Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (9): 817-824.doi: 10.17521/cjpe.2018.0186

• Research Articles • Previous Articles     Next Articles

Spatial distribution patterns and correlation of Tamarix chinensis population in coastal wetlands of Shandong, China

WU Pan,PENG Xi-Qiang,YANG Shu-Ren,GAO Ya-Nan,BAI Feng-Hua,YI Shi-Jie,DU Ning(),GUO Wei-Hua()   

  1. Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
  • Received:2018-07-31 Accepted:2019-01-13 Online:2020-01-03 Published:2019-09-20
  • Contact: DU Ning,GUO Wei-Hua E-mail:ndu@sdu.edu.cn;whguo_sdu@163.com
  • Supported by:
    Supported by the National Basic Work of Science and Technology of China(2011FY110300);and the National Natural Science Foundation of China(31470402);and the National Natural Science Foundation of China(31770361)

Abstract:

Aims Tamarix chinensis is a pioneering shrub species in temperate coastal saline wetlands, which plays an important role in plant community succession and preventing seawater intrusion in coastal wetlands. This study, which is focused on Tamarix chinensis population distribution characteristics and the correlations between Tamarix chinensis population distribution with individual diameters, can reveal the characteristics of population development and provide reference for species conservation and management of protected areas. This study may also provide basic information for scientific research on the succession and ecological management of coastal wetland vegetation ecosystems.
Methods In the core area of Changyi National Marine Ecological Special Protection Zone, two sample tapes with a spacing of about 800 m are arranged along the parallel coastline. Each sample tape has three plots of 50 m × 50 m. A total of six sample plots are set up for each wood survey. The spatial distribution map of Tamarix chinensis population is drawn by Origin. The obtained data is divided into three different diameter grades according to their base diameter: diameter grade I (base diameter ≤ 4 cm) and diameter grade II (4 < base diameter ≤ 8 cm), diameter grade III (base diameter > 8 cm). The distribution pattern of Tamarix chinensis population and the relationship between different diameter grades are analyzed by the point pattern analysis method and Programita software.
Important findings (1) A total of 374 individuals of Tamarix chinensis are investigated in six plots, including 14 in plot 1, 20 in plot 2, 36 in plot 3, 45 in plot 4, 221 in plot 5, and 38 in plot 6. (2) There is a large difference in population density of Tamarix chinensis between different plots, which indicates that Tamarix chinensis is not evenly distributed on the regional scale. (3) Tamarix chinensis populations show a clustered distribution on small scale (less than 5 m) while they appear as random distribution on large scale (greater than 15 m). The population of Tamarix chinensis exhibits a trend of transition from clustered distribution to random distribution with the increase of spatial scale. (4) The spatial association of Tamarix chinensis between any two diameter grades is positive on small scale and there is no significant spatial association between them on large scale. However, negative spatial association on diameter grade II and diameter grade III is detected at the scale of 15 m probably due to space competition.

Key words: Tamarix chinensis population, distribution pattern, spatial scale, diameter structure, spatial association

Fig. 1

Sample distribution picture of Tamarix chinensis population in coastal wetlands of Shandong."

Fig. 2

Scatterplot of spatial distribution of Tamarix chinensis in coastal wetlands of Shandong. A, Plot 1. B, Plot 2. C, Plot 3. D, Plot 4. E, Plot 5. F, Plot 6."

Table 1

Basic information and compositions of Tamarix chinensis at different diameter grades in each plot in coastal wetlands of Shandong"

样地
Plot
海拔
Elevation (m)
土壤有机碳
Soil organic carbon (%)
个体数(比例) Individual No. (Ratio) 合计
Total
I II III
1 2 0.339 1 2 (0.14) 10 (0.71) 2 (0.14) 14
2 1 0.368 0 1 (0.05) 10 (0.50) 9 (0.45) 20
3 6 0.357 3 18 (0.50) 14 (0.39) 4 (0.11) 36
4 -1 0.381 3 0 (0.00) 36 (0.80) 9 (0.20) 45
5 -1 0.449 0 31 (0.14) 140 (0.63) 50 (0.23) 221
6 10 0.387 9 7 (0.18) 25 (0.66) 6 (0.16) 38
合计 Total - - 59 (0.16) 235 (0.63) 80 (0.21) 374

Fig. 3

Point pattern analysis of Tamarix chinensis in coastal wetlands of Shandong. A, B, C, D, E and F represent plot 1, 2, 3, 4, 5 and 6, respectively. O(r), univariate O-ring function."

