Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (1): 43-52.doi: 10.17521/cjpe.2016.0174

• Research Articles • Previous Articles     Next Articles

Estimation of biomass allocation and carbon density of Rhododendron simsii shrubland in the subtropical mountainous areas of China

Qiang ZHANG1,2, Jia-Xiang LI3, Wen-Ting XU1, Gao-Ming XIONG1, Zong-Qiang XIE1,*()   

  1. 1State Key Laboratory of Vegetation and Environment Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

    2University of Chi- nese Academy of Sciences, Beijing 100049, China

    3Faculty of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
  • Received:2016-05-17 Accepted:2016-09-21 Online:2017-01-23 Published:2017-01-10
  • Contact: Zong-Qiang XIE E-mail:xie@ibcas.ac.cn
  • About author:

    KANG Jing-yao(1991-), E-mail: kangjingyao_nj@163.com

Abstract:

Aims As an important potential carbon sink, shrubland ecosystem plays a vital role in global carbon balance and climate regulation. Our objectives were to derive appropriate regression models for shrub biomass estimation, and to reveal the biomass allocation pattern and carbon density in Rhododendron simsii shrubland.
Methods We conducted investigations in 27 plots, and developed biomass regression models for shrub species to estimate shrub biomass. The biomass of herb and litterfall were obtained through harvesting. Plant samples were collected from each plot to measure carbon content in different organs.
Important findings The results showed that the power and linear models were the most appropriate equation forms. The D and D2H (where D was the basal diameter (cm) and H was the shrub height (m)) were good predictors for organ biomass and total biomass of shrubs. All of the biomass models reached extremely significant level, and could be used to estimate shrub biomass with high accuracy. It was more difficult to predict leaf and annual branch biomass than stem biomass, because leaf and annual branch were susceptible to herbivores and inter-plant competition. The mean biomass of the shrub layer was 20.78 Mg·hm-2, in which Rhododendron simsii and Symplocos paniculata biomass accounted for 93.63%. Influenced by both environment and species characteristics, the biomass of the shrub layer organs was in the order of stem > root > leaf > annual branch. The root:shoot ratio of the shrub layer was 0.32, which was less than other shrubs in subtropical regions. The relative higher aboveground biomass allocation reflected the adaptation of plants to the warm and humid environment for more photosynthesis. The mean total community biomass was 26.26 Mg·hm-2, in which shrub layer, herb layer and litter layer accounted for 79.14%, 7.62% and 13.25%, respectively. Litter biomass was relatively high, which suggested that this community had high nutrient return. There were significant correlations among aboveground biomass, belowground biomass and total biomass of shrub layer and herb layer. The mean biomass carbon density of the community was 11.70 Mg·hm-2 and the carbon content ratio was 44.55%. The carbon density was usually obtained using the conversion coefficient of 0.5 in previous studies, which could overestimate carbon density by 12.22%.

Key words: regression model, root/shoot ratio, nutrient return, aboveground biomass, belowground biomass, carbon content ratio

Table 1

Regression models for biomass of shrub species in Rhododendron shrubland"

