Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (12): 1319-1327.doi: 10.17521/cjpe.2016.0107

• Research Articles • Previous Articles     Next Articles

Growth metabolism of wheat under drought stress at the jointing-booting stage

Rui GUO1,2,*, Ji ZHOU3, Fan YANG4, Feng LI1, Hao-Ru LI1,2, Xu XIA1,2, Qi LIU1,2   

  1. 1Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

    2Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing 100081, China

    3Land Consolidation and Rehabilitation Centre, the Ministry of Land and Resources, Beijing 100034, China
    and
    4Jilin Academy of Forestry Sciences, Changchun 130033, China
  • Online:2016-12-30 Published:2016-12-31
  • Contact: Rui GUO

Abstract: AimsThe aim of this study was to investigate the effects of drought stress on primary, secondary metabolites and metabolic pathways in the leaves of wheat, these parameters were evaluated to determine the physiological adaptive mechanisms by which wheat tolerates drought stress at the jointing-booting stage.MethodsA pot experiment was carried out in rain-proof shelter. The relative growth rate, photosynthetic characteristics and metabolism seedlings exposed to stresses lasting 12 days at jointing-booting stage were measured.Important findings The results displayed that the photosynthesis decreased under drought stress, causing the decreases of relative growth rate and dry matter mass. Profiles of 64 key metabolites produced by wheat including organic acids, amino acids, carbohydrates, purine, etc. were examined, 29 of them were changed significantly under drought stress. Principal component analysis (PCA) showed that 64% variations can be explained by the two principal components. One-way ANOVA analysis results revealed that long term drought stress decreased malic acid, citric acid and aconitic acid significantly, indicating inhibited tricarboxylic acid cycle. We further found that prolonged drought stress led to accumulation of progressive amino acids (proline, serine, valine) and carbohydrates (myo-inositol, fructose, clucose) in wheat leaves and depletion of transamination products (asparagine, glutamine, γ-aminobutyric acid). These results imply wheat may enhance its drought tolerance mainly by increasing amino acid biosynthesis and glycolysis under water-deficit conditions. Our findings suggest that drought condition altered metabolic networks including transamination, the tricarboxylic cycle, gluconeogenesis/glycolysis, glutamate-mediated proline biosynthesis, and the metabolisms of choline, pyrimidine and purine. This study provides new insights into the metabolic adaptation of wheat to drought stress and important information for developing drought-tolerant wheat cultivars.

Key words: wheat, jointing-booting stage, drought stress, growth characters, metabolites profiles

Fig. 1

Effects of drought stress on the relative growth rate (RGR) (A) and relative water content (WC) (B) of shoots and roots of wheat at the jointing-booting stage (mean ± SE, n = 5). Different lowercase letters indicate significant difference between treatments (p < 0.05, t-test)."

Table 1

The photosynthetic indices (Pn, Gs), chlorophyll fluorescence (Fv/Fm, qP, ETR), chlorophyll and carotenoid contents and Chl a/Chl b of wheat seedling leaves under drought stress at the jointing-booting stage (mean ± SE, n = 5)"

水分处理
Water treatment
光合参数
Photosynthetic indices
荧光参数
Chlorophyll fluorescence
叶绿素含量
Chlorophyll content
净光合速率
Pn
(μmol·m-2·s-1)
气孔导度
Gs
(μmol·m-2·s-1)
PSII原初光能
转换效率
Fv/Fm
光化学
淬灭系数qP
PSII的表观光合
电子传递速率
ETR
叶绿素含量
Chlorophyll
contents
(g·kg-1 fresh mass)
叶绿素a/
叶绿素b
Chl a/Chl b
对照 Control 14.98 ± 0.63a 0.29 ± 0.01a 0.73 ± 0.02a 0.22 ± 0.05a 28.28 ± 3.36a 4.29 ± 0.88a 2.16 ± 0.23a
干旱胁迫
Drought stress
3.15 ± 0.37b 0.04 ± 0.00b 0.31 ± 0.03b 0.09 ± 0.00b 12.49 ± 1.33b 2.01 ± 0.63b 1.31 ± 0.14b

Table 2

Relative concentration and the change of major metabolites in leaves of wheat seedlings under drought stress (DS) treatment at the jointing-booting stage"

