Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (9): 732-741.doi: 10.17521/cjpe.2018.0183

• Research Articles • Previous Articles     Next Articles

Community assembly, diversity patterns and distributions of broad-leaved forests in North China

XU Jin-Shi1,CHAI Yong-Fu1,LIU Xiao1,YUE Ming1,*(),GUO Yao-Xin1,KANG Mu-Yi2,3,LIU Quan-Ru4,ZHENG Cheng-Yang5,JI Cheng-Jun5,YAN Ming6,ZHANG Feng7,GAO Xian-Ming8,WANG Ren-Qing9,SHI Fu-Chen10,ZHANG Qin-Di6,WANG Mao1,11   

  1. 1Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
    2State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    3College of Resources Science & Technology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    4College of Life Sciences, Beijing Normal University, Beijing 100875, China
    5Institute of Ecology, College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
    6College of Life Sciences, Shanxi Normal University, Linfen, Shanxi 041000, China
    7Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
    8State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    9School of Life Sciences, Shandong University, Jinan 250100, China
    10College of Life Sciences, Nankai University, Tianjin 300071, China
    11College of Grass Industry and Environmental Science, Xinjiang Agricultural University, ürümqi 830091, China
  • Received:2018-07-30 Accepted:2018-11-17 Online:2020-01-03 Published:2019-09-20
  • Contact: YUE Ming
  • Supported by:
    Supported by the National Basic Work of Science and Technology of China(2011FY110300);the China Postdoctoral Science Foundation(2018M643715);and the Natural Science Foundation of China(31700348)


Aims To understand the key processes driving the community assembly and diversity patterns in North China.
Methods We investigated species composition of 87 plots from 29 sites. We applied phylogenetic approach, combined with community distribution information, to assess the community structure and diversity along environmental gradients. We then performed a variance partition to explore the relative importance of each environmental factor that influencing the patterns of community assembly and diversity process and a canonical correspondence analysis to analyze reason of community distributions.
Important findings Similar communities showed similar habitat preferences, demonstrating that environments may shape species composition of the communities. The phylogenetic diversity showed a uni-modal pattern with the mean annual temperature (MAT), but increased with the mean annual precipitation (MAP), partly because of the strong disturbance in high-MAT regions. Temperature dominated the phylogenetic structure of the broad- leaved forests in North China. Environmental filtering dominate the community assembly processes in the areas with relatively low MAT. In addition, the effect of environment filtering increased with MAP.

Key words: community assembly, phylogenetic diversity, hydrothermal condition, species composition

Table 1

Information of study sites of broad-leaved forests in North China"

