Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (10): 1041-1050.doi: 10.17521/cjpe.2016.0317

• Research Articles • Previous Articles     Next Articles

Effects of short-term nitrogen addition on fine root biomass, lifespan and morphology of Castanopsis platyacantha in a subtropical secondary evergreen broad-leaved forest

Guan-Tao CHEN1, Yong PENG1, Jun ZHENG2, Shun LI1, Tian-Chi PENG1, Xi-Rong QIU1, Li-Hua TU1,*()   

  1. 1College of Forest, Sichuan Agricultural University, Chengdu 611130, China

    2Suining Forestry Bureau, Suining, Sichuan 629000, China
  • Online:2017-12-24 Published:2017-10-10
  • Contact: Li-Hua TU E-mail:tulhsicau@163.ccom


Aims Fine roots are the principal parts for plant nutrients acquisition and play an important role in the underground ecosystem. Increased nitrogen (N) deposition has changed the soil environment and thus has a potential influence on fine roots. The purpose of this study is to reveal the effect of N deposition on biomass, lifespan and morphology of fine root.Methods A field N addition experiment was conducted in a secondary broad-leaved forest in subtropical China from May 2013 to September 2015. Three levels of N treatments: CK (no N added), LN (5 g·m-2·a-1), and HN (15 g·m-2·a-1) were applied monthly. Responses of fine root biomass, lifespan, and morphology of Castanopsis platyacantha to N addition were analyzed by using a minirhizotron image system from April 2014 to September 2015. Surface soil sample (0-10 cm) was collected in November 2014 and soil pH value, and concentrations of NH4+-N and NO3--N were measured.Important findings The biomass and average lifespan of the fine roots of C. platyacantha were 128.30 g·m-3 and 113-186 days, respectively, in 0-45 cm soil layer. Nitrogen addition had no significant effect on either fine root biomass or lifespan in 0-45 cm soil layer. However, LN treatment significantly decreased C. platyacantha root superficial area in 0-15 cm soil layer. HN treatment significantly decreased soil pH value. Our study indicated that short-term N addition influences soil inorganic N concentration and thus decreased pH value in surface soil, and thereafter affect fine root morphology. Short-term N addition, however, did not affect the fine root biomass, lifespan and morphology in subsoil.

Key words: nitrogen deposition, fine root biomass, fine root lifespan, fine root morphology, minirhizotron

Table 1

Soil physicochemical properties in a secondary evergreen broad-leaved forest, Wawu Mountain (mean ± SE)"

Soil depth (cm)
pH 土壤容重
Soil bulk density (g·cm-3)
Organic carbon content (g·kg-1)
Total nitrogen content (g·kg-1)
Total phosphorus
content (g·kg-1)
Total potassium content (g·kg-1)
0-10 3.19 ± 0.03 0.41 ± 0.03 121.9 ± 11.7 5.80 ± 0.30 0.50 ± 0.01 13.89 ± 0.92
10-40 3.76 ± 0.03 0.66 ± 0.02 26.6 ± 2.5 1.51 ± 0.08 0.26 ± 0.03 17.07 ± 0.82
40-70 3.97 ± 0.02 0.89 ± 0.03 12.6 ± 1.2 0.82 ± 0.05 0.18 ± 0.01 19.02 ± 1.17
70-100 4.03 ± 0.02 0.99 ± 0.03 7.8 ± 0.8 0.57 ± 0.04 0.21 ± 0.01 19.31 ± 1.26

Table 2

The effect of N addition on surface soil (0-10 cm) chemical element and pH value (mean ± SE)"

pH TN (g·kg-1) NH4+-N (mg·kg-1) NO3--N (mg·kg-1)
CK 3.99 ± 0.05a 6.62 ± 0.50 25.62 ± 5.79 25.47 ± 3.90
LN 3.82 ± 0.02ab 7.19 ± 0.57 21.63 ± 6.02 26.27 ± 4.65
HN 3.78 ± 0.08b 7.23 ± 0.35 40.15 ± 12.39 36.69 ± 4.61
One-way ANOVA analysis
p = 0.04 p = 0.62 p = 0.33 p = 0.21