代谢通路
Metabolic
Pathway
代谢产物
Metabolite
相对含量 Relative concentration 变化率 Rate of change
Log2 (DS/CK)
对照组 Control (CK) 干旱胁迫组 DS
三羧酸循环
The tricarboxylic acid cycle
草酸 Oxalic acid 1.85 1.03 -0.84
柠檬酸 Citric acid 6.39 2.24 -1.51*
乌头酸 Aconitic acid 3.37 1.65 -1.03*
异柠檬酸 Isocitric acid 1.01 0.64 -0.66
Α-酮戊二酸 α-Ketoglutaric acid 0.31 0.12 -1.37*
琥珀酸 Succinic acid 1.46 0.99 -0.56
延胡索酸 Fumaric acid 0.59 0.27 -1.13*
苹果酸 Malic acid 44.28 15.78 -1.49*
糖酵解 Glycolysis 丙酮酸 Pyruvate 0.36 0.42 0.21
磷酸烯醇式丙酮酸 Phosphoenolpyruvate 0.00 0.00 1.52*
葡萄糖-6-磷酸 Fructose-6-phosphate 0.00 0.01 1.05*
果糖-6-磷酸 Glucose-6-phosphate 0.05 0.11 1.09*
葡萄糖 Glucose 0.02 0.05 1.41*
氨基酸类 Amino acids 脯氨酸 Proline 1.76 58.64 5.06*
丙氨酸 Alanine 3.13 2.93 -0.10
苯丙氨酸 Phenylalanine 0.88 1.14 0.38
天冬氨酸 Aspartic acid 14.38 6.41 -1.17*
天冬酰胺 Asparagine 0.11 0.39 1.83*
甘氨酸 Glycine 0.26 0.53 1.03*
丝氨酸 Serine 5.90 11.90 1.01*
苏氨酸 Threonine 0.01 0.01 0.59
谷氨酸 Glutamate 0.47 1.41 1.60*
谷氨酰胺 Glutamine 1.41 0.37 -1.93*
缬氨酸 Valine 3.62 12.09 1.74*
半胱氨酸 Cysteine 0.03 0.05 0.72
异亮氨酸 Isoleucine 1.61 7.09 2.14*
亮氨酸 Leucine 0.36 1.52 2.06*
赖氨酸 Lysine 0.46 0.48 0.07
甲硫氨酸 Methionine 0.50 0.38 -0.40
色氨酸 Tryptophan 0.05 0.05 0.05
酪氨酸 Tyrosine 0.01 0.01 -0.12
鸟氨酸 Ornithine 0.22 0.19 -0.18
瓜氨酸 Citrulline 0.06 0.10 0.85
糖类及多元醇
Sugars and polyols
蔗糖 Sucrose 12.77 6.37 -1.00*
果糖 Fructose 1.09 2.21 1.03*
半乳糖 Galactose 0.19 0.29 0.63
木糖 Xylose 0.06 0.09 0.62
海藻糖 Trehalose 0.02 0.04 0.97*
肌醇 Myo-inositol 15.06 30.85 1.03*
甘露糖 Mannose 21.27 20.53 -0.05
纤维二糖 Cellobiose 0.04 0.03 -0.48
阿卓糖 Altrose 1.03 1.34 0.39
葡庚糖 Glucoheptose 0.38 0.48 0.35
夫糖 Fucose 0.08 0.09 0.13
表2 (续) Table 2 (continued)
代谢通路
Metabolic
Pathway
代谢产物
Metabolite
相对含量 Relative concentration 变化率 Rate of change
Log2 (DS/CK)
对照组 Control (CK) 干旱胁迫组 DS
糖类及多元醇
Sugars and polyols
半乳糖苷 Galactinol 1.57 1.34 -0.23
龙胆二糖 Gentiobiose 0.09 0.20 1.14*
乳糖 Lactose 0.07 0.05 -0.68
苏糖 Threose 0.03 0.03 0.15
来苏糖 Lyxose 20.14 27.01 0.42
景天庚糖 Sedoheptulose 0.02 0.04 1.04*
塔格糖 Tagatose 1.74 2.73 0.65
核苷酸衍生物
Nucleotides derivatives
尿嘧啶 Uridine 0.03 0.03 -0.06
胸腺嘧啶 Thymidine 1.82 0.68 -1.42*
鸟嘌呤 Guanosine 0.27 0.17 -0.65
次黄嘌呤 Hypoxanthine 0.25 0.11 -1.14*
有机酸及其他代谢产物
Organic acids and others
γ-氨基丁酸 γ-aminobutyric acid 28.23 15.43 -0.87*
莽草酸 Shikimic acid 11.89 12.61 0.08
奎尼酸 Quinic acid 2.77 2.70 -0.04
乙醇酸 Glyceric acid 1.34 1.42 0.09
乙醇胺 Ethanolamine 0.81 0.36 -1.16*
肉桂酸 Cinnamic acid 0.03 0.04 0.25
绿原酸 Chlorogenic acid 0.28 0.18 -0.66
阿魏酸 Ferulic acid 0.06 0.06 0.12
琥珀酸半醛 Succinate semialdehyde 0.04 0.06 0.63

Fig. 2

Proposed changes of metabolic network of wheat leaves under drought stress. Red boxes denote significant increases while green ones denote significant decreases (p < 0.05)."

