Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (7): 757-766.DOI: 10.3724/SP.J.1258.2014.00071
• Research Articles • Previous Articles Next Articles
GUO Zeng-Jiang1, YU Zhen-Wen1,*(), SHI Yu1, ZHAO Jun-Ye2, ZHANG Yong-Li1
Received:
2013-10-30
Accepted:
2014-04-30
Online:
2014-10-30
Published:
2014-07-10
Contact:
YU Zhen-Wen
GUO Zeng-Jiang, YU Zhen-Wen, SHI Yu, ZHAO Jun-Ye, ZHANG Yong-Li. Effects of supplemental irrigation by measuring the moisture content at jointing and anthesis on fluorescence characteristics and water use efficiency in flag leaves of wheat[J]. Chin J Plant Ecol, 2014, 38(7): 757-766.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00071
生长季 Growing season | 有机质 Organic matter (%) | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Hydrolysable nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|
2011-2012 | 1.39 | 1.23 | 142.29 | 31.01 | 112.60 |
2012-2013 | 1.35 | 1.17 | 143.63 | 34.51 | 118.48 |
Table 1 Soil nutrient concentrations in the 0-20 cm soil layer in the experimental field before sowing
生长季 Growing season | 有机质 Organic matter (%) | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Hydrolysable nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|
2011-2012 | 1.39 | 1.23 | 142.29 | 31.01 | 112.60 |
2012-2013 | 1.35 | 1.17 | 143.63 | 34.51 | 118.48 |
生长季 Growing season | 项目名称 Project name | 土层 Soil layer (cm) | ||||||
---|---|---|---|---|---|---|---|---|
0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 | 120-140 | ||
2011-2012 | 土壤相对含水量 Relative soil water content (%) | 73.29 | 91.26 | 84.74 | 92.63 | 94.85 | 90.78 | 92.10 |
田间持水量 Field water-holding capacity (%) | 29.68 | 23.50 | 25.65 | 25.90 | 25.29 | 23.69 | 23.55 | |
土壤容重 Soil bulk density (g·cm-3) | 1.40 | 1.59 | 1.52 | 1.53 | 1.56 | 1.60 | 1.61 | |
2012-2013 | 土壤相对含水量 Relative soil water content (%) | 45.03 | 58.21 | 55.06 | 68.70 | 64.75 | 74.30 | 79.98 |
田间持水量 Field water-holding capacity (%) | 30.90 | 23.86 | 27.17 | 27.20 | 26.74 | 24.26 | 24.20 | |
土壤容重 Soil bulk density (g·cm-3) | 1.39 | 1.58 | 1.50 | 1.51 | 1.54 | 1.61 | 1.62 |
Table 2 Relative soil water content, field water-holding capacity, and soil bulk density in each soil layer in the experimental field before sowing
生长季 Growing season | 项目名称 Project name | 土层 Soil layer (cm) | ||||||
---|---|---|---|---|---|---|---|---|
0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 | 120-140 | ||
2011-2012 | 土壤相对含水量 Relative soil water content (%) | 73.29 | 91.26 | 84.74 | 92.63 | 94.85 | 90.78 | 92.10 |
田间持水量 Field water-holding capacity (%) | 29.68 | 23.50 | 25.65 | 25.90 | 25.29 | 23.69 | 23.55 | |
土壤容重 Soil bulk density (g·cm-3) | 1.40 | 1.59 | 1.52 | 1.53 | 1.56 | 1.60 | 1.61 | |
2012-2013 | 土壤相对含水量 Relative soil water content (%) | 45.03 | 58.21 | 55.06 | 68.70 | 64.75 | 74.30 | 79.98 |
田间持水量 Field water-holding capacity (%) | 30.90 | 23.86 | 27.17 | 27.20 | 26.74 | 24.26 | 24.20 | |
土壤容重 Soil bulk density (g·cm-3) | 1.39 | 1.58 | 1.50 | 1.51 | 1.54 | 1.61 | 1.62 |