Community type
Mean elevation (m)
MAT (℃)
MAP (mm)
JLQ 蒙栎林 Quercus mongolica forest 河北隆化 Longhua, Hebei 1 085 5.5 466
JWA 红桦林 Betula albosinensis forest 河北涿鹿 Zhuolu, Hebei 2 302 -0.8 624
JFL 辽东栎林 Quercus wutaishanica forest 河北阜平 Fuping, Hebei 1 550 4.4 513
JFE 鹅耳枥林 Carpinus turczaninowii forest 河北阜平 Fuping, Hebei 1 517 4.4 513
JLB 白桦林 Betula platyphylla forest 河北涞源 Laiyuan, Hebei 1 819 7.1 491
JSC 糙皮桦林 Betula utilis forest 河北灵寿 Lingshou, Hebei 1 693 4.1 527
YWS 栓皮栎林 Quercus variabilis forest 河南卫辉 Weihui, Henan 371 13.8 593
NGB 白桦林 Betula platyphylla forest 宁夏固原 Guyuan, Ningxia 2 370 4.2 591
QFL 辽东栎林 Quercus wutaishanica forest 陕西富县 Fu Xian, Shaanxi 1 166 9.4 527
LTM 麻栎林 Quercus acutissima forest 山东泰安 Tai’an, Shandong 516 10.1 833
LPS 栓皮栎林 Quercus variabilis forest 山东平邑 Pingyi, Shandong 557 12.3 805
SZL 辽东栎林 Quercus wutaishanica forest 山西左权 Zuoquan, Shanxi 1 896 5.0 636
SCL 辽东栎林 Quercus wutaishanica forest 山西陵川 Lingchuan, Shanxi 1 093 9.0 703
SQA 红桦林 Betula albosinensis forest 山西沁水 Qinshui, Shanxi 2 170 5.4 731
SLE 鹅耳枥林 Carpinus turczaninowii forest 山西临县 Lin Xian, Shanxi 1 038 8.3 595
SLS 栓皮栎林 Quercus variabilis forest 山西临县 Lin Xian, Shanxi 1 077 8.3 595
SQE 鹅耳枥林 Carpinus turczaninowii forest 山西沁水 Qinshui, Shanxi 1 344 9.2 635
SQB 白桦林 Betula platyphylla forest 山西沁水 Qinshui, Shanxi 1 638 7.7 673
SYS 栓皮栎林 Quercus variabilis forest 山西垣曲 Yuanqu, Shanxi 872 11.1 584
SSJ 千金榆林 Carpinus cordata forest 山西灵石 Lingshi, Shanxi 1 288 6.7 578
SJL 辽东栎林 Quercus wutaishanica forest 山西交城 Jiaocheng, Shanxi 1 731 4.9 518
SQL 辽东栎林 Quercus wutaishanica forest 山西沁水 Qinshui, Shanxi 1 140 9.8 623
YSS 栓皮栎林 Quercus variabilis forest 河南嵩县 Song Xian, Henan 1 099 9.4 778
YTR 锐齿槲栎林 Quercus aliena var. acuteserrata forest 河南桐柏 Tongbai, Henan 817 12.9 1 011
YXS 栓皮栎林 Quercus variabilis forest 河南信阳 Xinyang, Henan 155 15.4 1 077
YGS 栓皮栎林 Quercus variabilis forest 河南舞钢 Wugang, Henan 132 14.8 784
YYM 麻栎林 Quercus acutissima forest 河南驻马店 Zhumadian, Henan 124 14.8 840
YNR 锐齿槲栎林 Quercus aliena var. acuteserrata forest 河南内乡 Neixiang, Henan 1 369 8.9 917
TJS 栓皮栎林 Quercus variabilis forest 天津蓟县 Ji Xian, Tianjin 193 10.1 590

Fig. 1

Result of canonical correspondence analysis (CCA) of species composition among plots of broad-leaved forests in North China."

Table 2

Result of variance decomposition of environment factors to mean phylogenetic distance (MPD) of broad-leaved forests in North China"

环境因子 Factor 解释程度 Explanation (%)
坡度 Slope 3.200 3
坡向 Aspect 15.643 7
年平均气温 MAT 48.043 8
月平均气温极差 MMTD 16.433 6
年降水量 MAP 15.065 3
降水季节变化量 SVP 1.613 2

Fig. 2

Pattern of the relationship between phylogenetic structure and mean annual temperature (MAT) of broad-leaved forests in North China. NRI, net relatedness index; NTI, nearest taxon index. The dotted line on 0 represented null expectation of phylogenetic structure."

Fig. 3

Pattern of the relationship between phylogenetic structure and mean annual precipitation (MAP) of broad-leaved forests in North China. The dotted line on 0 represented null expectation of phylogenetic structure."

Fig. 4

Pattern of the relationship between phylogenetic diversity (Faith’s PD) and mean annual temperature (MAT). Solid circles represent the value of Faithʼs PD. The solid curve represent regression curve of phylogenetic diversity."

Fig. 5

Pattern of the relationship between phylogenetic diversity (Faith’s PD) and mean annual precipitation (MAP). Solid circles represent the value of Faithʼs PD. The solid line represent regression curve of phylogenetic diversity."