物种
Species
器官
Organ
自变量
Variable
方程
Equation
样本数
Number of samples
a b R2 标准误差
Standard error
F
F value
杜鹃 根 Root x = D y = axb 40 0.010 2 2.428 5 0.714 0.347 9 94.85***
Rhododendron 茎 Stem x = D y = axb 45 0.035 7 2.332 0 0.928 0.189 6 550.97***
simsii 叶 Leaf x = D y = axb 43 0.003 7 2.122 5 0.714 0.393 2 102.48***
当年枝 Annual branch x = D y = axb 45 0.000 4 2.975 0 0.608 0.695 6 66.57***
地上 Aboveground x = D y = axb 45 0.040 2 2.310 8 0.926 0.190 3 537.30***
总 Total x = D y = axb 43 0.054 6 2.227 2 0.895 0.221 5 348.07***
白檀 根 Root x = D y = axb 30 0.019 5 2.461 8 0.912 0.267 2 290.07***
Symplocos 茎 Stem x = D2H y = axb 30 0.023 0 0.981 0 0.949 0.213 1 518.53***
paniculata 叶 Leaf x = D y = axb 29 0.004 5 2.406 1 0.880 0.316 2 197.48***
当年枝 Annual branch x = D2H y = a + bx 27 0.000 6 0.004 1 0.799 0.008 0 99.38***
地上 Aboveground x = D2H y = axb 30 0.029 4 0.962 6 0.948 0.210 0 514.51***
总 Total x = D2H y = axb 30 0.049 1 0.941 3 0.943 0.215 5 466.99***
落叶混合种 根 Root x = D2H y = axb 32 0.016 2 0.842 4 0.776 0.663 9 103.73***
Mixed deciduous 茎 Stem x = D2H y = a + bx 32 0.024 4 0.027 4 0.945 0.116 0 495.86***
species 叶 Leaf x = D2H y = axb 29 0.005 4 0.815 5 0.866 0.497 2 174.31***
当年枝 Annual branch x = D2H y = axb 13 0.004 9 0.681 2 0.801 0.645 8 44.38***
地上 Aboveground x = D2H y = a + bx 31 0.011 2 0.032 0 0.981 0.077 4 1530.32***
总 Total x = D2H y = axb 30 0.057 3 0.885 9 0.947 0.303 7 502.33***
常绿混合种 根 Root x = D2H y = axb 159 0.055 7 0.644 6 0.684 0.673 6 339.36***
Mixed evergreen 茎 Stem x = D2H y = axb 158 0.040 2 0.941 7 0.902 0.433 9 1432.91***
species 叶 Leaf x = D2H y = axb 165 0.019 0 0.611 3 0.695 0.618 0 370.74***
当年枝 Annual branch x = D2H y = a + bx 155 0.000 6 0.016 0 0.751 0.012 7 460.53***
地上 Aboveground x = D2H y = axb 158 0.068 1 0.854 8 0.908 0.381 0 1531.39***
总 Total x = D2H y = axb 160 0.117 1 0.810 5 0.893 0.391 2 1312.23***

Fig. 1

The biomass allocation pattern of the shrub layer in Rhododendron shrubland (mean ± SE)."

Table 2

Individual density and biomass allocation of shrub layer in different species"

物种
Species
植株个体 Individuals 生物量 Biomass
密度
Density (No.·hm-2)
占灌木层比例
Ratio of the shrub layer (%)
生物量
Biomass (kg·hm-2)
占灌木层比例
Ratio of the shrub layer (%)
杜鹃 Rhododendron simsii 84 074 87.54 15 988.05 79.61
白檀 Symplocos paniculata 6 711 6.99 2 816.53 14.02
尖叶日本绣线菊 Spiraea japonica var. acuminata 1 556 1.62 101.83 0.51
四川冬青 Ilex szechwanensis 1 452 1.51 210.97 1.05
直角荚蒾 Viburnum foetidum var. rectangulatum 548 0.57 37.04 0.18
格药柃 Eurya muricata 430 0.45 83.18 0.41
圆锥绣球 Hydrangea paniculata 370 0.39 315.98 1.57
波叶红果树 Stranvaesia davidiana var. undulata 237 0.25 41.76 0.21
水马桑 Weigela japonica var. sinica 207 0.22 46.94 0.23
鹿角杜鹃 Rhododendron latoucheae 148 0.15 239.75 1.19
尾叶樱桃 Cerasus dielsiana 104 0.11 124.24 0.62
中国绣球 Hydrangea chinensis 44 0.05 19.27 0.10
四照花 Dendrobenthamia japonica var. chinensis 44 0.05 8.90 0.04
石灰花楸 Sorbus folgneri 30 0.03 11.34 0.06
紫珠 Callicarpa bodinieri var. bodinieri 30 0.03 6.79 0.03
胡颓子 Elaeagnus pungens 15 0.02 18.66 0.09
三桠乌药 Lindera obtusiloba 15 0.02 7.69 0.04
小叶栎 Quercus chenii 15 0.02 2.90 0.01
长叶冻绿 Rhamnus crenata 15 0.02 1.13 0.01

Fig. 2

The community biomass allocation pattern of Rhododendron shrubland in different layers (mean ± SE)."