1 Arnon DI (1949). Copper enzymes in isolated chlorop lasts phenoloxidases inBeta vulgaris. Plant Physiology, 24, 1-15.
2 Banuelos GS, Fakra SC, Walse SS (2011). Selenium accumula- tion, distribution, and speciation in spineless prickly pear cactus: A drought- and salt-tolerant, selenium-enriched nutraceutical fruit crop for biofortified foods.Plant Physiology, 1, 315-327.
3 Bray EA (1997). Plant responses to water deficit.Trends in Plant Science, 2, 48-54.
4 Chen X (2015). Effects of Drought Stress on Growth, Yield and Quality of Different Barley Genotypes. Master degree dissertation, Zhejiang University, Hangzhou. 14.(in Chinese with English abstract)[陈雪 (2015). 干旱胁迫对不同大麦生长发育、产量和品质的影响. 硕士毕业论文. 浙江大学, 杭州. 14.]
5 Cui Q, Lewis IA, Hegeman AD, Anderson ME (2008). Metabolite identification via the madison metabolomics consortium database.Nature Biotechnology, 26, 162-164.
6 Dai H, Xiao C, Liu H, Tang H (2010). Combined NMR and LC-MS analysis reveals the metabonomic changes inSalvia miltiorrhiza Bunge induced by water depletion. Journal of Proteome Research, 9, 1460-1475.
7 Hill R, Schreiber U, Gademann R, Larkum AWD, Kühl M, Ralp PJ (2004). Spatial heterogeneity of photosynthesis and the effect of temperature-induced bleaching conditions in three species of corals.Marine Biology, 144, 633-640.
8 Hou CX, Tang ZC (1999). Function and mechanism of com- patible solutes.Plant Physiology Communications, 35, 1-7.(in Chinese with English abstract)[侯彩霞, 汤章城 (1999). 细胞相容性物质的生理功能及其作用机制. 植物生理学通讯, 35, 1-7. ]
9 Jaleel CA, Gopi R, Sankar B, Gomathinayagam M, Pann- eerselvam R (2008). Differential responses in water use efficiency in two varieties ofCatharanthus roseus under drought stress. Comptes Rendus Biologies, 331, 42-47.
10 Jiang SX, Liu DX, Pang HX, Lü JY (2014). Effects of PEG stress and recovery on activities of key enzymes involved in proline metabolism in wheat cultivars with difference in drought tolerance.Acta Botanica Boreali-Occidentalia Sinica, 34, 1581-1587.(in Chinese with English abstract)[姜淑欣, 刘党校, 庞红喜, 吕金印 (2014). PEG胁迫及复水对不同抗旱性小麦幼苗脯氨酸代谢关键酶活性的影响. 西北植物学报, 34, 1581-1587. ]
11 Kang SZ (2014). Towards water and food security in china.Chinese Journal of Eco-Agriculture, 22, 880-885.(in Chinese with English abstract)[康绍忠 (2014). 水安全与粮食安全. 中国生态农业学报, 22, 880-885. ]
12 Kingsbury RW, Epstein E (1984). Selection for salt resistant in spring wheat.Crop Science ,24, 310-315.
13 Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF (2002). Transcriptome changes forArabidopsis in res- ponse to salt, osmotic, and cold stress. Plant Physiology, 130, 2129-2141.
14 LaRosa PC, Rhodes D, Rhodes JC, Bressan RA, Csonka LN (1991). Elevated accumulation of proline in NaCl-adapted tobacco cells is not due to altered 1-pyrroline-5- carboxylate reductase.Plant Physiology ,96, 245-250.
15 Lawlor DW, Cornic G (2002). Photosynthetic carbon assimila- tion and associated metabolism in relation to water deficits in higher plants.Plant, Cell and Environment, 25, 175-294.
16 Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants.Nature Protocol, 1, 387-396.
17 Lü LH, Hu YK, Li YM (2006). Dynamics of proline accumulation in winter wheat under different water stress.Acta Agriculturae Boreali-Sinica, 21, 75-78.(in Chinese with English abstract)[吕丽华, 胡玉昆, 李雁鸣 (2006). 水分胁迫下不同抗旱性冬小麦脯氨酸积累动态. 华北农学报, 2l, 75-78.]