[1] Cao K, Rao MD, Yu JP, Liu XJ, Mi XC, Chen JH ( 2013). The phylogenetic signal of functional traits and their effects on community structure in an evergreen broad-leaved forest. Biodiversity Science, 21, 564-571.
[ 曹科, 饶米德, 余建平, 刘晓娟, 米湘成, 陈建华 ( 2013). 古田山木本植物功能性状的系统发育信号及其对群落结构的影响. 生物多样性, 21, 564-571.]
[2] Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW ( 2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715.
[3] Chai YF, Yue M, Liu X, Guo YX, Wang M, Xu JS, Zhang CG, Chen Y, Zhang LX, Zhang RC ( 2016). Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: Insights into assembly process. Scientific Reports, 6, 27087. DOI: 10.1038/srep27087.
[4] Chai YF, Yue M ( 2016). Research advances in plant community assembly mechanisms. Acta Ecologica Sinica, 36, 4557-4572.
[ 柴永福, 岳明 ( 2016). 植物群落构建机制研究进展. 生态学报, 36, 4557-4572.]
[5] Chase JM ( 2003). Community assembly: When should history matter? Oecologia, 136, 489-498.
[6] Che YD, Liu MX, Li LR, Jiao J, Xiao W ( 2017). Exploring the community assembly of subalpine meadow communities based on functional traits and community phylogeny. Chinese Journal of Plant Ecology, 41, 1157-1167.
[ 车应弟, 刘旻霞, 李俐蓉, 焦骄, 肖卫 ( 2017). 基于功能性状及系统发育的亚高寒草甸群落构建. 植物生态学报, 41, 1157-1167.]
[7] Faith DP ( 1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
[8] Fang S, Yuan ZQ, Lin F, Ye J, Hao ZQ, Wang XG ( 2014). Functional and phylogenetic structures of woody plants in broad-leaved Korean pine mixed forest in Changbai Mountains, Jilin, China. Chinese Science Bulletin, 59, 2342-2348.
[ 房帅, 原作强, 蔺菲, 叶吉, 郝占庆, 王绪高 ( 2014). 长白山阔叶红松林木本植物系统发育与功能性状结构. 科学通报, 59, 2342-2348.]
[9] Foster BL, Dickson TL, Murphy CA, Karel IS, Smith VH ( 2004). Propagule pools mediate community assembly and diversity—Ecosystem regulation along a grassland productivity gradient. Journal of Ecology, 92, 435-449.
[10] Gong GQ, Huang ZL, Huang JX, Ye WH, Cao HL, Lian JY, Lin GJ ( 2011). How individual species structure the community in Dinghushan 20 ha forest plot? Ecology and Environmental Sciences, 20, 991-995.
[ 宫贵权, 黄忠良, 黄建雄, 叶万辉, 曹洪麟, 练琚愉, 林国俊 ( 2011). 鼎湖山20公顷森林样地单个物种对群落的构建. 生态环境学报, 20, 991-995.]
[11] Grime JP ( 1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86, 902-910.
[12] Hodkinson ID, Coulson SJ, Webb NR ( 2003). Community assembly along proglacial chronosequences in the high Arctic: Vegetation and soil development in north-west Svalbard. Journal of Ecology, 91, 651-663.
[13] Huang JX, Zhang J, Shen Y, Lian JY, Cao HL, Ye WH, Wu LF, Bin Y ( 2014). Different relationships between temporal phylogenetic turnover and phylogenetic similarity and in two forests were detected by a new null model. PLOS ONE, 9, e95703. DOI: 10.1371/journal.pone.0095703.
[14] Huang JX, Zheng FY, Mi XC ( 2010). Influence of environmental factors on phylogenetic structure at multiple spatial scales in an evergreen broad-leaved forest of China. Chinese Journal of Plant Ecology, 34, 309-315.
[ 黄建雄, 郑凤英, 米湘成 ( 2010). 不同尺度上环境因子对常绿阔叶林群落的谱系结构的影响. 植物生态学报, 34, 309-315.]
[15] Hubbell SP ( 2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. 340-348.
[16] Hulshof CM, Violle C, Spasojevic MJ, McGill B, Damschen E, Harrison S, Enquist BJ ( 2013). Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. Journal of Vegetation Science, 24, 921-931.
[17] Jia P, Du GZ ( 2014). Measuring functional and phylogenetic diversity in community ecology. Chinese Bulletin of Life Sciences, 26, 153-157.
[ 贾鹏, 杜国祯 ( 2014). 生态学的多样性指数: 功能与系统发育. 生命科学, 26, 153-157.]
[18] Jiang XY, Liang LF, Bi RC, Yan M ( 2016). Spatial pattern of phylogenetic structure of plant community in Shanxi Huoshan mountain. Acta Botanica Boreali-Occidentalia Sinica, 36, 2505-2512.
[ 姜晓燕, 梁林峰, 毕润成, 闫明 ( 2016). 山西霍山植物群落谱系结构的空间格局. 西北植物学报, 36, 2505-2512.]
[19] Kelly CK, Bowler MG, Pybus O, Harvey PH ( 2008). Phylogeny, niches, and relative abundance in natural communities. Ecology, 89, 962-970.
[20] Kraft NB, Cornwell WK, Webb CO, Ackerly DD ( 2007). Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170, 271-283.
[21] Kylafis G, Loreau M ( 2011). Niche construction in the light of niche theory. Ecology Letters, 14, 82-90.
[22] Lessard JP, Fordyce JA, Gotelli NJ, Sanders NJ ( 2009). Invasive ants alter the phylogenetic structure of ant communities. Ecology, 90, 2664-2669.