Fig. 4

Spatial association of Tamarix chinensis at different diameter grades in coastal wetlands of Shandong. A, Diameter grade I and diameter grade II. B, Diameter grade I and diameter grade III. C, Diameter grade II and diameter grade III. O12(r), bivariate O-ring function."

[1] Bai C, Yan M, Bi RC, He YH ( 2014). Spatial pattern analysis of dominant species in Exochorda giraldii community in Xingtang Temple of Taiyue Mountains, Shanxi, China. Chinese Journal of Plant Ecology, 38, 1283-1295.
[ 白聪, 闫明, 毕润成, 何艳华 ( 2014). 山西太岳山兴唐寺红柄白鹃梅群落优势种的空间格局分析. 植物生态学报, 38, 1283-1295.]
[2] Bi XL, Wen XH, Yi HP, Wu XQ, Gao M ( 2014). Succession in soil and vegetation caused by coastal embankment in southern Laizhou Bay, China—Flourish or degradation? Ocean & Coastal Management, 88, 1-7.
[3] Caçador I, Tibério S, Cabral HN ( 2007). Species zonation in Corroios salt marsh in the Tagus estuary (Portugal) and its dynamics in the past fifty years. Hydrobiologia, 587, 205-211.
[4] Cui BS, Yang QC, Zhang KJ, Zhao XS, You ZY ( 2010). Responses of saltcedar ( Tamarix chinensis) to water table depth and soil salinity in the Yellow River Delta, China. Plant Ecology, 209, 279-290.
[5] Diggle PJ ( 1983). Statistical Analysis of Spatial Point Patterns. Academic Press, New York.
[6] Du N, Wu P, Eller F, Zhou DY, Liu J, Gan WH, Yang RR, Dai M, Chen YD, Wang RQ, Guo WH ( 2017). Facilitation or competition? The effects of the shrub species Tamarix chinensis on herbaceous communities are dependent on the successional stage in an impacted coastal wetland of north China. Wetlands, 37, 899-911.
[7] Feng XH, Zhang XM, Liu XJ, Cheng RM, Sun HR ( 2013). Growth dynamics of Tamarix chinensis plantations in heavy-saline coastal lands and related ecological effects. Chinese Journal of Eco-Agriculture, 21, 1233-1240.
[ 封晓辉, 张秀梅, 刘小京, 程瑞梅, 孙焕荣 ( 2013). 滨海重盐碱地人工栽植柽柳生长动态及生态效应. 中国生态农业学报, 21, 1233-1240.]
[8] Gao M, Wang XX, Hui C, Yi HP, Zhang CQ, Wu XQ, Bi XL, Wang Y, Xiao LX, Wang D ( 2015). Assembly of plant communities in coastal wetlands-the role of saltcedar Tamarix chinensis during early succession. Journal of Plant Ecology, 8, 539-548.
[9] Greig-Smith P ( 1983). Quantitative Plant Ecology. Blackwell Scientific Publication, Oxford.
[10] Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang YS, Huang FZ, Li DX, Li XK ( 2015). Spatial distribution of tree species in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 23, 183-191.
[ 郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄俞淞, 黄甫昭, 李冬兴, 李先琨 ( 2015). 广西弄岗北热带喀斯特季节性雨林监测样地种群空间点格局分析. 生物多样性, 23, 183-191.]
[11] Hao HM, Huang Z, Lu R, Jia C, Liu Y, Liu BR, Wu GL ( 2017). Patches structure succession based on spatial point pattern features in semi-arid ecosystems of the water-wind erosion crisscross region. Global Ecology and Conservation, 12, 158-165.