生长季 Growing season | 播种期至拔节期 Sowing to jointing | 拔节期至开花期 Jointing to anthesis | 开花期至成熟期 Anthesis to maturity | 总降水量 Total precipitation |
---|---|---|---|---|
2011-2012 | 152.0 | 31.0 | 0.0 | 183.0 |
2012-2013 | 92.0 | 32.5 | 113.5 | 238.0 |
Table 3 Precipitation at different growing stages (mm)
生长季 Growing season | 播种期至拔节期 Sowing to jointing | 拔节期至开花期 Jointing to anthesis | 开花期至成熟期 Anthesis to maturity | 总降水量 Total precipitation |
---|---|---|---|---|
2011-2012 | 152.0 | 31.0 | 0.0 | 183.0 |
2012-2013 | 92.0 | 32.5 | 113.5 | 238.0 |
处理 Treatment | 土层 Soil layer (cm) | 拔节水 Irrigated water at jointing | 开花水 Irrigated water at anthesis | |||||
---|---|---|---|---|---|---|---|---|
目标/实际土壤相对含水量 Target and actual relative soil water content (%) | 相对偏差 Relative deviation (%) | 灌水量 Amount of irrigated water (mm) | 目标/实际土壤相对含水量 Target and actual relative soil water content (%) | 相对偏差 Relative deviation (%) | 灌水量 Amount of irrigated water (mm) | |||
2011-2012 | ||||||||
D1 | 0-20 | 65 / 64.16 | 1.31 | 22.74 | 70 / 69.44 | 0.80 | 14.46 | |
D2 | 0-40 | 65 / 63.83 | 1.83 | 33.90 | 70 / 72.40 | 3.31 | 32.32 | |
D3 | 0-60 | 65 / 64.38 | 0.97 | 34.86 | 70 / 68.76 | 1.81 | 41.74 | |
D4 | 0-140 | 65 / 67.49 | 3.69 | 0.00 | 70 / 68.24 | 2.58 | 53.06 | |
2012-2013 | ||||||||
D1 | 0-20 | 65 / 64.31 | 1.07 | 32.97 | 70 / 66.97 | 4.52 | 32.87 | |
D2 | 0-40 | 65 / 63.00 | 3.18 | 43.64 | 70 / 67.83 | 3.20 | 64.81 | |
D3 | 0-60 | 65 / 66.99 | 2.97 | 65.56 | 70 / 71.60 | 2.23 | 63.73 | |
D4 | 0-140 | 65 / 64.50 | 0.77 | 24.52 | 70 / 70.39 | 0.55 | 69.66 |
Table 4 Target relative soil water content, actual relative soil water content after irrigation, relative deviation, and amount of irrigated water in the different treatments
处理 Treatment | 土层 Soil layer (cm) | 拔节水 Irrigated water at jointing | 开花水 Irrigated water at anthesis | |||||
---|---|---|---|---|---|---|---|---|
目标/实际土壤相对含水量 Target and actual relative soil water content (%) | 相对偏差 Relative deviation (%) | 灌水量 Amount of irrigated water (mm) | 目标/实际土壤相对含水量 Target and actual relative soil water content (%) | 相对偏差 Relative deviation (%) | 灌水量 Amount of irrigated water (mm) | |||
2011-2012 | ||||||||
D1 | 0-20 | 65 / 64.16 | 1.31 | 22.74 | 70 / 69.44 | 0.80 | 14.46 | |
D2 | 0-40 | 65 / 63.83 | 1.83 | 33.90 | 70 / 72.40 | 3.31 | 32.32 | |
D3 | 0-60 | 65 / 64.38 | 0.97 | 34.86 | 70 / 68.76 | 1.81 | 41.74 | |
D4 | 0-140 | 65 / 67.49 | 3.69 | 0.00 | 70 / 68.24 | 2.58 | 53.06 | |
2012-2013 | ||||||||
D1 | 0-20 | 65 / 64.31 | 1.07 | 32.97 | 70 / 66.97 | 4.52 | 32.87 | |
D2 | 0-40 | 65 / 63.00 | 3.18 | 43.64 | 70 / 67.83 | 3.20 | 64.81 | |
D3 | 0-60 | 65 / 66.99 | 2.97 | 65.56 | 70 / 71.60 | 2.23 | 63.73 | |
D4 | 0-140 | 65 / 64.50 | 0.77 | 24.52 | 70 / 70.39 | 0.55 | 69.66 |
Fig. 1 Relative soil water content in the 0-200 cm soil layers after irrigation at jointing (A, C) and anthesis (B, D) (mean ± SD). D1, D2, D3 and D4, see Table 4.
