Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (5): 497-505.DOI: 10.17521/cjpe.2016.0378
• Research Articles • Next Articles
Xiao LIU1,2, Chao QI1,2, Yi-Lan YAN1,2, Guo-Fu YUAN1,2,*
Online:
2017-05-10
Published:
2017-06-22
Contact:
Guo-Fu YUAN
About author:
KANG Jing-yao(1991-), E-mail: Xiao LIU, Chao QI, Yi-Lan YAN, Guo-Fu YUAN. Revised algorithm of ecosystem water use efficiency for semi-arid steppe in the Loess Plateau of China[J]. Chin J Plant Ecol, 2017, 41(5): 497-505.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0378
类型 Type | 符号 Symbol | 代号 Code | 表达式 Formulation | 单位 Unit |
---|---|---|---|---|
水分利用效率 Water use efficiency | WUE | WUE0 | GPP/ET | g ·kg-1 |
内在水分利用效率 Inherent water use efficiency | IWUE | WUE1.0 | GPP × VPD /ET | g hPa·kg-1 |
固有水分利用效率 Underlying water use efficiency | uWUE | WUE0.5 | GPP × VPD0.5 /ET | g hPa0.5·kg-1 |
优化水分利用效率 Optimal water use efficiency | oWUE | WUEk* | GPP × VPDk* /ET | g hPak*·kg-1 |
Table 1 Basic information for various algorithms of calculating water use efficiency at ecosystem level
类型 Type | 符号 Symbol | 代号 Code | 表达式 Formulation | 单位 Unit |
---|---|---|---|---|
水分利用效率 Water use efficiency | WUE | WUE0 | GPP/ET | g ·kg-1 |
内在水分利用效率 Inherent water use efficiency | IWUE | WUE1.0 | GPP × VPD /ET | g hPa·kg-1 |
固有水分利用效率 Underlying water use efficiency | uWUE | WUE0.5 | GPP × VPD0.5 /ET | g hPa0.5·kg-1 |
优化水分利用效率 Optimal water use efficiency | oWUE | WUEk* | GPP × VPDk* /ET | g hPak*·kg-1 |
时间尺度 Time scales | 水分利用 效率 WUE | 内在水分利 用效率 IWUE | 固有水分利 用效率 uWUE |
---|---|---|---|
小时尺度 Hourly time scales | | | |
日尺度 Daily time scales | | | |
年尺度 Yearly time scales | | | |
Table 2 Algorithms for calculating water use efficiency (WUE) at hourly, daily and yearly time scale
时间尺度 Time scales | 水分利用 效率 WUE | 内在水分利 用效率 IWUE | 固有水分利 用效率 uWUE |
---|---|---|---|
小时尺度 Hourly time scales | | | |
日尺度 Daily time scales | | | |
年尺度 Yearly time scales | | | |
Fig. 1 Relationship between GPP (A, D, G), GPP × VPD (B, E, H), GPP × VPD0.5 (C, F, I) and ET at hourly scale during the growing season of 2014-2016. ET, evapotranspiration; GPP, gross primary productivity; VPD, vapor pressure deficit.
Fig. 2 Relationship between GPP (A, D, G), GPP × VPD (B, E, H), GPP × VPD0.5 (C, F, I) and ET at daily scale during the growing season of 2014-2016. ET, evapotranspiration; GPP, gross primary productivity; VPD, vapor pressure deficit.
年份 Year | 水分利用效率 WUE | 内在水分利用效率 IWUE | 固有水分利用效率 uWUE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
相关 系数 r | 变异 系数 Cv | 日平均值 Mean daily value | 年值 Yearly value | 相关 系数 r | 变异 系数 Cv | 日平均值 Mean daily value | 年值 Yearly value | 相关 系数 r | 变异 系数 Cv | 日平均值 Mean daily value | 年值 Yearly value | |
2014 | 0.70 | 0.40 | 1.655 5 | 1.523 5 | 0.81 | 0.54 | 20.534 4 | 23.639 5 | 0.83 | 0.38 | 5.563 9 | 5.829 7 |
2015 | 0.55 | 0.33 | 1.134 4 | 1.075 7 | 0.81 | 0.42 | 16.993 5 | 18.173 0 | 0.83 | 0.30 | 4.274 9 | 4.327 4 |
2016 | 0.38 | 0.41 | 1.177 5 | 1.097 0 | 0.77 | 0.63 | 8.763 6 | 10.264 1 | 0.84 | 0.38 | 2.943 6 | 3.137 0 |
Table 3 Comparisons of the daily and yearly values of water use efficiency (WUE), inherent water use efficiency (IWUE), and underlying water use efficiency (uWUE) in 2014-2016
年份 Year | 水分利用效率 WUE | 内在水分利用效率 IWUE | 固有水分利用效率 uWUE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
相关 系数 r | 变异 系数 Cv | 日平均值 Mean daily value | 年值 Yearly value | 相关 系数 r | 变异 系数 Cv | 日平均值 Mean daily value | 年值 Yearly value | 相关 系数 r | 变异 系数 Cv | 日平均值 Mean daily value | 年值 Yearly value | |
2014 | 0.70 | 0.40 | 1.655 5 | 1.523 5 | 0.81 | 0.54 | 20.534 4 | 23.639 5 | 0.83 | 0.38 | 5.563 9 | 5.829 7 |
2015 | 0.55 | 0.33 | 1.134 4 | 1.075 7 | 0.81 | 0.42 | 16.993 5 | 18.173 0 | 0.83 | 0.30 | 4.274 9 | 4.327 4 |
2016 | 0.38 | 0.41 | 1.177 5 | 1.097 0 | 0.77 | 0.63 | 8.763 6 | 10.264 1 | 0.84 | 0.38 | 2.943 6 | 3.137 0 |
年份 Year | k*值 k* value | r (k = k*) | r (k = 0.5) | |||
---|---|---|---|---|---|---|
小时尺度 Hourly | 日尺度 Daily | 小时尺度 Hourly | 日尺度 Daily | 小时尺度 Hourly | 日尺度 Daily | |
2014 | 0.42 | 0.40 | 0.76 | 0.85 | 0.75 | 0.83 |
2015 | 0.36 | 0.40 | 0.75 | 0.84 | 0.74 | 0.83 |
2016 | 0.38 | 0.37 | 0.82 | 0.85 | 0.80 | 0.84 |
Table 4 k* values of optimal water use efficiency (oWUE) and its correlation coefficient (r) with oWUE and underlying water use efficiency (uWUE) at the hourly and daily scales during 2014-2016
年份 Year | k*值 k* value | r (k = k*) | r (k = 0.5) | |||
---|---|---|---|---|---|---|
小时尺度 Hourly | 日尺度 Daily | 小时尺度 Hourly | 日尺度 Daily | 小时尺度 Hourly | 日尺度 Daily | |
2014 | 0.42 | 0.40 | 0.76 | 0.85 | 0.75 | 0.83 |
2015 | 0.36 | 0.40 | 0.75 | 0.84 | 0.74 | 0.83 |
2016 | 0.38 | 0.37 | 0.82 | 0.85 | 0.80 | 0.84 |
Fig. 3 Comparisons between observed and predicted daily gross primary production (GPP) in 2015: A and E with water use efficiency, B and F with inherent water use efficiency, C and G with underlying water use efficiency, and D and H with optimal water use efficiency. NSE, Nash-Sutcliffe efficiency coefficient.
[1] | Baldocchi D (1994). A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop: II. CO2 exchange and water use efficiency.Agricultural and Forest Meteorology, 67(3-4), 291-321. |
[2] | Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ, Cotrufo MF (2013). Elevated CO2 increases tree-level intrinsic water use efficiency: Insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites.The New Phytologist, 197, 544-554. |
[3] | Beer C, Ciais P, Reichstein M, Baldocchi D, Law BE, Papale D, Soussana JF, Ammann C, Buchmann N, Frank D, Gianelle D, Janssens IA, Knohl A, Kostner B, Moors E, Roupsard O, Verbeeck H, Vesala T, Williams CA, Wohlfahrt G (2009). Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Global Biogeochemical Cycles, 23, GB2018. doi: 10.1029/ 2008GB003233. |
[4] | Beer C, Reichstein M, Ciais P, Farquhar GD, Papale D (2007). Mean annualGPP of Europe derived from its water balance. Geophysical Research Letters, 34, L05401, doi:10.1029/2006GL029006, 2007. |
[5] | Farquhar G (1977). Stomatal function in relation to leaf metabolism and environment: Stomatal function in the regulation of gas exchange.Symposia of the Society for Experimental Biology, 31, 471-505. |
[6] | Grossiord C, Gessler A, Granier A, Pollastrini M, Bussotti F, Bonal D (2014). Interspecific competition influences the response of oak transpiration to increasing drought stress in a mixed Mediterranean forest.Forest Ecology and Management, 318, 54-61. |
[7] | Hu ZM, Yu GR, Wang QF, Zhao FH (2009). Ecosystem level water use efficiency: A review.Acta Ecologica Sinica, 29, 1498-1507. (in Chinese with English abstract)[胡中民, 于贵瑞, 王秋凤, 赵风华 (2009). 生态系统水分利用效率研究进展. 生态学报, 29, 1498-1507.] |
[8] | Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise.Nature, 499, 324-327. |
[9] | Legates DR, McCabe GJ (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation.Water Resources Research, 35, 233-241. |
[10] | Leonardi S, Gentilesca T, Guerrieri R, Ripullone F, Magnani F, Mencuccini M, Noije TV, Borghetti M (2012). Assessing the effects of nitrogen deposition and climate on carbon isotope discrimination and intrinsic water-use efficiency of angiosperm and conifer trees under rising CO2 conditions.Global Chang Biology, 18, 2925-2944. |
[11] | Niu SL, Xing XR, Zhang Z, Xia JY, Zhou XH, Song B, Li LH, Wan SQ (2011). Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe.Global Change Biology, 17, 1073-1082. |
[12] | Priestley GHB, Taylor RJ (1972). On the assessment of surface heat flux and evaporation using large-scale parameters.Monthly Weather Review, 100, 81-92. |
[13] | Scanlon TM, Albertson JD (2004). Canopy scale measurements of CO2 and water vapor exchange along a precipitation gradient in southern Africa.Global Change Biology, 10, 329-341. |
[14] | Singh JS, Gupta SR (1977). Plant decomposition and soil respiration in terrestrial ecosystems.Botanical Review, 43, 499-528. |
[15] | Wang SG, He GJ, Liu DS, Wang XQ (2008). Advances in carbon cycle model of forest ecosystem.Science & Technology Review, 26(9), 72-77. (in Chinese with English abstract)[王绍刚, 何国金, 刘定生, 汪小钦 (2008). 森林碳循环模型方法研究进展. 科技导报, 26(9), 72-77.] |
[16] | Wohlfahrt G, Haslwanter A, Hortnagl L, Jasoni RL, Fenstermaker LF, Arnone JA, Hammerle A (2009). On the consequences of the energy imbalance for calculating surface conductance to water vapour.Agricultural and Forest Meteorology, 149, 1556-1559. |
[17] | Yang YT, Long D, Shang SH (2013). Remote estimation of terrestrial evapotranspiration without using meteorological data.Geophysical Research Letters, 40, 3026-3030. |
[18] | Yu GR, Wang QF et al.(2010). Ecophysiology of Plant Photosynthesis,Transpiration, and Water Use. Science Press, Beijing. (in Chinese)[于贵瑞, 王秋凤等 (2010). 植物光合、蒸腾与水分利用的生理生态学 . 科学出版社, 北京.] |
[19] | Zhang LX, Hu ZM, Fan JW, Shao QQ, Tang FP (2014). Advances in the spatiotemporal dynamics in ecosystem water use efficiency at regional scale.Advances in Earth Science, 29, 691-699. (in Chinese with English abstract)[张良侠, 胡中民, 樊江文, 邵全琴, 唐风沛 (2014). 区域尺度生态系统水分利用效率的时空变异特征研究进展. 地球科学进展, 29, 691-699.] |
[20] | Zhao C, Yuan GF, Liu X, Shao MA, Yi XB (2015). Application of cosmic-ray method to soil moisture measurement of grassland in the Loess Plateau.Acta Pedologica Sinica, 52, 1438-1444. (in Chinese with English abstract)[赵纯, 袁国富, 刘晓, 邵明安, 易小波 (2015). 宇宙射线土壤水分观测方法在黄土高原草地植被的应用. 土壤学报, 52, 1438-1444.] |
[21] | Zhou S, Yu B, Huang Y, Wang G (2014). The effect of vapor pressure deficit on water use efficiency at the subdaily time scale.Geophysical Research Letters, 41, 5005-5013. |
[22] | Zhou S, Yu B, Huang Y, Wang G (2015). Daily underlying water use efficiency for AmeriFlux sites.Journal of Geophysical Research Biogeosciences, 120, 887-902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn