J]. Chin Bull Bot, 1996, 13(专辑): 74 -75 .
[3] He Ping. Investigation of Pest Species and the Control of the Main Insect Pests in the Exhibition Green House of Beijing Botanical Garden[J]. Chin Bull Bot, 1996, 13(02): 44 -47 .
[4] Cui Kai-rong;Chen Ke-ming;Wang Xiao-zhe and Wang Ya-fu. Current Reseach on Plant Somatic Embryogenesis[J]. Chin Bull Bot, 1993, 10(03): 14 -20 .
[5] Huang Yao Li Chao-luan Ma Cheng Wu Nai-hu. Chloroplast DNA and Its Application to Plant Systematic Studies[J]. Chin Bull Bot, 1994, 11(02): 11 -25 .
[6] WANG Pu ZHAO Xiu-Qin. The Effect of Extracting Condition on the Analysis Result of Allelochemicals in Wheat Straw[J]. Chin Bull Bot, 2001, 18(06): 735 -738 .
[7] Yun Zihou;Liang Mingxia;Zhang Cunjie and Tan Zhiyi. The Determination of Trace Cytokinin in a Small Plant Sample by Gas Chromatography[J]. Chin Bull Bot, 1988, 5(01): 60 -63 .
[8] Yanxia He;Zicheng Wang*. Variation of DNA Methylation in Arabidopsis thaliana Seedlings After the Cryopreservation[J]. Chin Bull Bot, 2009, 44(03): 317 -322 .
[9] Yiting Shi, ShuhuaYang. Chinese Scientists Made Breakthrough in Study on Ethylene Signaling Transduction in Plants[J]. Chin Bull Bot, 2016, 51(3): 287 -289 .
[10] L Chao-Qun, SUN Shu-Cun. A REVIEW ON THE DISTRIBUTION PATTERNS OF CARBON DENSITY IN TERRESTRIAL ECOSYSTEMS[J]. Chin J Plan Ecolo, 2004, 28(5): 692 -703 .