18 Wang JY, Zhu SG, Xu CF (2002). Biochemistry. 3rd edn. Shengcai Education, Beijing. [王镜岩, 朱圣庚, 许长法 (2002). 生物化学. 第三版. 圣才教育出版社, 北京.]
19 Wang L, Liu Y, Li DQ (2012). Drought stress signal transduction and regulation mechanism in plants.Biotechnology Bulletin, 10, 1-7.(in Chinese with English abstract)[王丽, 刘洋, 李德全 (2012). 植物干旱胁迫信号转导及其调控机制研究进展. 生物技术通报, 10, 1-7.]
20 Wu Y, He L, Hu WH (2009). Advances in regulatory metabolic networks in drought stress responses.Hubei Agricultural Sciences, 48, 1504-1509.(in Chinese with English abstract)[吴杨,贺俐,胡文海 (2009). 植物干旱胁迫下的调控代谢网络研究进展. 湖北农业科学, 48, 1504-1509. ]
21 Wu YC, Zhou SL, Wang ZM (2004). Review on genetic im- provement in root related to drought-resistance in wheat.Journal of Triticeae Crops, 24, 101-104.(in Chinese with English abstract)[吴永成, 周顺利, 王志敏 (2004). 小麦
22 与抗旱性有关的根系遗传改良研究进展. 麦类作物学报, 24, 101-104. ]
23 Xu MJ, Liu GR, Yang XJ, Wang LJ (2002). Study on drought induced protein of winter wheat varieties. Journal Publishing Department of Agricultural University of Hebei, 2, 11-15.(in Chinese) [徐民俊, 刘桂茹, 杨学举, 王丽军 (2002). 冬小麦品种干旱诱导蛋白的研究. 河北农业大学学报, 2, 11-15.]
24 Yang C, Shi D, Wang D (2008). Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyteSuaeda glauca(Bge.). Plant Growth Regular, 56, 179-190.
25 Yang WP, Shan CJ, Hu XQ, Li J (2008). Effects of soil drought on carbon metabolism of winter wheat during jointing stage.Journal of Henan Agricultural Sciences, 9, 20-26.(in Chinese with English abstract)[杨文平, 单长卷, 胡喜巧, 李杰 (2008). 土壤干旱对冬小麦拔节期叶片碳代谢的影响. 河南农业科学, 9, 20-26.]
26 Zhang RH, Zheng YJ, Ma GS, Zhang XH, Lu HD, Shi JT, Xue JQ (2011). Effects of drought stress on photosynthetic traits and protective enzyme activity in maize seeding.Acta Ecologica Sinica, 31, 1303-1311.(in Chinese with English abstract)[张仁和,郑友军,马国胜,张兴华,路海东,史俊通,薛吉全 (2011). 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响. 生态学报, 31, 1303-1311.]
27 Zhao LL, Xu QJ, Jiang Y, Li YH (2008). The mitogen- activated protein kinase signal transduction in plant cell under biotic and abiotic stress conditions.Plant Phy- siology Communications, 1, 196-174.(in Chinese with English abstract)[赵琳琳, 徐启江, 姜勇, 李玉花 (2008). 生物和非生物胁迫下的植物细胞中丝裂原活化蛋白激酶(MAPK)信号转导. 植物生理学通讯, 1, 196-174. ]
28 Zhao YJ, Weng BQ, Wang YX, Xu GZ (2009). Physiological and ecological responses of plants to drought stress and its research progress.Fujian Science and Technology of Rice and Wheat, 27, 46-50.(in Chinese with English abstract)[赵雅静, 翁伯琦, 王义祥, 徐国忠 (2009). 植物对干旱胁迫的生理生态响应及其研究进展. 福建稻麦科技, 27, 46-50.]
[1] Zhang Tong,Guo Yalu,Chen Yue,Ma Jinjiao,Lan Jinping,Yan Gaowei,Liu Yuqing,Xu Shan,Li Liyun,Liu Guozhen,Dou Shijuan. Expression Characterization of Rice OsPR10A and Its Function in Response to Drought Stress [J]. Chin Bull Bot, 2019, 54(6): 711-722.
[2] Miao Qingxia, Fang Yan, Chen Yinglong. Studies in the Responses of Wheat Root Traits to Drought Stress [J]. Chin Bull Bot, 2019, 54(5): 652-661.
[3] Gao Huaifeng,Zhang Yafei,Wang Guodong,Sun Xiwu,He Yue,Peng Futian,Xiao Yuansong. The Effect of Molybdenum on Drought Stress Response in Peach [J]. Chin Bull Bot, 2019, 54(2): 227-236.
[4] XU Li-Jiao, HAO Zhi-Peng, XIE Wei, LI Fang, CHEN Bao-Dong. Transmembrane H + and Ca 2+ fluxes through extraradical hyphae of arbuscular mycorrhizal fungi in response to drought stress [J]. Chin J Plan Ecolo, 2018, 42(7): 764-773.
[5] Xi WANG,Hong-Ling HU,Ting-Xing HU,Cheng-Hao ZHANG,Xin WANG,Dan LIU. Effects of drought stress on the osmotic adjustment and active oxygen metabolism of Phoebe zhennan seedlings and its alleviation by nitrogen application [J]. Chin J Plan Ecolo, 2018, 42(2): 240-251.
[6] Dan-Dan LUO, Chuan-Kuan WANG, Ying JIN. Plant water-regulation strategies: Isohydric versus anisohydric behavior [J]. Chin J Plan Ecolo, 2017, 41(9): 1020-1032.
[7] Rui GUO, Ji ZHOU, Fan YANG, Feng LI. Metabolic responses of wheat roots to alkaline stress [J]. Chin J Plan Ecolo, 2017, 41(6): 683-692.
[8] Jing-Xin XU, You-Fei ZHENG, Bo-Ru MAI, Hui ZHAO, Zhong-Fang CHU, Ji-Qing HUANG, Yue YUAN. Characteristics and partitioning of ozone dry deposition measured by eddy-covariance technology in a winter wheat field [J]. Chin J Plan Ecolo, 2017, 41(6): 670-682.
[9] GAO Lin, WANG Xiao-Fei, GU Xing-Fa, TIAN Qing-Jiu, JIAO Jun-Nan, WANG Pei-Yan, LI Dan. Exploring the influence of soil types underneath the canopy in winter wheat leaf area index remote estimating [J]. Chin J Plan Ecolo, 2017, 41(12): 1273-1288.
[10] Yu CEN, Mei-Zhen LIU. Effects of dew on eco-physiological traits and leaf structures of Leymus chinensis and Agropyron cristatum grown under drought stress [J]. Chin J Plan Ecolo, 2017, 41(11): 1199-1207.
[11] Cheng-Yan ZHENG, Ai-Xing DENG, Hojatollah LATIFMANESH, Zhen-Wei SONG, Jun ZHANG, Li WANG, Wei-Jian ZHANG. Warming impacts on the dry matter accumulation, and translocation and nitrogen uptake and utilization of winter wheat on the Qinghai-Xizang Plateau [J]. Chin J Plan Ecolo, 2017, 41(10): 1060-1068.
[12] Yani Hu,Zongwen Zhang,Bin Wu,Jia Gao,Yanqin Li. Genetic relationships of buckwheat species based on the sequence analysis of ITS and ndhF-rpl32 [J]. Biodiv Sci, 2016, 24(3): 296-303.
[13] Guojun Sun,Yong Li,Fenhua Li,Haiyan Zhang,Min Han,Fang Yuan,Rongsong Zhu,Zhong Ji,Yicheng Sun,Feng Zhu,Dongping Xu,Li Huang. Effects of fertilization regimes on weed seed banks in a rice-wheat crop system [J]. Biodiv Sci, 2016, 24(3): 287-295.
[14] GUO Rui,LI Feng,ZHOU Ji,LI Hao-Ru,XIA Xu,LIU Qi. Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali stresses [J]. Chin J Plan Ecolo, 2016, 40(1): 69-79.
[15] AN Dong-Sheng,CAO Juan,HUANG Xiao-Hua,ZHOU Juan,DOU Mei-An. Application of Lake-model based indices from chlorophyll fluorescence on sugarcane seedling drought resistance study [J]. Chin J Plan Ecolo, 2015, 39(4): 398-406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hu Shi-yi. Fertilization in Plants IV. Fertilization Barriers Inoompalibilty[J]. Chin Bull Bot, 1984, 2(23): 93 -99 .
[2] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[3] Zhang Xin-shi. Some Significant Disciplines in Modern Ecology[J]. Chin Bull Bot, 1990, 7(04): 1 -6 .
[4] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[5] . [J]. Chin Bull Bot, 1996, 13(专辑): 103 .
[6] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .
[7] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chin Bull Bot, 1994, 11(01): 6 -11 .
[8] . [J]. Chin Bull Bot, 1996, 13(专辑): 13 -16 .
[9] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chin Bull Bot, 2002, 19(06): 739 -742 .
[10] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chin Bull Bot, 2006, 23(6): 718 -724 .