Table 3

Layer I (0-15 cm) correlation analysis results of Castanopsis platyacantha fine root morphology index, median lifespan, and soil physicochemical property (0-10 cm)"

Median lifespan
pH 总氮
Total nitrogen
NH4+-N NO3--N 根段长
Root segment length
Root segment surface-area
pH 0.84**
总氮 Total nitrogen -0.54 -0.57
NH4+-N -0.34 -0.75* 0.45
NO3--N -0.41 -0.67* 0.54 0.72*
根段长 Root segment length 0.37 0.35 -0.15 0.01 -0.18
根段表面积 Root segment surface-area 0.73* 0.74* -0.50 -0.24 -0.50 0.76*
根直径 Root diameter 0.48 0.47 -0.32 -0.27 -0.14 -0.48 0.15

Fig. 1

Fine root biomass in different soil layer (mean ± SE). CK, control (0 g·m-2·a-1); LN, low nitrogen addition (5 g·m-2·a-1); HN, high nitrogen addition (15 g·m-2·a-1). p value is the results of one-way ANOVA analysis in different soil layer."

Fig. 2

Effects of nitrogen additions on fine root survival curve. p values are the survival curves significance test result of N addition in the same soil layers. CK, control; LN, low nitrogen; HN, high nitrogen."

Fig. 3

Effects of nitrogen additions on fine root diameter, length and superficial area at different soil layers (mean ± SE). CK, control; LN, low nitrogen; HN, high nitrogen. Text and letters in figure are the result of one-way ANOVA analysis on same morphology indexes in the same soil layers."