Fig. 3

The relationship between above- and belowground biomass of the shrub layer and the herb layer in Rhododendron shrubland."

Table 3

Estimation of biomass carbon density of Rhododendron shrubland (Mg·hm-2)"

灌木层碳密度 Shrub layer carbon density 草本层碳密度
Herb layer carbon density
凋落物层碳密度
Litter layer carbon density
总碳密度
Total carbon density
根碳密度
Root carbon density
茎碳密度
Stem carbon density
叶碳密度
Leaf carbon density
当年枝碳密度
Annual branch carbon density
地上部分碳密度
Aboveground carbon density
6.38 (0.50) 0.62 (0.05) 0.30 (0.05) 0.35 (0.03) 7.65 (0.57)
地下部分碳密度
Belowground carbon density
2.18 (0.19) 0.31 (0.03) 2.48 (0.18)
总碳密度
Total carbon density
9.48 (0.77) 0.66 (0.06) 1.56 (0.11) 11.70 (0.74)
[1] Araújo TM, Higuchi N, de Carvalho Júnior JADC (1999). Comparison of formulae for biomass content determina- tion in a tropical rain forest site in the state of Pará, Brazil.Forest Ecology and Management, 117, 43-52.
[2] Basuki T, van Laake P, Skidmore A, Hussin Y (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests.Forest Ecology and Management, 257, 1684-1694.
[3] Bloom AJ, Chapin FS, Mooney HA (1985). Resource limitation in plants—An economic analogy.Annual Review of Ecology and Systematics, 16, 363-392.
[4] Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997). Root biomass allocation in the world’s upland forests.Oecologia, 111, 1-11.
[5] Chun ML, Xie ZQ, Zhao CM, Fan DY, Xu XW, Ping L (2009). Litter production and nutrient characteristic of Abies far-gesii natural forest in Shennongjia Nature Reserve, Hubei, China. Chinese Journal of Plant Ecology, 33, 492-498. (in Chinese with English abstract)[春敏莉, 谢宗强, 赵常明, 樊大勇, 徐新武, 平亮 (2009). 神农架巴山冷杉天然林凋落量及养分特征. 植物生态学报, 33, 492-498.]
[6] Fang JY, Chen AP (2001). Dynamic forest biomass carbon pools in China and their significance.Acta Botanica Sinica, 43, 967-973. (in Chinese with English abstract)[方精云, 陈安平 (2001). 中国森林植被碳库的动态变化及其意义. 植物学报, 43, 967-973.]
[7] Fang JY, Guo ZD, Piao SL, Chen AP (2007). Estimation of carbon sink of terrestrial vegetation in 1981-2000.Science in China: Series D, 37, 804-812. (in Chinese)[方精云, 郭兆迪, 朴世龙, 陈安平 (2007). 1981-2000年中国陆地植被碳汇的估算. 中国科学D辑, 37, 804-812.]
[8] Gao Q, Yang XC, Yin CY, Liu Q (2014). Estimation of biomass allocation and carbon density in alpine dwarf shrubs in Garzê Zangzu Autonomous Prefecture of Sichuan Province.Chinese Journal of Plant Ecology, 38, 355-365. (in Chinese with English abstract)[高巧, 阳小成, 尹春英, 刘庆 (2014). 四川省甘孜藏族自治州高寒矮灌丛生物量分配及其碳密度的估算. 植物生态学报, 38, 355-365.]
[9] Goodale CL, Davidson EA (2002). Carbon cycle: Uncertain sinks in the shrubs.Nature, 418, 593-594.
[10] He JS, Wang QB, Hu D (1997). Studies on the biomass of topical shrubland and their regeneration capacity after cutting.Acta Phytoecologica Sinica, 21, 512-520. (in Chinese with English abstract)[贺金生, 王其兵, 胡东 (1997). 长江三峡地区典型灌丛的生物量及其再生能力. 植物生态学报, 21, 512-520.]
[11] Hou L (2009). Carbon Balance in Natural Secondary Pinus tabulaeformis Forest at Huoditang Forest Zone in the Qinling Mountains. PhD dissertation, Northwest A & F University, Yangling, Shaanxi. 30-32. (in Chinese with English abstract)[侯琳 (2009). 秦岭火地塘林区天然次生油松林碳平衡研究. 博士学位论文, 西北农林科技大学, 陕西杨凌. 30-32.]
[12] Hu HF, Wang ZH, Liu GH, Fu BJ (2006). Vegetation carbon storage of major shrublands in China.Journal of Plant Ecology (Chinese Version), 30, 539-544. (in Chinese with English abstract)[胡会峰, 王志恒, 刘国华, 傅伯杰 (2006). 中国主要灌丛植被碳储量. 植物生态学报, 30, 539-544.]
[13] Ketterings QM, Coe R, van Noordwijk M, Palm CA (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests.Forest Ecology and Management, 146, 199-209.
[14] Li JX (2015). Biodiversity Pattern and Ecosystem Productivity in Shrubland Across the Subtropical Region in China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. 76-84. (in Chinese with English abstract).[李家湘 (2015). 亚热带灌丛生物多样性及其与生产力的关系. 博士学位论文, 中国科学院植物研究所, 北京. 76-84.]
[15] Li JX, Zhang X, Xie ZQ, Lu CF, Tu XY, Xun Y (2015). Community composition and structure of Rhododendron simsii shrubland in the Dawei Mountain, Hunan Province. Biodiversity Science, 23, 815-823. (in Chinese with English abstract)[李家湘, 张旭, 谢宗强, 卢从发, 涂向阳, 寻院 (2015). 湖南大围山杜鹃灌丛的群落组成及结构特征. 生物多样性, 23, 815-823.]
[16] Li XR, Liu JQ, Chen YR, Hu LL, Yang FT (2006). Aboveground biomass of three conifers in Qianyanzhou plantation.Chinese Journal of Applied Ecology, 17, 1382-1388. (in Chinese with English abstract)[李轩然, 刘琪璟, 陈永瑞, 胡理乐, 杨风亭 (2006). 千烟洲人工林主要树种地上生物量的估算. 应用生态学报, 17, 1382-1388.]
[17] Li Y, Zhang JG, Duan AG, Xiang CW (2010). Selection of biomass estimation models for Chinese fir plantation.Chinese Journal of Applied Ecology, 21, 3036-3046. (in Chinese with English abstract)[李燕, 张建国, 段爱国, 相聪伟 (2010). 杉木人工林生物量估算模型的选择. 应用生态学报, 21, 3036-3046.]
[18] Li YL, Gong HD (2015). Characteristics of community structure and biomass distribution of Rhododendron adenogynum shrub in Laojunshan Mountain. Journal of West China Forestry Science, 44, 121-124. (in Chinese with English abstract)[李云龙, 巩合德 (2015). 云南老君山腺房杜鹃灌丛群落特征及生物量分配特征研究. 西部林业科学, 44, 121-124.]
[19] Lü XT, Tang JW, He YC, Duan WG, Song JP, Xu HL, Zhu SZ (2007). Biomass and its allocation in tropical seasonal rain forest in Xishuangbanna, southwest China.Journal of Plant Ecology (Chinese Version), 31, 11-22. (in Chinese with English abstract)[吕晓涛, 唐建维, 何有才, 段文贵, 宋军平, 许海龙, 朱胜忠 (2007). 西双版纳热带季节雨林的生物量及其分配特征. 植物生态学报, 31, 11-22.]
[20] Mariessii A, Betule E, Toshihicoko H (1991). Growth patterns of tree height and stem diameter in populations ofAbies veitchi. Journal of Ecology, 79, 1085-1095.
[21] McCarthy MC, Enquist BJ (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation.Functional Ecology, 21, 713-720.
[22] McConnaughay K, Coleman J (1999). Biomass allocation in plants: Ontogeny or optimality? A test along three resource gradients.Ecology, 80, 2581-2593.
[23] [中华人民共和国环境保护部, 中国科学院 (. Cited: 2016-05-17.
[24] Mokany K, Raison RJ, Prokushkin AS (2006). Critical analysis of root:shoot ratios in terrestrial biomes.Global Change Biology, 12, 84-96.
[25] Montes N, Gauquelin T, Badri W, Bertaudiere V, Zaoui EH (2000). A non-destructive method for estimating above- ground forest biomass in threatened woodlands.Forest Ecology and Management, 130, 37-46.
[26] Návar J (2009). Allometric equations for tree species and carbon stocks for forests of northwestern Mexico.Forest Ecology and Management, 257, 427-434.
[27] Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control.New Phytologist, 193, 30-50.
[28] Spain AV (1984). Litterfall and the standing crop of litter in three topical Australian rain forests.Journal of Ecology, 72, 947-961.
[29] Sturm M, Racine C, Tape K (2001). Climate change: Increasing shrub abundance in the Arctic.Nature, 411, 546-547.
[30] Vourlitis GL, Zorba G, Pasquini SC, Mustard R (2007). Carbon and nitrogen storage in soil and litter of southern Californian semi-arid shrublands.Journal of arid Environments, 70, 164-173.
[31] Wang JS, Zhang CY, Fan XH, Zhao YZ (2011). Biomass allo- cation patterns and allometric models of Abies nephrolepis Maxim. Acta Ecologica Sinica, 31, 3918-3927. (in Chinese with English abstract)[汪金松, 张春雨, 范秀华, 赵亚洲 (2011). 臭冷杉生物量分配格局及异速生长模型. 生态学报, 31, 3918-3927.]
[32] Wang L (2009). Study of Biomass and Its Models of Main Shrub Community Type in Northwest Sichuan. Master de- gree dissertation, Sichuan Agricultural University, Ya’an, Sichuan. (in Chinese with English abstract)[王玲 (2009). 川西北地区主要灌丛类型生物量及其模型的研究. 硕士学位论文, 四川农业大学, 四川雅安.]
[33] Weiner J (2004). Allocation, plasticity and allometry in plants.Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215.
[34] Wei XP, Zhao CM, Wang GX, Chen BM, Cheng DL (2005). Estimation of above- and below-ground biomass of dominant desert plant species in an oasis-desert ecotone of Minqin, China.Acta Phytoecologica Sinica, 29, 878-883. (in Chinese with English abstract)[魏小平, 赵长明, 王根轩, 陈宝明, 程栋梁 (2005). 民勤荒漠绿洲过渡带优势植物地上和地下生物量的估测模型. 植物生态学报, 29, 878-883.]
[35] Woodwell GM, Whitaker RH, Reiners WA, Likens GE, Delwich CC, Botkin DB (1978). Biota and the world carbon budget.Science, 199, 141-146.
[36] Wu ZY (1980). Vegetation of China. Science Press, Beijing. (in Chinese).[吴征镒 (1980). 中国植被. 科学出版社, 北京.]
[37] Zhang GF, Song YC (2001). Studies on the biomass of Castanopsis sclerophylla + Quercus fabri shrubland in Tiantong Region, Zhejiang Province. Journal of Wuhan Botanical Research, 19, 101-106. (in Chinese with English abstract)[张光富, 宋永昌 (2001). 浙江天童苦槠+白栎灌丛群落的生物量研究. 武汉植物学研究, 19, 101-106.]
[38] Zhang Q, Li JX, Xie ZQ (2017). Effects of nitrogen addition on soil respiration of Rhododendron simsii shrubland in the subtropical mountainous areas of China. Chinese Journal of Plant Ecology, 41, 95-104. (in Chinese with English abstract)[张蔷, 李家湘, 谢宗强 (2017). 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响. 植物生态学报, 41, 95-104.]
[39] Zhang YR, Ouyang X, Li YL, Liu SZ, Zhang DQ, Zhou GY (2013). Shrub community characteristics and quantitative calculation of theirs biomass in southern China.Journal of Central South University of Forestry & Technology, 33(9), 71-79. (in Chinese with English abstract)[张亚茹, 欧阳旭, 李跃林, 刘世忠, 张德强, 周国逸 (2013). 我国南亚热带灌丛群落特征及生物量的定量计算. 中南林业科技大学学报, 33(9), 71-79.]
[40] Zheng SW, Tang M, Zou JH, Mu CL (2007). Summary of research on shrub biomass in China.Journal of Chengdu University (Natural Science Edition), 26, 189-192. (in Chinese with English abstract)[郑绍伟, 唐敏, 邹俊辉, 慕长龙 (2007). 灌木群落及生物量研究综述. 成都大学学报(自然科学版), 26, 189-192.]
[41] Zianis D, Mencuccini M (2004). On simplifying allometric analyses of forest biomass.Forest Ecology and Management, 187, 311-332.
[1] Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(4): 430-441.
[2] ZHANG Lu, HAO Bi-Tai, QI Li-Xue, LI Yan-Long, XU Hui-Min, YANG Li-Na, BAOYIN Taogetao. Dynamic responses of aboveground biomass and soil organic matter content to grassland restoration [J]. Chin J Plan Ecolo, 2018, 42(3): 317-326.
[3] CEN Yu, WANG Cheng-Dong, ZHANG Zhen, REN Xia, LIU Mei-Zhen, YANG Fan. Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China [J]. Chin J Plan Ecolo, 2018, 42(3): 265-276.
[4] Yue YAN, Jian-Jun ZHU, Bin ZHANG, Yan-Jie ZHANG, Shun-Bao LU, Qing-Min PAN. A review of belowground biomass allocation and its response to global climatic change in grassland ecosystems [J]. Chin J Plan Ecolo, 2017, 41(5): 585-596.
[5] Shanshan Tan, Renren Wang, Xiaoling Gong, Jiayao Cai, Guochun Shen. Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama [J]. Biodiv Sci, 2017, 25(10): 1054-1064.
[6] Yang WANG, Wen-Ting XU, Gao-Ming XIONG, Jia-Xiang LI, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Biomass allocation patterns of Loropetalum chinense [J]. Chin J Plan Ecolo, 2017, 41(1): 105-114.
[7] Xian YANG, Yan-Pei GUO, Anwar MOHHAMOT, Hong-Yan LIU, Wen-Hong MA, Shun-Li YU, Zhi-Yao TANG. Distribution of biomass in relation to environments in shrublands of temperate China [J]. Chin J Plan Ecolo, 2017, 41(1): 22-30.
[8] Jing WANG, Shan-Shan WANG, Xian-Guo QIAO, Ang LI, Jian-Guo XUE, Muqier HASI, Xue-Yao ZHANG, Jian-Hui HUANG. Influence of nitrogen addition on the primary production in Nei Mongol degraded grassland [J]. Chin J Plan Ecolo, 2016, 40(10): 980-990.
[9] Ziyan Zhang, Zhijie Zhang, Xiaoyun Pan. Phenotypic plasticity of Alternanthera philoxeroides in response to shading: introduced vs. native populations [J]. Biodiv Sci, 2015, 23(1): 18-22.
[10] LIU Jun, YANG Qing-Pei, YU Ding-Kun, SONG Qing-Ni, ZHAO Guang-Dong, and WANG Bing. Contribution of fine root to soil nutrient heterogeneity at two sides of the bamboo and broadleaved forest interface [J]. Chin J Plan Ecolo, 2013, 37(8): 739-749.
[11] WANG Min, SU Yong-Zhong, YANG Rong, and YANG Xiao. Allocation patterns of above- and belowground biomass in desert grassland in the middle reaches of Heihe River, Gansu Province, China [J]. Chin J Plan Ecolo, 2013, 37(3): 209-219.
[12] LIU Tao, ZHANG Yong-Xian, XU Zhen-Zhu, ZHOU Guang-Sheng, HOU Yan-Hui, and LIN Lin. Effects of short-term warming and increasing precipitation on soil respiration of desert steppe of Inner Mongolia [J]. Chin J Plan Ecolo, 2012, 36(10): 1043-1053.
[13] PANG Yong and LI Zeng-Yuan. Inversion of biomass components of the temperate forest using airborne Lidar technology in Xiaoxing’an Mountains, Northeastern of China [J]. Chin J Plan Ecolo, 2012, 36(10): 1095-1105.
[14] ZHOU Shuang-Xi, WU Dong-Xiu, ZHANG Lin, SHI Hui-Qiu. Effects of changing precipitation patterns on seedlings of Stipa grandis, a dominant plant of typical grassland of Inner Mongolia, China [J]. Chin J Plan Ecolo, 2010, 34(10): 1155-1164.
[15] ZHANG Zhi-Dong, ZANG Run-Guo. MODELLING THE SPATIAL DISTRIBUTION OF ABOVEGROUND BIOMASS BASED ON VEGETATION INDEX IN A TROPICAL FOREST IN BAWANG- LING, HAINAN ISLAND, SOUTH CHINA [J]. Chin J Plan Ecolo, 2009, 33(5): 833-841.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Weiqing Wang Hongyan Cheng. Progress in Seed Dormancy and Germination of Arabidopsis Mutants[J]. Chin Bull Bot, 2006, 23(6): 625 -633 .
[2] WANG Zhen-Yue CUI Hong-Hua KANG Yi-Hua LI Rui-Ming WANG Zong-Quan. Dynamic Distribution of Active Components of Organs and Tissues of Rumex gmelini[J]. Chin Bull Bot, 2005, 22(05): 572 -578 .
[3] ZHANG Wei-Yun CHEN Hao WANG Shui-Juan TAN Ren-Xiang FEI Xiu-Geng. The Isolation, Purification and Identification of a Kind ofAgar Polysaccharide from Porphyra yezoensis[J]. Chin Bull Bot, 2000, 17(05): 429 -434 .
[4] Baoda Han;Lixin Li. Seed Storage Proteins and Their Intracellular Transport and Processing[J]. Chin Bull Bot, 2010, 45(04): 492 -505 .
[5] Cai Ji-jiong. Tissue Conductance Technique of Plant Specimens[J]. Chin Bull Bot, 1988, 5(02): 117 -118 .
[6] Xinming Jing&#;Guangkun Yin. Isolation of High Pure Mitochondria from Soybean Seeds[J]. Chin Bull Bot, 2006, 23(4): 389 -394 .
[7] . [J]. Chin Bull Bot, 2002, 19(01): 125 -127 .
[8] SUN Gu-Chou ZHAO Ping ZENG Xiao-PingPENG Shao-Lin. [J]. Chin Bull Bot, 2000, 17(05): 450 -456 .
[9] YU Jian-Xin;LIU Ai-Min;HUANG Yong-Zhong;LU Ding-Biao;MOU Shi-Yong;YUE Long;YANG Jia-Lu. Pollen-based Reconstructions of Late Pleistocene and Holocene Vegetation and Climatic Changes of Yang Lake Area, Tibet[J]. Chin Bull Bot, 2004, 21(01): 91 -100 .
[10] Luo Bing-shan. Progress in Applied Research of Plant Hormones[J]. Chin Bull Bot, 1995, 12(专辑3): 50 -52 .