[23] Lu MM, Huang XC, Ci XQ, Yang GP, Li J ( 2014). Phylogenetic community structure of subtropical forests along elevational gradients in Ailao Mountains of southwest China. Biodiversity Science, 22, 438-448.
[ 卢孟孟, 黄小翠, 慈秀芹, 杨国平, 李捷 ( 2014). 沿海拔梯度变化的哀牢山亚热带森林群落系统发育结构. 生物多样性, 22, 438-448.]
[24] Mayfield MM, Levine JM ( 2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085-1093.
[25] Mori AS, Shiono T, Koide D, Kitagawa R, Ota AT, Mizumachi E ( 2013). Community assembly processes shape an altitudinal gradient of forest biodiversity. Global Ecology and Biogeography, 22, 878-888.
[26] Niu HY, Wang ZF, Lian JY, Ye WH, Shen H ( 2011). New progress in community assembly: Community phylogenetic structure combining evolution and ecology. Biodiversity Science, 19, 275-283.
[ 牛红玉, 王峥峰, 练琚愉, 叶万辉, 沈浩 ( 2011). 群落构建研究的新进展: 进化和生态相结合的群落谱系结构研究. 生物多样性, 19, 275-283.]
[27] Park DS, Potter D ( 2015). Why close relatives make bad neighbours: Phylogenetic conservatism in niche preferences and dispersal disproves Darwin’s naturalization hypothesis in the thistle tribe. Molecular Ecology, 24, 3181-3193.
[28] Pottier J, Dubuis A, Pellissier L, Maiorano L, Rossier L, Randin CF, Vittoz P, Guisan A ( 2013). The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 22, 52-63.
[29] Purschke O, Schmid BC, Sykes MT, Poschlod P, Michalski SG, Durka W, Kühn I, Winter M, Prentice HC ( 2013). Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: Insights into assembly processes. Journal of Ecology, 101, 857-866.
[30] Qian H, Hao ZQ, Zhang J ( 2014). Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology, 7, 154-165.
[31] Qiao XJ, Jabot F, Tang ZY, Jiang MX, Fang JY ( 2015). A latitudinal gradient in tree community assembly processes evidenced in Chinese forests. Global Ecology and Biogeography, 24, 314-323.
[32] Swenson NG, Enquist BJ, Thompson J, Zimmerman JK ( 2007). The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology, 88, 1770-1780.
[33] Swenson NG, Erickson DL, Mi XC, Bourg NA, Forero- Montaña J, Ge XJ, Howe R, Lake JK, Liu XJ, Ma KP, Pei NC, Thompson J, Uriarte M, Wolf A, Wright SJ, Ye WH, Zhang JL, Zimmerman JK, Kress WJ ( 2012). Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology, 93(Suppl.), S112-S125.
[34] Tang ZY, Fang JY, Zhang L ( 2004). Patterns of woody plant species diversity along environmental gradients on Mt. Taibai, Qinling Mountains. Biodiversity Science, 12, 115-122.
[ 唐志尧, 方精云, 张玲 ( 2004). 秦岭太白山木本植物物种多样性的梯度格局及环境解释. 生物多样性, 12, 115-122.]
[35] Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA, Grenyer R, Helmus MR, Jin LS, Mooers AO, Pavoine S, Purschke O, Redding DW, Rosauer DF, Winter M, Mazel F ( 2017). A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 92, 698-715.
[36] Webb CO ( 2000). Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. The American Naturalist, 156, 145-155.
[37] Webb CO, Ackerly DD, McPeek MA, Donoghue MJ ( 2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.
[38] Webb CO, Donoghue MJ ( 2005). Phylomatic: Tree assembly for applied phylogenetics. Molecular Ecology Notes, 5, 181-183.
[39] Wehncke EV, Hubbell SP, Foster RB, Dalling JW ( 2003). Seed dispersal patterns produced by white-faced monkeys: Implications for the dispersal limitation of neotropical tree species. Journal of Ecology, 91, 677-685.
[40] Wiens JJ, Graham CH ( 2005). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology Evolution and Systematics, 36, 519-539.
[41] Wikström N, Savolainen V, Chase MW ( 2001). Evolution of the angiosperms: Calibrating the family tree. The Proceedings of the Royal Society B, 268, 2211-2220.
[42] Xu JS, Chai YF, Wang M, Dang H, Guo YX, Chen Y, Zhang CG, Li T, Zhang LX, Yue M ( 2018). Shifts in plant community assembly processes across growth forms along a habitat severity gradient: A Test of the plant functional trait approach. Frontiers in Plant Science, 9, 180. DOI: 10.3389/fpls.2018.00180.
[43] Xu JS, Chen Y, Zhang LX, Chai YF, Wang M, Guo YX, Li T, Yue M ( 2017). Using phylogeny and functional traits for assessing community assembly along environmental gradients: A deterministic process driven by elevation. Ecology and Evolution, 7, 5056-5069.
[44] Yang J, Lu MM, Cao M, Li J, Lin LX ( 2014). Phylogenetic and functional alpha and beta diversity in mid-mountain humid evergreen broad-leaved forest. Chinese Science Bulletin, 59, 2349-2358.
[ 杨洁, 卢孟孟, 曹敏, 李捷, 林露湘 ( 2014). 中山湿性常绿阔叶林系统发育和功能性状的α及β多样性. 科学通报, 59, 2349-2358.]
[45] Yang YC, Da LJ ( 2006). A brief review of studies on differentiation of vegetation pattern along a topographic gradient in hilly regions. Journal of Plant Ecology (Chinese Version), 30, 504-513.
[ 杨永川, 达良俊 ( 2006). 丘陵地区地形梯度上植被格局的分异研究概述. 植物生态学报, 30, 504-513.]
[46] Yuan X, Ma KM, Wang D ( 2011). Explaining the abundance-distribution relationship of plant species with niche breadth and position in the Yellow River Delta. Acta Ecologica Sinica, 31, 1955-1961.
[ 袁秀, 马克明, 王德 ( 2011). 黄河三角洲植物生态位和生态幅对物种分布-多度关系的解释. 生态学报, 31, 1955-1961.]
[47] Zhang H, Gilbert B, Zhang XX, Zhou SR ( 2013). Community assembly along a successional gradient in sub-alpine meadows of the Qinghai-Tibetan Plateau, China. Oikos, 122, 952-960.
[48] Zhao MF, Xue F, Wang YH, Wang GY, Xing KX, Kang MY, Wang JL ( 2017). Phylogenetic structure and diversity of herbaceous communities in the conifer forests along an elevational gradient in Luya Mountain, Shanxi, China. Chinese Journal of Plant Ecology, 41, 707-715.
[ 赵鸣飞, 薛峰, 王宇航, 王国义, 邢开雄, 康慕谊, 王菁兰 ( 2017). 山西芦芽山针叶林草本层群落谱系结构与多样性的海拔格局. 植物生态学报, 41, 707-715.]
[49] Zhou XG, Lu WK, Ye D, Wen YG . ( 2014). Assembly mechanism of forest community based on phylogeny and functional traits. Guangxi Sciences, 21, 525-533.
[ 周晓果, 卢文科, 叶铎, 温远光 ( 2014). 基于系统发育和功能性状的森林群落构建机制. 广西科学, 21, 525-533.]
[1] Dan Liu,Zhongling Guo,Xiaoyang Cui,Chunnan Fan. Comparison of five associations of Taxus cuspidata and their species diversity [J]. Biodiv Sci, 2020, 28(3): 340-349.
[2] Shuai-Feng LI xuedong Lang Huang Xiao-Bo yanhong Wang LIU Wan-De chonghua Xu Jianrong Su. Association classification of a 30 hm2 dynamics plot in the monsoon broad-leaved evergreen forest in Puer, Yunnan Province [J]. Chin J Plant Ecol, 2020, 44(3): 0-0.
[3] Jiazhen Zhang,Chunlei Gao,Yan Li,Ping Sun,Zongling Wang. Species composition of dinoflagellates cysts in ballast tank sediments of foreign ships berthed in Jiangyin Port [J]. Biodiv Sci, 2020, 28(2): 144-154.
[4] CHAI Yong-Fu,XU Jin-Shi,LIU Hong-Yan,LIU Quan-Ru,ZHENG Cheng-Yang,KANG Mu-Yi,LIANG Cun-Zhu,WANG Ren-Qing,GAO Xian-Ming,ZHANG Feng,SHI Fu-Chen,LIU Xiao,YUE Ming. Species composition and phylogenetic structure of major shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 793-805.
[5] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. Distribution, community structures and species diversity of larch forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 742-752.
[6] TANG Li-Li,ZHANG Mei,ZHAO Xiang-Lin,KANG Mu-Yi,LIU Hong-Yan,GAO Xian-Ming,YANG Tong,ZHENG Pu-Fan,SHI Fu-Chen. Species distribution and community assembly rules of Juglans mandshurica in North China [J]. Chin J Plant Ecol, 2019, 43(9): 753-761.
[7] SHI Jing-Jing,ZHAO Ming-Fei,WANG Yu-Hang,XUE Feng,KANG Mu-Yi,JIANG Yuan. Community assembly of herbaceous layer of the planted forests in the central Loess Plateau, China [J]. Chin J Plant Ecol, 2019, 43(9): 834-842.
[8] QIN Hao,ZHANG Yin-Bo,DONG Gang,ZHANG Feng. Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China [J]. Chin J Plant Ecol, 2019, 43(9): 762-773.
[9] XU Guang-Yao, LI Hong-Yuan, MO Xun-Qiang, MENG Wei-Qing. Composition and spatial-temporal distribution of Chinese naturalized plants [J]. Chin J Plant Ecol, 2019, 43(7): 601-610.
[10] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[11] Xie Fenglin, Zhou Quan, Shi Hang, Shu Xiao, Zhang Kerong, Li Tao, Feng Shuiyuan, Zhang Quanfa, Dang Haishan. Species composition and community characteristics of a 25 ha forest dynamics plot in deciduous broad-leaved forest, Qinling Mountains, north-central China [J]. Biodiv Sci, 2019, 27(4): 439-448.
[12] CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly [J]. Chin J Plant Ecol, 2019, 43(3): 217-226.
[13] HAO Shu-Jun, LI Xiao-Yu, HOU Man-Man, ZHAO Xiu-Hai. Spatial variations of community functional traits at different successional stages in temperate forests of Changbai Mountains, Northeast China [J]. Chin J Plant Ecol, 2019, 43(3): 208-216.
[14] LIU Jin-Liang, YU Ming-Jian. Community assembly processes in fragmented forests and its testing methods [J]. Chin J Plant Ecol, 2019, 43(11): 929-945.
[15] Li Xueqing, Sun Heying, He Dekui, Chen Yifeng. Freshwater fish diversity in the upper and middle reaches of the Lancang-Mekong River [J]. Biodiv Sci, 2019, 27(10): 1090-1100.
Full text