[1] Addo-Danso SD, Prescott CE, Smith AR (2016). Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: A review.Forest Ecology and Management, 359, 332-351.
doi: 10.1016/j.foreco.2015.08.015
[2] Balogianni VG, Blume-Werry G, Wilson SD (2016). Root production in contrasting ecosystems: The impact of rhizotron sampling frequency.Plant Ecology, 217, 1-9.
doi: 10.1007/s11258-016-0588-7
[3] Bao SD (2000).Soil Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing. (in Chinese)[鲍士旦 (2000).土壤农化分析. 第三版. 中国农业出版社, 北京.]
[4] Bardgett RD, Mommer L, de Vries FT (2014). Going underground: Root traits as drivers of ecosystem processes.Trends in Ecology & Evolution, 29, 692-699.
doi: 10.1016/j.tree.2014.10.006 pmid: 25459399
[5] Bedison JE, Mcneil BE (2009). Is the growth of temperate forest trees enhanced along an ambient nitrogen deposition gradient?Ecology, 90, 1736-1742.
doi: 10.1890/08-0792.1 pmid: 19694123
[6] Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389-399.
doi: 10.1007/s004420000455 pmid: 28547334
[7] Chen GT, Tu LH, Peng Y, Hu HL, Hu TX, Xu ZF, Liu L, Tang Y (2017). Effect of nitrogen additions on root morphology and chemistry in a subtropical bamboo forest.Plant and Soil, 412, 441-451.
doi: 10.1007/s11104-016-3074-z
[8] Chen HYH, Brassard BW (2013). Intrinsic and extrinsic controls of fine root life span.Critical Reviews in Plant Sciences, 32, 151-161.
doi: 10.1080/07352689.2012.734742
[9] Chen YT, XU ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153. (in Chinese with English abstract)[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
doi: 10.3724/SP.J.1258.2014.00108
[10] Chirici G, Corona P, Portoghesi L (2013). Global forest resources assessment.Italian Journal of Forest & Mountain Environments, 56, 12-64.
[11] Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in a changing environment: Implications for root longevity.New Phytologist, 147, 33-42.
doi: 10.1046/j.1469-8137.2000.00686.x
[12] Eissenstat DM, Yanai RD (1997). The ecology of root lifespan.Advances in Ecological Research, 27, 1-60.
doi: 10.1016/S0065-2504(08)60005-7
[13] Evans CD, Norris D, Ostle N, Grant H, Rowe EC, Curtis CJ, Reynolds B (2008). Rapid immobilisation and leaching of wet-deposited nitrate in upland organic soils.Environment Pollution, 156, 313-319.
doi: 10.1016/j.envpol.2008.06.019 pmid: 18653264
[14] Galloway JN, Cowling EB (2002). Reactive nitrogen and the world: 200 years of change.Ambio, 31, 64-71.
doi: 10.1579/0044-7447-31.2.64 pmid: 12078011
[15] Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, V?r?smarty CJ (2004). Nitrogen cycles: Past, present, and future.Biogeochemistry, 70, 153-226.
[16] Hou X, Duan C, Tang CQ, Fu D (2010). Nutrient relocation, hydrological functions, and soil chemistry in plantations as compared to natural forests in central Yunnan, China.Ecological Research, 25, 139-148.
doi: 10.1007/s11284-009-0645-y
[17] Huang J, Mo J, Zhang W, Lu X (2014). Research on acidfication in forest soil driven by atmospheric nitrogen deposition.Acta Ecologica Sinica, 34, 302-310.
doi: 10.1016/j.chnaes.2014.10.002
[18] Huang JX, Ling H, Yang ZJ, Lu ZL, Xiong DC, Chen GS, Yang YS, Xie JS (2012). Estimating fine root production and mortality in subtropicalAltingia grlilipes and Castanopsis carlesii forests. Acta Pedologica Sinica, 14, 4472-4480. (in Chinese with English abstract)[黄锦学, 凌华, 杨智杰, 卢正立, 熊德成, 陈光水, 杨玉盛, 谢锦升 (2012). 中亚热带细柄阿丁枫和米槠群落细根的生产和死亡动态. 生态学报, 14, 4472-4480.]
doi: 10.5846/stxb201106280967
[19] Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents.Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
doi: 10.1073/pnas.94.14.7362 pmid: 11038557
[20] Johnson MG, Phillips DL, Tingey DT, Storm MJ (2000). Effects of elevated CO2, N-fertilization, and season on survival of ponderosa pine fine roots.Canadian Journal of Forest Research, 30, 220-228.
doi: 10.1139/cjfr-30-2-220
[21] Jourdan C, Silva EV, Goncalves JLM, Ranger J, Moreira RM, Laclau JP (2008). Fine root production and turnover inBrazilian Eucalyptus plantations under contrasting nitrogen fertilization regimes. Forest Ecology and Management, 256, 396-404.
[22] Kou L, Guo D, Yang H, Gao W, Li S (2015). Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China.Plant and Soil, 391, 207-218.