[12] Jafari M, Chahouki MAZ, Tavili A, Azarnivand H, Amiri GZ ( 2004). Effective environmental factors in the distribution of vegetation types in Poshtkouh rangelands of Yazd Province (Iran). Journal of Arid Environments, 56, 627-641.
[13] Jiang ZM, Chen YX, Bao Y ( 2012). Population genetic structure of Tamarix chinensis in the Yellow River Delta, China. Plant Systematics and Evolution, 298, 147-153.
[14] Kang JP, Ma YY, Ma SQ, Xue ZW, Yang LL, Han L, Liu WY ( 2019). Dynamic changes of spatial pattern and structure of the Tamarix ramosissima population at the desert-oasis ecotone of the Tarim Basin. Acta Ecologica Sinica, 39, 265-276.
[ 康佳鹏, 马盈盈, 马淑琴, 薛正伟, 杨丽丽, 韩路, 柳维扬 ( 2019). 荒漠绿洲过渡带柽柳种群结构与空间格局动态. 生态学报, 39, 265-276.]
[15] Leibold MA, McPeek MA ( 2006). Coexistence of the niche and neutral perspectives in community ecology. Ecology, 87, 1399-1410.
[16] Li HD, Shen WS, Fang Y, Yan SG, Zhang H, Zhao W ( 2011). Point pattern analysis of several psammophyte populations in the riparian ecotone in the middle reaches of Yarlung Zangbo River of Tibet, China. Chinese Journal of Plant Ecology, 35, 834-843.
[ 李海东, 沈渭寿, 方颖, 燕守广, 张慧, 赵卫 ( 2011). 雅鲁藏布江中游河岸带几种主要沙生植物种群点格局分析. 植物生态学报, 35, 834-843.]
[17] Liu JH, Xia JB, Fang YM, Li T, Liu JT ( 2014). Effects of salt-drought stress on growth and physiobiochemical characteristics of Tamarix chinensis seedlings. The Scientific World Journal, 765840. DOI: .
[18] McGill BJ ( 2003). A test of the unified neutral theory of biodiversity. Nature, 422, 881-885.
[19] Mei JL, Zhuang FH, Ma JM, Qin YH, Liang SC, Jiang Y ( 2017). Spatial point pattern analysis of Alchornea trewioides population clonal growth in the karst area of Guilin. Acta Ecologica Sinica, 37, 3164-3171.
[ 梅军林, 庄枫红, 马姜明, 覃扬浍, 梁士楚, 姜勇 ( 2017). 桂林喀斯特地区克隆生长红背山麻杆种群的点格局分析. 生态学报, 37, 3164-3171.]
[20] Perry GL, Miller BP, Enright NJ, Lamont BB ( 2014). Stochastic geometry best explains spatial associations among species pairs and plant functional types in species-rich shrublands. Oikos, 123, 99-110.
[21] Ripley BD ( 1977). Modelling spatial patterns. Journal of the Royal Statistical Society: Series B, 39, 172-192.
[22] Rong QQ, Liu JT, Cai YP, Lu ZH, Zhao ZZ, Yue WC, Xia JB ( 2016). “Fertile island” effects of Tamarix chinensis Lour. on soil N and P stoichiometry in the coastal wetland of Laizhou Bay, China. Journal of Soils & Sediments, 16, 864-877.
[23] Song XJ, Li SN, Guo J, Yu YL, Liu ZW, Wei W ( 2018). Effects of different salinity levels on the growth and physiological characteristics of roots of Tamarix chinensis cuttings. Acta Ecologica Sinica, 38, 606-614.
[ 宋香静, 李胜男, 郭嘉, 于一雷, 刘志伟, 韦玮 ( 2018). 不同盐分水平对柽柳扦插苗根系生长及生理特性的影响. 生态学报, 38, 606-614.]