Fig. 2 Soil water consumption in the 0-200 cm soil layers from jointing to anthesis (A, C) and from anthesis to maturity (B, D) in wheat (mean ± SD). D1, D2, D3 and D4, see Table 4.
Fig. 3 Water use efficiency of flag leaves (WUEflag leaf) after 7 days (A) and 14 days (B) of anthesis in wheat (2012-2013) (mean ± SD). Different lowercase letters indicate significant differences (p < 0.05). D1, D2, D3 and D4, see Table 4.
Fig. 4 Maximum photochemical efficiency (Fv/Fm) (A), potential photosynthesis activity (Fv/Fo) (B) and electronic transpiration activity (Fm/Fo) (C) of PSII in wheat after 14 days of anthesis (2012-2013) (mean ± SD). Different lowercase letters indicate significant differences (p < 0.05). D1, D2, D3 and D4, see Table 4.
Fig. 5 Relative electron transport rate (ETR) and photochemistry quenching index (qP) after 7 days (A, C) and 14 days (B, D) of anthesis in wheat (2012-2013) (mean ± SD). Different lowercase letters indicate significant differences (p < 0.05). D1, D2, D3 and D4, see Table 4.
处理 Treatment | 籽粒产量 Grain yield (kg·hm-2) | 水分利用效率 Water use efficiency (kg·hm-2·mm-1) | 降水利用效率 Water use efficiency of precipitation (kg·hm-2·mm-1) | 土壤水利用效率 Water use efficiency of soil water (kg·hm-2·mm-1) | 灌水利用效率 Water use efficiency of irrigation water (kg·hm-2·mm-1) | 灌水生产效率 Irrigation water productivity (kg·hm-2·mm-1) |
---|---|---|---|---|---|---|
2011-2012 | ||||||
D0 | 6 495.18e | 18.47c | 35.50e | 38.50d | - | - |
D1 | 8 452.75c | 20.35a | 46.19c | 44.44b | 227.17a | 31.09a |
D2 | 9 367.35a | 20.19a | 51.19a | 43.63b | 141.46c | 27.14b |
D3 | 8 806.90b | 19.71b | 48.13b | 47.01a | 114.96d | 25.44b |
D4 | 7 847.02d | 18.65c | 42.88d | 42.50c | 147.90b | 19.88c |
2012-2013 | ||||||
D0 | 6 563.43e | 19.44c | 27.58e | 65.93d | - | - |
D1 | 8 685.67c | 22.14a | 36.49c | 98.11c | 131.92a | 37.57a |
D2 | 9 727.48a | 21.92a | 40.87a | 100.01c | 89.69b | 30.08b |
D3 | 9 299.75b | 20.41b | 39.07b | 105.35b | 71.93d | 22.99c |
D4 | 7 578.38d | 19.19c | 31.84d | 120.98a | 80.47c | 18.04d |
Table 5 Grain yield, water use efficiency and irrigation water productivity of wheat
处理 Treatment | 籽粒产量 Grain yield (kg·hm-2) | 水分利用效率 Water use efficiency (kg·hm-2·mm-1) | 降水利用效率 Water use efficiency of precipitation (kg·hm-2·mm-1) | 土壤水利用效率 Water use efficiency of soil water (kg·hm-2·mm-1) | 灌水利用效率 Water use efficiency of irrigation water (kg·hm-2·mm-1) | 灌水生产效率 Irrigation water productivity (kg·hm-2·mm-1) |
---|---|---|---|---|---|---|
2011-2012 | ||||||
D0 | 6 495.18e | 18.47c | 35.50e | 38.50d | - | - |
D1 | 8 452.75c | 20.35a | 46.19c | 44.44b | 227.17a | 31.09a |
D2 | 9 367.35a | 20.19a | 51.19a | 43.63b | 141.46c | 27.14b |
D3 | 8 806.90b | 19.71b | 48.13b | 47.01a | 114.96d | 25.44b |
D4 | 7 847.02d | 18.65c | 42.88d | 42.50c | 147.90b | 19.88c |