doi: 10.1007/s11104-015-2420-x
[23] Lebauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology, 89, 371-379.
[24] Li D, Chen HW, Li GQ, Yang B, Meng M, Shi FQ (2011). Comparative analysis of artificial forest and natural forest in China.Forest Inventory and Planning, 36(6), 59-63. (in Chinese with English abstract)[李丹, 陈宏伟, 李根前, 杨斌, 孟梦, 史富强 (2011). 我国天然林与人工林的比较研究. 林业调查规划, 36(6), 59-63.]
[25] Li JY, Wang MB, Shi JW (2007). Minirhizotron technique in measuring fine root indices: A review.Chinese Journal of Ecology, 26, 1842-1848. (in Chinese with English abstract)[李俊英, 王孟本, 史建伟 (2007). 应用微根管法测定细根指标方法评述. 生态学杂志, 26, 1842-1848.]
[26] Li W, Jin C, Guan D, Wang Q, Wang A, Yuan F, Wu J (2015). The effects of simulated nitrogen deposition on plant root traits: A meta-analysis.Soil Biology and Biochemistry, 82, 112-118.
doi: 10.1016/j.soilbio.2015.01.001
[27] Lucas RW, Klaminder J, Futter MN, Bishop KH, Egnell G, Laudon H, Hogberg P (2011). A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams.Forest Ecology and Management, 262, 95-104.
doi: 10.1016/j.foreco.2011.03.018
[28] Lü CQ, Tian HQ, Huang Y (2007). Ecological effects of increased nitrogen deposition in terrestrial ecosystems.Journal of Plant Ecology (Chinese Version), 31, 205-218. (in Chinese with English abstract)[吕超群, 田汉勤, 黄耀 (2007). 陆地生态系统氮沉降增加的生态效应. 植物生态学报, 31, 205-218.]
doi: 10.17521/cjpe.2007.0025
[29] Majdi H, Pregitzer K, Moren A, Nylund J, Gren GRIA (2005). Measuring fine root turnover in forest ecosystems.Plant and Soil, 276, 1-8.
doi: 10.1007/s11104-005-3104-8
[30] Mei L, Gu J, Zhang Z, Wang Z (2010). Responses of fine root mass, length, production and turnover to soil nitrogen fertilization inLarix gmelinii and Fraxinus mandshurica forests in Northeastern China. Journal of Forest Research, 15, 194-201.
[31] Nacry P, Bouguyon E, Gojon A (2013). Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource.Plant and Soil, 370, 1-29.
doi: 10.1007/s11104-013-1645-9
[32] Noguchi K, Nagakura J, Kaneko S (2013). Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after 3 years of nitrogen fertilization. Frontiers in Plant Science, 4, 1-7.
[33] Ostonen I, Lohmus K, Helmisaari HS, Truu J, Meel S (2007). Fine root morphological adaptations in scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests.Tree Physiologist, 27, 1627-1634.
doi: 10.1093/treephys/27.11.1627 pmid: 17669752
[34] Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2011). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
doi: 10.1111/j.1469-8137.2011.03952.x pmid: 22085245
[35] Shi JW, Yu SQ, Yu LZ, Han YZ, Wang ZQ, Guo DL (2006). Application of minirhizotron in fine root studies.Chinese Journal of Applied Ecology, 17, 715-719. (in Chinese with English abstract)[史建伟, 于水强, 于立忠, 韩有志, 王政权, 郭大立 (2006). 微根管在细根研究中的应用. 应用生态学报, 17, 715-719.]
[36] Song G, Sun B, Jiao JY (2007). Comparison between ultraviolet spectrophotometry and other methods in determination of soil nitrate-N.Acta Pedologica Sinica, 44, 288-293. (in Chinese with English abstract)[宋歌, 孙波, 教剑英 (2007). 测定土壤硝态氮的紫外分光光度法与其他方法的比较. 土壤学报, 44, 288-293.]
doi: 10.3321/j.issn:0564-3929.2007.02.014
[37] Tian D, Niu S (2015). A global analysis of soil acidification caused by nitrogen addition.Environmental Research Letter, 10, 1-10.
doi: 10.1088/1748-9326/10/2/024019
[38] Tingey DT, Phillips DL, Johnson MG (2003). Optimizing minirhizotron sample frequency for an evergreen and deciduous tree species.New Phytologist, 157, 155-161.
doi: 10.1046/j.1469-8137.2003.00653.x
[39] Wang C, Han S, Zhou Y, Yan C, Cheng X, Zheng X, Li MH (2012). Responses of fine roots and soil N availability to short-term nitrogen fertilization in a broad-leaved Korean pine mixed forest in northeastern China.PLOS ONE, 7, e31042. doi: 10.1371/journal.pone.0031042.
doi: 10.1371/journal.pone.0031042 pmid: 22412833
[40] Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: A tree root review.New Phytologist, 211, 1159-1169.
doi: 10.1111/nph.14003 pmid: 27174359
[41] Wu YB, Che RX, Ma S, Deng YC, Zhu MJ, Cui XY (2014). Estimation of root production and turnover in an alpine meadow: Comparison of three measurement methods.Acta Ecologica Sinica, 34, 3529-3537. (in Chinese with English abstract)[吴伊波, 车荣晓, 马双, 邓永翠, 朱敏健, 崔骁勇 (2014). 高寒草甸植被细根生产和周转的比较研究. 生态学报, 34, 3529-3537.]