[24] Sun LK, Liu WQ, Liu GX, Chen T, Zhang W, Wu XK, Zhang GS, Zhang YH, Li L, Zhang BG, Zhang BL, Wang B, Yang RQ ( 2016). Temporal and spatial variations in the stable carbon isotope composition and carbon and nitrogen contents in current-season twigs of Tamarix chinensis Lour. and their relationships to environmental factors in the Laizhou Bay wetland in China. Ecological Engineering, 90, 417-426.
[25] Tang AK, Liu RH, Xu LQ, Wang JY, Liu YT ( 2011). Spatial heterogeneity of soil nutrients and distribution of plant community in Changyi Marine Ecological Special Protection Area. Bulletin of Soil and Water Conservation, 31, 88-93.
[ 汤爱坤, 刘汝海, 许廖奇, 王金玉, 刘一霆 ( 2011). 昌邑海洋生态特别保护区土壤养分的空间异质性与植物群落的分布. 水土保持通报, 31, 88-93.]
[26] Wang QD, Song JM, Li XG, Yuan HM, Li N, Cao L ( 2015). Environmental radionuclides in a coastal wetland of the southern Laizhou Bay, China. Marine Pollution Bulletin, 97, 506-511.
[27] Wang XT, Hou YL, Liu F, Chang Y, Wang W, Liang CZ, Miao BL ( 2011). Point pattern analysis of dominant populations in a degraded community in Leymus chinensis + Stipa grandis steppe in Inner Mongolia, China. Chinese Journal of Plant Ecology, 35, 1281-1289.
[ 王鑫厅, 侯亚丽, 刘芳, 常英, 王炜, 梁存柱, 苗百岭 ( 2011). 羊草+大针茅草原退化群落优势种群空间点格局分析. 植物生态学报, 35, 1281-1289.]
[28] Wiegand T, Moloney KA ( 2004). Rings, circles, and null- models for point pattern analysis in ecology. Oikos, 104, 209-229.
[29] Wu XQ, Gao M, Wang D, Wang Y, Lu QS, Zhang ZD ( 2012). Framework and practice of integrated coastal zone management in Shandong Province, China. Ocean & Coastal Management, 69, 58-67.
[30] Xia JB, Zhao XM, Liu JH, Zhao ZG, Liu Q, Chen YP ( 2016). Environmental factors influencing the distribution of Tamarix chinense Lour. in the Laizhou Bay wetland of the Yellow River Delta. Acta Ecologica Sinica, 36, 4801-4808.
[ 夏江宝, 赵西梅, 刘俊华, 赵自国, 刘庆, 陈印平 ( 2016). 黄河三角洲莱州湾湿地柽柳种群分布特征及其影响因素. 生态学报, 36, 4801-4808.]
[31] Xie LP, Wang M, Wang BD, Shi XY, Xin M, Wei QS, He XP, Guo F ( 2017). Distribution pattern and influencing factors of vegetation carbon storage of Tamarix chinense in the coastal wetland of Laizhou Bay, China. Chinese Journal of Applied Ecology, 28, 1103-1111.
[ 谢琳萍, 王敏, 王保栋, 石晓勇, 辛明, 韦钦胜, 何秀平, 郭富 ( 2017). 莱州湾滨海柽柳林湿地植被碳储量的分布特征及其影响因素. 应用生态学报, 28, 1103-1111.]
[32] Xu Q, Lü JZ, Miao YM, Bi RC ( 2016). Spatial distribution patterns and association of major species in Elaeagnus mollis communities. Chinese Bulletin of Botany, 51, 49-57.
[ 许强, 吕金枝, 苗艳明, 毕润成 ( 2016). 翅果油树群落主要物种空间分布格局及其关联性. 植物学报, 51, 49-57.]
[33] Yang H, Li YL, Shen L, Kang XG, Yue G, Wang Y ( 2014). Spatial distribution patterns of seedling and sapling in a spruce-fir forest in the Changbai Mountains area in northeastern China. Acta Ecologica Sinica, 34, 7311-7319.
[ 杨华, 李艳丽, 沈林, 亢新刚, 岳刚, 王妍 ( 2014). 长白山云冷杉林幼苗幼树空间分布格局及其更新特征. 生态学报, 34, 7311-7319.]
[34] You HZ, Liu XL, Miao N, He F, Ma QY ( 2010). Individual association and scale effect of spatial pattern of Quercus aquifolioides populations along the elevation gradients. Acta Ecologica Sinica, 30, 4004-4011.
[ 尤海舟, 刘兴良, 缪宁, 何飞, 马钦彦 ( 2010). 川滇高山栎种群不同海拔空间格局的尺度效应及个体间空间关联. 生态学报, 30, 4004-4011.]
[35] Zhang JT ( 1998). Analysis of spatial point pattern for plant species. Acta Phytoecologica Sinica, 22, 344-349.
[ 张金屯 ( 1998). 植物种群空间分布的点格局分析. 植物生态学报, 22, 344-349.]
[36] Zhang JT, Meng DP ( 2004). Spatial pattern analysis of individuals in different age-classes of Larix principis‌‍rupprechtii in Luya Mountain Reserve, Shanxi, China. Acta Ecologica Sinica, 24, 35-40.
[ 张金屯, 孟东平 ( 2004). 芦芽山华北落叶松林不同龄级立木的点格局分析. 生态学报, 24, 35-40.]
[37] Zhao XS, Cui BS, Sun T, Lv JZ, Lu F ( 2011). Analysis of spatial point pattern of Tamarix chinensis in different habitats. Ecological Science, 30, 142-149.
[ 赵欣胜, 崔保山, 孙涛, 吕卷章, 路峰 ( 2011). 不同生境条件下中国柽柳空间分布点格局分析. 生态科学, 30, 142-149.]
[38] Zhu JF, Lu ZH, Xia JB, Chen X, Zhang M, Liu JT ( 2013). Changes of osmotic adjusting substances in leaves of Tamarix chinensis seedlings under salt and drought stress. Acta Botanica Boreali-Occidentalia Sinica, 33, 357-363.
[ 朱金方, 陆兆华, 夏江宝, 陈曦, 张萌, 刘京涛 ( 2013). 盐旱交叉胁迫对柽柳幼苗渗透调节物质含量的影响. 西北植物学报, 33, 357-363.]
[39] Zhu Z, Zhang LY, Gao LX, Tang SQ, Zhao Y, Yang J ( 2016). Local habitat condition rather than geographic distance determines the genetic structure of Tamarix chinensis populations in Yellow River Delta, China. Tree Genetics & Genomes, 12. DOI: 10.1007/S11295-016-0971-5.
[1] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow [J]. Biodiv Sci, 2020, 28(2): 107-116.
[2] TANG Li-Li,ZHANG Mei,ZHAO Xiang-Lin,KANG Mu-Yi,LIU Hong-Yan,GAO Xian-Ming,YANG Tong,ZHENG Pu-Fan,SHI Fu-Chen. Species distribution and community assembly rules of Juglans mandshurica in North China [J]. Chin J Plant Ecol, 2019, 43(9): 753-761.
[3] HAO Shu-Jun, LI Xiao-Yu, HOU Man-Man, ZHAO Xiu-Hai. Spatial variations of community functional traits at different successional stages in temperate forests of Changbai Mountains, Northeast China [J]. Chin J Plant Ecol, 2019, 43(3): 208-216.
[4] Guijun Yang,Min Wang,Yichun Yang,Xinyun Li,Xinpu Wang. Distribution patterns and environmental interpretation of beetle species richness in Helan Mountain of northern China [J]. Biodiv Sci, 2019, 27(12): 1309-1319.
[5] Xuerui Dong, Hong Zhang, Minggang Zhang. Explaining the diversity and endemic patterns based on phylogenetic approach for woody plants of the Loess Plateau [J]. Biodiv Sci, 2019, 27(12): 1269-1278.
[6] TANG Li-Tao, LIU Dan, LUO Xue-Ping, HU Lei, WANG Chang-Ting. Forest soil phosphorus stocks and distribution patterns in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(12): 1091-1103.
[7] CAI Qin, DING Jun-Xiang, ZHANG Zi-Liang, HU Jun, WANG Qi-Tong, YIN Ming-Zhen, LIU Qing, YIN Hua-Jun. Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2019, 43(12): 1048-1060.
[8] Ren Peng,Yu Jianping,Chen Xiaonan,Shen Xiaoli,Song Xiao,Zhang Tiantian,Yu Yongquan,Ding Ping. Seasonal variation in the distribution of Elliot’s pheasant (Syrmaticus ellioti) in Gutianshan National Nature Reserve [J]. Biodiv Sci, 2019, 27(1): 13-23.
[9] Hongfei Zhuang,Yinbo Zhang,Wei Wang,Yueheng Ren,Fangzheng Liu,Jinhong Du,Yue Zhou. Optimized hot spot analysis for probability of species distribution under different spatial scales based on MaxEnt model: Manglietia insignis case [J]. Biodiv Sci, 2018, 26(9): 931-940.
[10] CHEN Yi-Chao, ZHAO Ying, SONG Xi-Qiang, REN Ming-Xun. Difference in spatial distribution patterns and population structures of Rhododendron hainanense between both sides of riparian bends [J]. Chin J Plan Ecolo, 2018, 42(8): 841-849.
[11] Meixiang Gao, Lin Lin, Liang Chang, Xin Sun, Dong Liu, Donghui Wu. Spatial patterns and assembly rules in soil fauna communities: A review [J]. Biodiv Sci, 2018, 26(10): 1034-1050.
[12] Xiuqin Yin, Yan Tao, Haixia Wang, Chen Ma, Xinchang Kou, Huan Xu, Dong Cui. Forest soil fauna ecology in Northeast China: Review and prospect [J]. Biodiv Sci, 2018, 26(10): 1083-1090.
[13] Juanping Ni,Saisai Cheng,Meixiang Gao,Tingyu Lu,Guangze Jin. Spatial heterogeneities of ground-dwelling Coleoptera adults and their spatial correlations with environmental factors in a typical broad-leaved Korean pine forest in the Fenglin Nature Reserve [J]. Biodiv Sci, 2018, 26(1): 14-26.
[14] Long Chen,Shuai Qin,Ri Xu,Liu Yang,Liqing Zhao. Characteristics of natural Platycladus orientalis forests in the Yin Mountains of Northwest China [J]. Biodiv Sci, 2018, 26(1): 66-74.
[15] Zaifu Xu. Botanical gardens’ challenge—correspondence with Academician De-Yuan Hong’s “Three ‘What’: mission of a botanic garden” [J]. Biodiv Sci, 2017, 25(9): 918-923.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chin Bull Bot, 2004, 21(03): 360 -366 .
[5] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[6] XU Jing-Xian WANG Yu-Fei YANG Jian PU Guang-Rong ZHANG Cui-Fen. Advances in the Research of Tertiary Flora and Climate in Yunnan[J]. Chin Bull Bot, 2000, 17(专辑): 84 -94 .
[7] Sun Zhen-xiao Xia Guang-min Chen Hui-min. Karyotype Analysis of Psathyrostachys juncea[J]. Chin Bull Bot, 1995, 12(01): 56 .
[8] . [J]. Chin Bull Bot, 1994, 11(专辑): 8 -9 .
[9] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chin Bull Bot, 2009, 44(03): 371 -378 .
[10] Zili Wu, Mengyao Yu, Lu Chen, Jing Wei, Xiaoqin Wang, Yong Hu, Yan Yan, Ping Wan. Transcriptome Analysis of Physcomitrella patens Response to Cadmium Stress by Bayesian Network[J]. Chin Bull Bot, 2015, 50(2): 171 -179 .