2012-2013 | ||||||
D0 | 6 563.43e | 19.44c | 27.58e | 65.93d | - | - |
D1 | 8 685.67c | 22.14a | 36.49c | 98.11c | 131.92a | 37.57a |
D2 | 9 727.48a | 21.92a | 40.87a | 100.01c | 89.69b | 30.08b |
D3 | 9 299.75b | 20.41b | 39.07b | 105.35b | 71.93d | 22.99c |
D4 | 7 578.38d | 19.19c | 31.84d | 120.98a | 80.47c | 18.04d |
WUEflag leaf | Fv/Fm | Fv/Fo | Fm/Fo | ETR | qP | |
---|---|---|---|---|---|---|
籽粒产量 Grain yield (kg·hm-2) | 0.775** | 0.282 | 0.677** | 0.779** | 0.914** | 0.503* |
水分利用效率 Water use efficiency (kg·hm-2·mm-1) | 0.351 | 0.012 | 0.586* | 0.710** | 0.462 | 0.350 |
Table 6 The correlation coefficient between water use efficiency of flag leaf, parameters of fluorescence and grain yield, water use efficiency after anthesis (n = 15)
WUEflag leaf | Fv/Fm | Fv/Fo | Fm/Fo | ETR | qP | |
---|---|---|---|---|---|---|
籽粒产量 Grain yield (kg·hm-2) | 0.775** | 0.282 | 0.677** | 0.779** | 0.914** | 0.503* |
水分利用效率 Water use efficiency (kg·hm-2·mm-1) | 0.351 | 0.012 | 0.586* | 0.710** | 0.462 | 0.350 |
[1] | Bai ZY, Li CD, Zhao JF, Wu TY, Zheng JF, Bi CR (2011). Effect and preliminary analysis of chromosomal control on the chlorophyll fluorescence parameters of wheat substitution lines between synthetic hexaploid wheat and Chinese spring under drought stress. Scientia Agricultura Sinica, 44, 47-57. (in Chinese with English abstract) |
[白志英, 李存东, 赵金锋, 吴同彦, 郑金凤, 毕常锐 (2011). 干旱胁迫对小麦代换系叶绿素荧光参数的影响及染色体效应初步分析. 中国农业科学, 44, 47-57.] | |
[2] | Cossani CM, Slafer GA, Savin R (2012). Nitrogen and water use efficiencies of wheat and barley under a Mediterranean environment in Catalonia. Field Crops Research, 128, 109-118. |
[3] | Duan WX, Yu ZW, Zhang YL, Wang D (2010). Effects of supplemental irrigation on water consumption characteristics and dry matter accumulation and distribution in different spike-type wheat cultivars based on testing soil moisture. Chinese Journal of Plant Ecology, 34, 1424-1432. (in Chinese with English abstract) |
[段文学, 于振文, 张永丽, 王东 (2010). 测墒补灌对不同穗型小麦品种耗水特性和干物质积累与分配的影响. 植物生态学报, 34, 1424-1432.] | |
[4] | Guo SL, Zhu HH, Dang TH, Wu JS, Liu WZ, Hao MD, Li Y, Syers JK (2012). Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China. Geoderma, 189- 190, 442-450. |
[5] | Guóth A, Tari I, Gallé Á, Csiszár J, Pécsváradi A, Cseuz L, Erdei L (2009). Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: changes in flag leaf photosynthetic activity, ABA levels, and grain yield. Journal of Plant Growth Regulation, 28, 167-176. |
[6] | Jia DY, Dai XL, He MR (2012). Polymerization of glutenin during grain development and quality expression in winter wheat in response to irrigation levels. Crop Science, 52, 1816-1827. |