[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 91 .
[2] QIAN Ying-Qian. Some Issues in Biodiversity[J]. Chin Bull Bot, 1998, 15(06): 1 -18 .
[3] ZHANG Xiu-Juan MEI Li WANG Zheng-Quan HAN You-Zhi. Advances in Studying Fine Root Decomposition in Forests[J]. Chin Bull Bot, 2005, 22(02): 246 -254 .
[4] CHENG Long-Jun GUO De-Ping GE Hong-Juan. The Special Proteins in Sweet Potato Tuber—Sporamin[J]. Chin Bull Bot, 2001, 18(06): 672 -677 .
[5] Tang Yancheng. A Short Guide to the International Code of Botanical Nomenclature[J]. Chin Bull Bot, 1984, 2(06): 49 -54 .
[6] Chuanyuan Deng, Guiliang Xin, Wanchao Zhang, Suzhi Guo, Qiuhua Xue, Zhongxiong Lai, Luying Ye. SEM Observations and Measurements of Vestured Pits of the Secondary Xylem in the Tribe Rhizophoreae[J]. Chin Bull Bot, 2015, 50(1): 90 -99 .
[8] Zhang Jintun, Pickett S. T. A. Gradient Analysis of Forest Vegetation Along an Urban-Rural Transect in New York[J]. Chin J Plan Ecolo, 1998, 22(5): 392 -397 .
[9] JI Fang, MA Ying-Jie, FAN Zi-Li. Soil Water Regime in Populus euphratica Forest on the Tarim River Alluvial Plain[J]. Chin J Plan Ecolo, 2001, 25(1): 17 -21 .