[42] Wurzburger N, Wright SJ (2015). Fine root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest.Ecology, 96, 2137-2146.
doi: 10.1890/14-1362.1 pmid: 26405739
[43] Xiao HL (2001). Effects of atmospheric nitrogen deposition on forest soil acidification. Scientia Silvae Sinica, 37(4), 111-116. (in Chinese with English abstract)[肖辉林 (2001). 大气氮沉降对森林土壤酸化的影响. 林业科学, 37(4), 111-116.]
doi: 10.3321/j.issn:1001-7488.2001.04.018
[44] Xu ZF, Tu LH, Hu TX (2013). Implications of greater than average increases in nitrogen deposition on the western edge of the Szechwan basin, China.Environmental Pollution, 177, 201-202.
doi: 10.1016/j.envpol.2012.12.031 pmid: 23399402
[45] Yu SQ, Wang ZQ, Shi JW, Yu LZ, Quan XQ (2009). Effects of nitrogen fertilization on fine root lifespan ofFraxinus mandshurica and Larixgme. Chinese Journal of Applied Ecology, 20, 2332-2338. (in Chinese with English abstract)[于水强, 王政权, 史建伟, 于立忠, 全先奎 (2009). 氮肥对水曲柳和落叶松细根寿命的影响. 应用生态学报, 20, 2332-2338.]
[46] Yuan YD, Yang YS, Chen GS, Yang ZJ, Lin RQ, Ling H (2009). Fine root longevity of aCunninghamia lanceolata plantation estimated by minirhizotrons. Journal of Subtropical Resources and Environment, 4(2), 47-52. (in Chinese with English abstract)[袁一丁, 杨玉盛, 陈光水, 杨智杰, 林如强, 凌华 (2009). 杉木人工林细根寿命研究. 亚热带资源与环境学报, 4(2), 47-52.]
[47] Zheng JX, Huang JX, Wang ZZ, Xiong DC, Yang ZJ, Chen GS (2012). Fine root longevity and controlling factors in aPhoebe bournei plantation. Acta Ecologica Sinica, 23, 7532-7539. (in Chinese with English abstract)[郑金兴, 黄锦学, 王珍珍, 熊德成, 杨智杰, 陈光水 (2012). 闽楠人工林细根寿命及其影响因素. 生态学报, 23, 7532-7539.]
[1] ZOU An-Long,LI Xiu-Ping,NI Xiao-Feng,JI Cheng-Jun. Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China [J]. Chin J Plant Ecol, 2019, 43(9): 783-792.
[2] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[3] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China [J]. Chin J Plant Ecol, 2019, 43(5): 427-436.
[4] FENG Chan-Ying, ZHENG Cheng-Yang, TIAN Di. Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(3): 185-196.
[5] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[6] MOU Jing, BIN Zhen-Jun, LI Qiu-Xia, BU Hai-Yan, ZHANG Ren-Yi, XU Dang-Hui. Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(1): 77-84.
[7] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[8] Xueming Lei,Fangfang Shen,Xuechen Lei,Wenfei Liu,Honglang Duan,Houbao Fan,Jianping Wu. Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation [J]. Biodiv Sci, 2018, 26(9): 962-971.
[9] ZHANG Xin, XING Ya-Juan, YAN Guo-Yong, WANG Qing-Gui. Response of fine roots to precipitation change: A meta-analysis [J]. Chin J Plan Ecolo, 2018, 42(2): 164-172.
[10] QIN Shu-Qi, FANG Kai, WANG Guan-Qin, PENG Yun-Feng, ZHANG Dian-Ye, LI Fei, ZHOU Guo-Ying, YANG Yuan-He. Responses of exchangeable base cations to continuously increasing nitrogen addition in alpine steppe: A case study of Stipa purpurea steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 95-104.
[11] ZI Hong-Biao, CHEN Yan, HU Lei, WANG Chang-Ting. Effects of nitrogen addition on root dynamics in an alpine meadow, Northwestern Sichuan [J]. Chin J Plan Ecolo, 2018, 42(1): 38-49.
[12] Li-Li YANG, Ji-Rui GONG, Min LIU, Bo YANG, Zi-He ZHANG, Qin-Pu LUO, Zhan-Wei ZHAI, Yan PAN. Advances in the effect of nitrogen deposition on grassland litter decomposition [J]. Chin J Plan Ecolo, 2017, 41(8): 894-913.
[13] Yue YAN, Jian-Jun ZHU, Bin ZHANG, Yan-Jie ZHANG, Shun-Bao LU, Qing-Min PAN. A review of belowground biomass allocation and its response to global climatic change in grassland ecosystems [J]. Chin J Plan Ecolo, 2017, 41(5): 585-596.
[14] Xiao-Bing ZHOU, Yuan-Ming ZHANG, Ye TAO, Lin WU. Effluxes of nitrous oxide, methane and carbon dioxide and their responses to increasing nitrogen deposition in the Gurbantünggüt Desert of Xinjiang, China [J]. Chin J Plan Ecolo, 2017, 41(3): 290-300.
[15] Shun-Zeng SHI, De-Cheng XIONG, Fei DENG, Jian-Xin FENG, Chen-Sen XU, Bo-Yuan ZHONG, Yun-Yu CHEN, Guang-Shui CHEN, Yu-Sheng YANG. Interactive effects of soil warming and nitrogen addition on fine root production of Chinese fir seedlings [J]. Chin J Plan Ecolo, 2017, 41(2): 186-195.
Full text



[1] Liu Ying-di. The Role of Ultrastructure in Algal Systematics[J]. Chin Bull Bot, 1990, 7(04): 18 -23 .
[2] Fan Guo-qiang and Jiang Jian-ping. Study on the Methods of Extraction of Protein from Paulownia Leaves[J]. Chin Bull Bot, 1997, 14(03): 61 -64 .
[3] Tong Zhe and Lian Han-ping. Cryptochrome[J]. Chin Bull Bot, 1985, 3(02): 6 -9 .
[4] Huang Ju-fu and Luo Ai-ling. The Advances of the Studies on Extraction of FeMoco from Nitrogenase Molybdenum-Iron Protein[J]. Chin Bull Bot, 1991, 8(03): 19 -25 .
[5] Hsu Rong-jiang Gu Wen-mao Gao Jing-cheng and Peng Chang-ming. Inhibitory Effect of High CO2 and Low O2 Tension on Ethylene Evolution in Apples[J]. Chin Bull Bot, 1984, 2(01): 29 -31 .
[6] Zou Shu-hua;Zhao Shu-wen and Xu Bao. Electropheresis Profiles of Esterase Isozymes in Different Types of Soybean[J]. Chin Bull Bot, 1985, 3(06): 18 -20 .
[7] . [J]. Chin Bull Bot, 1999, 16(增刊): 49 -52 .
[8] Houqing Zeng, Yaxian Zhang, Shang Wang, Xiajun Zhang, Huizhong Wang, Liqun Du. Calcium/calmodulin-mediated Signal Transduction System in Plants[J]. Chin Bull Bot, 2016, 51(5): 705 -723 .
[9] Zhu Zhi-qing. Abbreviations for some Commonly Used Terms in Ultrastructures of Plant Cells[J]. Chin Bull Bot, 1984, 2(04): 57 -58 .
[10] Gu An-gen;Wang Mao and Wang Li-jun. Different Opinions on the Origins and Evolutions of Pteridophyte and Oymnosperms[J]. Chin Bull Bot, 1990, 7(02): 58 -62 .