[7] | Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote KJ, Hoogenboom G, Patanothai A (2013). Drought tolerance mechanisms for yield responses to pre-flowering drought stress of peanut genotypes with different drought tolerant levels. Field Crops Research, 144, 34-42. |
[8] | Karrou M, Oweis T (2012). Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment. Agricultural Water Management, 107, 94-103. |
[9] | Klughammer C, Schreiber U (2008). Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Application Notes, 1, 27-35. |
[10] |
Kramer DM, Johnson G, Kiirats O, Edwards GE (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 79, 209-218.
DOI URL PMID |
[11] | Li QQ, Dong BD, Qiao YZ, Liu MY, Zhang JW (2010). Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agricultural Water Management, 97, 1676-1682. |
[12] | Liao LJ, Zhang L, Bengtsson L (2008). Soil moisture variation and water consumption of spring wheat and their effects on crop yield under drip irrigation. Irrigation and Drainage Systems, 22, 253-270. |
[13] | Liu ZJ, Li BP, Li YH, Cui YL (2004). Research on the water use efficiency and optimal irrigation schedule of the winter wheat. Transactions of the Chinese Society of Agricultural Engineering, 20(4), 58-63. (in Chinese with English abstract) |
[刘增进, 李宝萍, 李远华, 崔远来 (2004). 冬小麦水分利用效率与最优灌溉制度的研究. 农业工程学报, 20(4), 58-63.] | |
[14] | Ma SC, Xu BC, Huang ZB, Liu L, Zhang XH, Liu WZ, Li FM (2006). Effects of partial root excision at the re-greening stage of winter wheat on root/shoot ratio, yield and water use efficiency in Loess Plateau Region, China. Journal of Plant Ecology (Chinese Version), 30, 976-982. (in Chinese with English abstract) |
[马守臣, 徐炳成, 黄占斌, 刘琳, 张小红, 刘文兆, 李凤民 (2006). 黄土旱塬冬小麦返青期断根对根冠比、水分利用及产量的影响. 植物生态学报, 30, 976-982.] | |
[15] | Ogaya R, Peñuelas J (2003). Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environmental and Experimental Botany, 50, 137-148. |
[16] | Oweis T, Hachum A (2006). Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agricultural Water Management, 80, 57-73. |
[17] | Patanè C, Cosentino SL (2013). Yield, water use and radiation use efficiencies of kenaf ( Hibiscus cannabinus L.) under reduced water and nitrogen soil availability in a semi-arid Mediterranean area. European Journal of Agronomy, 46, 53-62. |
[18] | Qiao YZ, Zhang HZ, Dong BD, Shi CH, Li YX, Zhai HM, Liu MY (2010). Effects of elevated CO2 concentration on growth and water use efficiency of winter wheat under two soil water regimes. Agricultural Water Management, 97, 1742-1748. |
[19] | Qin HH, Sun A, Zhang BX, Zheng CM (2010). System dynamics analysis of water resource carrying capacity in Shandong Province of China. http://www.systemdynam-ics.org/conferences/2010/proceed/papers/P1078.pdf. Cited: 2013-10. |
[20] | Qiu GY, Wang LM, He XH, Zhang XY, Chen SY, Chen J, Yang YH (2008). Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the North China Plain. Agricultural and Forest Meteorology, 148, 1848-1859. |
[21] | Sadras VO, Lawson C (2013). Nitrogen and water-use efficiency of Australian wheat varieties released between 1958 and 2007. European Journal of Agronomy, 46, 34-41. |
[22] | Sagaram M, Burns JK (2009). Leaf chlorophyll fluorescence parameters and Huanglongbing. Journal of the American Society for Horticultural Science, 134, 194-201. |
[23] | Sayed OH (2003). Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 41, 321-330. |
[24] | Sepaskhah AR, Tafteh A (2012). Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. Agricultural Water Management, 112, 55-62. |
[25] | Shan L, Kang SZ, Wu PT (2004). Water Saving Agriculture in China. China Agriculture Press, Beijing. 229-230. (in Chinese) |
[山仑, 康绍忠, 吴普特 (2004). 中国节水农业. 中国农业出版社, 北京. 229-230.] | |
[26] | Shangguan ZP, Shao MA, Dyckmans J (2000). Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. Journal of Plant Physiology, 156, 46-51. |
[27] | Shao LW, Zhang XY, Chen SY, Sun HY, Wang ZH (2009). Effects of irrigation frequency under limited irrigation on root water uptake, yield and water use efficiency of winter wheat. Irrigation and Drainage, 58, 393-405. |
[28] | Shao LW, Zhang XY, Sun HY, Chen SY, Wang YM (2011). Yield and water use response of winter wheat to winter irrigation in the North China Plain. Journal of Soil and Water Conservation, 66, 104-113. |
[29] | Sharma DK, Andersen BS, Ottosen CO, Rosenqvist E (2012). Phenotyping of wheat cultivars for heat tolerance using chlorophyll a fluorescence. Functional Plant Biology, 39, 936-947. |
[30] | Stone L, Schlegel AJ (2006). Yield-water supply relationships of grain sorghum and winter wheat. Agronomy Journal, 98, 1359-1366. |
[31] | Sun HY, Liu CM, Zhang XY, Shen YJ, Zhang YQ (2006). Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agricultural Water Management, 85, 211-218. |
[32] |
Tambussi EA, Nogués S, Araus JL (2005). Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta, 221, 446-458.
DOI URL PMID |
[33] | Walsh OS, Klatt AR, Solie JB, Godsey CB, Raum WR (2013). Use of soil moisture data for refined greenseeker sensor based nitrogen recommendations in winter wheat ( Triticum aestivum L.). Precision Agriculture, 14, 343-356. |
[34] | Wang D, Yu ZW, White PJ (2013). The effect of supplemental irrigation after jointing on leaf senescence and grain filling in wheat. Field Crops Research, 151, 35-44. |
[35] | Wu XL, Bao WK (2011). Leaf growth, gas exchange and chlorophyll fluorescence parameters in response to different water deficits in wheat cultivars. Plant Production Science, 14, 254-259. |
[36] |
Xu ZZ, Yu ZW, Zhao JY (2013). Theory and application for the promotion of wheat production in China: past, present and future. Journal of the Science of Food and Agriculture, 93, 2339-2350.
URL PMID |
[37] | Xue Q, Zhu Z, Musick JT, Stewart BA, Dusek DA (2003). Root growth and water uptake in winter wheat under deficit irrigation. Plant and Soil, 257, 151-161. |
[38] | Zhang BC, Li FM, Huang GB, Cheng ZY, Zhang YH (2006). Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agricultural Water Management, 79, 28-42. |
[39] | Zhang XY, Wang YZ, Sun HY, Chen SY, Shao LW (2013). Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply. Irrigation Science, 31, 1103-1112. |
[40] | Zhang YC, Shen YJ, Sun HY, Gates JB (2011). Evapotranspiration and its partitioning in an irrigated winter wheat field: a combined isotopic and micrometeorologic approach. Journal of Hydrology, 408, 203-211. |
[41] | Zlatev Z (2009). Drought-induced changes in chlorophyll fluorescence of young wheat plants. Biotechnology & Biotechnological Equipment, 23, 438-441. |
[1] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[2] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[3] | HAN Lu, YANG Fei, WU Ying-Ming, NIU Yun-Ming, ZENG Yi-Ming, CHEN Li-Xin. Responses of short-term water use efficiency to environmental factors in typical trees and shrubs of the loess area in West Shanxi, China [J]. Chin J Plant Ecol, 2021, 45(12): 1350-1364. |
[4] | ZHOU Xiong, SUN Peng-Sen, ZHANG Ming-Fang, LIU Shi-Rong. Spatio-temporal characteristics of vegetation water use efficiency and their relationships with climatic factors in alpine and subalpine area of southwestern China [J]. Chin J Plant Ecol, 2020, 44(6): 628-641. |
[5] | FENG Zhao-Zhong, LI Pin, ZHANG Guo-You, LI Zheng-Zhen, PING Qin, PENG Jin-Long, LIU Shuo. Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: problems and prospective [J]. Chin J Plant Ecol, 2020, 44(5): 461-474. |
[6] | Aizezitiyuemaier MAIMAITI, Yusufujiang RUSULI, HE Hui, Baihetinisha ABUDUKERIMU. Spatio-temporal characteristics of vegetation water use efficiency and its relationship with climate factors in Tianshan Mountains in Xinjiang from 2000 to 2017 [J]. Chin J Plant Ecol, 2019, 43(6): 490-500. |
[7] | LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898. |
[8] | Chao-Yang FENG, He-Song WANG, Jian-xin SUN. Temporal changes of vegetation water use efficiency and its influencing factors in Northern China [J]. Chin J Plant Ecol, 2018, 42(4): 453-465. |
[9] | Ting XU, Cheng-Zhang ZHAO, Ling HAN, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG. Correlation between vein density and water use efficiency of Salix matsudana in Zhangye Wetland, China [J]. Chin J Plan Ecolo, 2017, 41(7): 761-769. |
[10] | Rui GUO, Ji ZHOU, Fan YANG, Feng LI. Metabolic responses of wheat roots to alkaline stress [J]. Chin J Plant Ecol, 2017, 41(6): 683-692. |
[11] | Jing-Xin XU, You-Fei ZHENG, Bo-Ru MAI, Hui ZHAO, Zhong-Fang CHU, Ji-Qing HUANG, Yue YUAN. Characteristics and partitioning of ozone dry deposition measured by eddy-covariance technology in a winter wheat field [J]. Chin J Plant Ecol, 2017, 41(6): 670-682. |
[12] | Xiao LIU, Chao QI, Yi-Lan YAN, Guo-Fu YUAN. Revised algorithm of ecosystem water use efficiency for semi-arid steppe in the Loess Plateau of China [J]. Chin J Plant Ecol, 2017, 41(5): 497-505. |
[13] | Xiao-Tao HUANG, Ge-Ping LUO. Spatio-temporal characteristics of evapotranspiration and water use efficiency in grasslands of Xinjiang [J]. Chin J Plan Ecolo, 2017, 41(5): 506-518. |
[14] | GAO Lin, WANG Xiao-Fei, GU Xing-Fa, TIAN Qing-Jiu, JIAO Jun-Nan, WANG Pei-Yan, LI Dan. Exploring the influence of soil types underneath the canopy in winter wheat leaf area index remote estimating [J]. Chin J Plant Ecol, 2017, 41(12): 1273-1288. |
[15] | Cheng-Yan ZHENG, Ai-Xing DENG, Hojatollah LATIFMANESH, Zhen-Wei SONG, Jun ZHANG, Li WANG, Wei-Jian ZHANG. Warming impacts on the dry matter accumulation, and translocation and nitrogen uptake and utilization of winter wheat on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2017, 41(10): 1060-1068. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn