Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (12): 1211-1224.doi: 10.17521/cjpe.2018.0202

• Research Articles • Previous Articles    

Effects of vegetation restoration on soil organic carbon mineralization in the east of Hunan, China

GU Xiang1,ZHANG Shi-Ji1,LIU Zhao-Dan1,LI Lei-Da1,CHEN Jin-Lei1,WANG Liu-Fang1,FANG Xi1,2,3,*()   

  1. 1 School of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
    2 National Engineering Laboratory of South China Forestry Ecology Applicable Technologies, Changsha 410004, China
    3 Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, Hunan 438107, China
  • Received:2018-08-16 Revised:2018-11-01 Online:2019-04-04 Published:2018-12-20
  • Contact: FANG Xi ORCID: 0000-0003-1236-2335 E-mail:jshe@pku.edu.cn
  • Supported by:
    Supported by the National Forestry Public Welfare Industry Research Project.(201504411);the National Natural Science Foundation of China(30771720);the National Natural Science Foundation of China(31170426)

Abstract:

Aims Soil organic carbon (SOC) mineralization and its controlling factors are critical for understanding the mechanisms that regulate C storage and loss processes. Our objectives were to accurately assess the impacts of vegetation restoration on SOC mineralization and to illustrate the underlying mechanism of changes in SOC stability with vegetation restoration in the mid-subtropical region of China.

Methods Four types of vegetation communities (Loropetalum chinense-Vaccinium bracteatum-Rhododendron mariesiiscrub-grass-land (LVR), Loropetalum chinense-Cunninghamia lanceolata-Quercus fabri shrubbery (LCQ), Pinus massoniana-Lithocarpus glaber-Loropetalum chinense coniferous-broad leaved mixed forest (PLL) and Lithocarpus glaber-Cleyera japonica-Cyclobalanopsis glauca evergreen broad-leaved forest (LAG) ) were selected for a successional sequence of the secondary forest in a hilly region of eastern Hunan Province, China. Soil samples (0-40 cm) were collected from four depths (0-10, 10-20, 20-30 and 30-40 cm). SOC mineralization was determined by the laboratory incubation method (alkali absorption method). Principal component analysis and stepwise regression were applied to analyze the relationships between SOC cumulative mineralization (Cm), the percentage of Cm to SOC content and vegetation factors and soil factors.

Important findings 1) SOC mineralization rate displayed similar trends during the four restoration stages: during the early incubation period, SOC mineralization was high and decreased fast, and then the rate decreased slowly and tend to stabilize during the middle and late periods. The pattern was well fitted with the reciprocal equation. 2) SOC mineralization rate and Cm increased significantly with the vegetation restoration stage with the LAG having both the highest SOC mineralization rate and the highest Cm. In 0-40 cm soil layer, Cm in LAG soil was 359.06%-716.31%, 112.38%-232.61%, 94.40%-105.74% higher than that in LVR, LCQ, PLL soils, respectively. 3) The percentage of Cm to SOC content were 2.13%-4.99%, 3.42%-4.18%, 4.05%-4.64%, and 4.02%- 5.64% in 0-10, 10-20, 20-30, 30-40 cm soil layers, respectively. However, there was no significant difference in the percentage of Cm to SOC content among the different restoration stages. 4) Among different vegetation restoration stages, total nitrogen (TN) content and root biomass (RB) were the key factors affecting Cm. TN content and RB together explained 97.8% variations in Cm, of which TN content explained 96.9%. However, C:N was the dominant factor affecting the percentage of Cm to SOC content and it alone explained 49.4% variation. Vegetation restoration promoted SOC mineralization rate and reduced the percentage of Cm to SOC content in our study, which might be related to the changes in RB and soil nutrient during vegetation restoration.

Key words: mid-subtropical region of China, vegetation restoration, soil organic carbon mineralization, vegetation factor, soil factor

Fig. 1

The location and distribution of the different vegetation communities in the east of Hunan Province. LVR, Loropetalum chinense-Vaccinium bracteatum-Rhododendron mariesii scrub-?grass-?land; LCQ, Loropetalum chinense-Cunninghamia lanceolata-??Quercus fabri shrubbery; PLL, Pinus massoniana-?Lithocarpus glaber-Loropetalum chinense coniferous-broad leaved mixed forest; LAG, Lithocarpus glaber-Cleyera japonica-?Cyclobalanopsis glauca evergreen broad-leaved forest."

"

"

Fig. 2

Soil organic carbon (SOC) mineralization rate at different vegetation restoration stages in the east of Hunan Province. LVR, Loropetalum chinense-Vaccinium bracteatum-Rhododendron mariesii scrub-grass-land; LCQ, Loropetalum chinense-Cunninghamia lanceolata-Quercus fabri shrubbery; PLL, Pinus massoniana-Lithocarpus glaber-Loropetalum chinense coniferous-broad leaved mixed forest; LAG, Lithocarpus glaber-Cleyera japonica-Cyclobalanopsis glauca evergreen broad-leaved forest. Different letters indicate significant differences among different vegetation restoration stages in the same soil layer at the same time of incubation (p < 0.05)."

Table 3

Fitting of soil organic carbon (SOC) mineralization rate with incubation time using the reciprocal equations at different restoration stages in the east of Hunan Province"

土层深度
Soil layer
(cm)
恢复阶段
Restoration
stages
回归方程
Regression equation
R2 F p 土层深度
Soil layer
(cm)
恢复阶段
Restoration
stages
回归方程
Regression equation
R2 F p
0-10 LVR y= 0.023/x + 0.002 0.901 100.517 0 20-30 LVR y = 0.018/x + 0.000 0.866 71.259 0
LCQ y = 0.053/x + 0.008 0.970 356.194 0 LCQ y = 0.021/x + 0.002 0.945 187.261 0
PLL y = 0.056/x + 0.009 0.985 747.054 0 PLL y = 0.027/x + 0.002 0.982 602.893 0
LAG y = 0.121/x + 0.018 0.978 496.637 0 LAG y = 0.033/x + 0.005 0.987 821.403 0
10-20 LVR y = 0.022/x + 0.001 0.918 123.038 0 30-40 LVR y = 0.018/x - 1.878E-6 0.875 76.822 0
LCQ y = 0.026/x + 0.002 0.979 504.574 0 LCQ y = 0.018/x + 0.001 0.886 85.189 0
PLL y = 0.029/x + 0.003 0.976 455.176 0 PLL y = 0.026/x + 0.002 0.967 318.004 0
LAG y = 0.039/x + 0.006 0.949 203.566 0 LAG y = 0.036/x + 0.004 0.954 228.325 0

Fig. 3

Soil organic carbon cumulative mineralization (Cm) at different vegetation restoration stages in the east of Hunan Province (mean + SD). LVR, Loropetalum chinense-Vaccinium bracteatum-Rhododendron mariesii scrub-grass-land; LCQ, Loropetalum chinense-Cunninghamia lanceolata-Quercus fabri shrubbery; PLL, Pinus massoniana-Lithocarpus glaber-?Loropetalum chinense coniferous-broad leaved mixed forest; LAG, Lithocarpus glaber-Cleyera japonica-Cyclobalanopsis glauca evergreen broad-leaved forest. Different capital letters represent significant differences among different vegetation restoration stages in the same soil layer (p < 0.05), and different lower letters indicate significant differences among different soil layers at the same vegetation restoration stage (p < 0.05)."

Fig. 4

The percentage of soil organic carbon cumulative mineralization to soil organic carbon content (Cm/SOC) at different vegetation restoration stages in the east of Hunan Province (mean + SD). LVR, Loropetalum chinense-Vaccinium bracteatum-Rhododendron mariesii scrub-grass-land; LCQ, Loropetalum chinense-Cunninghamia lanceolata-Quercus fabri shrubbery; PLL, Pinus massoniana-Lithocarpus glaber-?Loropetalum chinense coniferous-broad leaved mixed forest; LAG, Lithocarpus glaber-Cleyera japonica-Cyclobalanopsis glauca evergreen broad-leaved forest. Different capital letters represent significant differences among different vegetation restoration stages in the same soil layer (p < 0.05), and different lower letters indicate significant differences among different soil layers at the same vegetation restoration stage (p < 0.05)."

Table 4

Pearson correlation coefficient between soil organic carbon (SOC) cumulative mineralization (Cm), the percentage of Cm to SOC content (Cm/SOC) and vegetation factors, respectively"

项目
Item
植物多样
性指数
Species diversity index
地上部分
生物量
Aboveground
biomass
根系
生物量
Root
biomass
凋落物层
现存量
Existing
biomass in
litter layer
凋落物层
C含量
C concentration in
litter layer
凋落物层
N含量
N concentration in
litter layer
凋落物层
P含量
P concentration in
litter layer
凋落物层
木质素含量
Lignin concentration in
litter layer
凋落物层
C:N
The ratio of
C to N in
litter layer
凋落物层
C:P
The ratio of
C to P in
litter layer
凋落物层
N:P
The ratio of
N to P in
litter layer
Cm 0.625* 0.818** 0.897** 0.539 0.269 0.669* 0.640* 0.397 0.098 -0.287 -0.490
Cm/SOC -0.057 -0.150 -0.082 -0.075 0.051 0.171 0.137 0.016 0.010 -0.027 -0.155

Table 5

Pearson correlation coefficient between soil organic carbon (SOC) cumulative mineralization (Cm), the percentage of Cm to SOC content (Cm/SOC) and soil factors, respectively"

项目 Item 容重
Bulk density
<0.002 mm黏粒百分含量
Soil clay percentage of <0.002 mm
pH SOC TN TP C:N C:P N:P
Cm -0.312 0.774** -0.734** 0.971** 0.986** 0.595* -0.315 0.653* 0.738**
Cm/SOC 0.154 -0.203 0.323 -0.320 -0.223 -0.172 -0.732** -0.268 -0.096

Table 6

The principle component loading matrix, eigenvalue and contribution rate for vegetation and soil factors"

因子 Factor 主成分 Component 因子 Factor 主成分 Component
1 2 3 1 2 3
植物多样性指数 Species diversity index 0.639 -0.103 0.515 土壤有机碳含量
Soil organic carbon concentration
0.947 -0.142 -0.084
地上部分生物量 Aboveground biomass 0.883 -0.005 -0.410 土壤全氮含量
Soil total nitrogen concentration
0.951 -0.158 0.043
根系生物量 Root biomass 0.951 0.003 -0.212 土壤全磷含量
Soil total phosphorus concentration
0.536 -0.823 -0.064
凋落物层N含量
Nitrogen concentration in litter layer
0.763 0.320 0.094 土壤碳磷比 Soil C:P 0.697 0.675 -0.111
凋落物层P含量
Phosphorus concentration in litter layer
0.651 -0.245 0.512 土壤氮磷比 Soil N:P 0.767 0.613 0.073
<0.002 mm黏粒百分含量
Soil clay percentage of <0.002 mm
0.711 -0.040 0.473 贡献率 Contribution rate (%) 61.511 14.966 10.687
土壤pH值 Soil pH value -0.782 0.261 -0.752 累积贡献率
Accumulative contribution rate (%)
61.511 76.477 87.165

Table 7

The stepwise regression analysis for main influencing factors of soil organic carbon (SOC) cumulative mineralization (Cm) and the percentage of Cm to SOC content (Cm/SOC)"

项目 Item 模型
Model
变量
Variable
回归方程 Regression equation 多元相关系数
Multiple correlation coefficient (R)
调整判定系数
Adjust R2
F P
Cm 1 TN Cm = 0.572 TN + 0.250 0.986 0.969 380.581 0.000
2 RB Cm =0.474 TN + 0.000006 RB + 0.290 0.991 0.978 273.558 0.000
Cm/SOC 1 Soil C:N Cm/SOC = -0.302 C:N +8.717 0.732 0.494 12.700 0.004
[1] Craine JM, Fierer N, Mclauchlan KK ( 2010). Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience, 3, 854-857.
doi: 10.1038/ngeo1009
[2] Cui J, Zhang RJ, Bu NS, Zhang HB, Tang BP, Li ZL, Jiang LF, Chen JK, Fang CM ( 2013). Changes in soil carbon sequestration and soil respiration following afforestation on paddy fields in north subtropical China. Journal of Plant Ecology, 6, 240-252.
doi: 10.1093/jpe/rts023
[3] Fan YX, Yang YS, Guo JF, Yang ZJ, Chen GS, Xie JS, Zhong XJ, Xu LL ( 2014). Changes in soil respiration and its temperature sensitivity at different successional stages of evergreen broadleaved forests in mid-subtropical China. Chinese Journal of Plant Ecology, 38, 1155-1165.
doi: 10.3724/SP.J.1258.2014.00111
[ 范跃新, 杨玉盛, 郭剑芬, 杨智杰, 陈光水, 谢锦升, 钟小剑, 徐玲琳 ( 2014). 中亚热带常绿阔叶林不同演替阶段土壤呼吸及其温度敏感性的变化. 植物生态学报, 38, 1155-1165.]
doi: 10.3724/SP.J.1258.2014.00111
[4] Gu X, Fang X, Xiang WH, Li SL, Sun WJ ( 2013). Soil organic carbon and mineralizable organic carbon in four subtropical forests in hilly region of central Hunan Province, China. Chinese Journal of Ecology, 32, 2687-2694.
[ 辜翔, 方晰, 项文化, 李胜蓝, 孙伟军 ( 2013). 湘中丘陵区4种森林类型土壤有机碳和可矿化有机碳的比较. 生态学杂志, 32, 2687-2694.]
[5] Gu X, Zhang SJ, Liu ZD, Li LD, Chen JL, Wang LF, Fang X ( 2018). Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China. Chinese Journal of Plant Ecology, 42, 595-608.
[ 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰 ( 2018). 中亚热带植被恢复对土壤有机碳含量、碳密度的影响. 植物生态学报, 42, 595-608.]
[6] Hu YL, Zeng DH, Fan ZP, Ai GY ( 2007). Effects of degraded sandy grassland afforestation on soil quality in semiarid area of Northern China. Chinese Journal of Applied Ecology, 18, 2391-2397.
[ 胡亚林, 曾德慧, 范志平, 艾桂艳 ( 2007). 半干旱区沙质退化草地造林对土壤质量的影响. 应用生态学报, 18, 2391-2397.]
[7] Huang ZS, Yu LF, Fu YH ( 2012). Characteristics of soil mineralizable carbon pool in natural restoration process of karst forest vegetation. Chinese Journal of Applied Ecology, 23, 2165-2170.
[ 黄宗胜, 喻理飞, 符裕红 ( 2012). 喀斯特森林植被自然恢复过程中土壤可矿化碳库特征. 应用生态学报, 23, 2165-2170.]
[8] Iyamuremye F, Gewin V, Dick RP, Diack M, Sene M, Badiane A ( 2000). Carbon, nitrogen and phosphorus mineralization potential of native agroforestry plant residues in soils of Senegal. Arid Soil Research and Rehabilitation, 14, 359-371.
doi: 10.1080/08903060050136469
[9] Kuzyakov Y ( 2011). How to link soil C pools with CO2 fluxes. Biogeosciences, 8, 1523-1537.
doi: 10.5194/bg-8-1523-2011
[10] Li JY, Dou XL, Hu YH, Gan DX, Li F ( 2018). Variation in soil organic carbon mineralization under various land cover types in urban areas. Acta Ecologica Sinica, 38, 112-121.
doi: 10.5846/stxb201612302718
[ 李隽永, 窦晓琳, 胡印红, 甘德欣, 李锋 ( 2018). 城市不同地表覆盖类型下土壤有机碳矿化的差异. 生态学报, 38, 112-121.]
doi: 10.5846/stxb201612302718
[11] Li Y, Xu M, Sun OJ, Cui W ( 2004). Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests. Soil Biology & Biochemistry, 36, 2111-2114.
doi: 10.1016/j.soilbio.2004.06.003
[12] Li YM, Gong L, Xie LN ( 2017). Soil organic carbon content and carbon mineralization characteristics under different land use types in Northern Tarim Basin. Bulletin of Soil and Water Conservation, 37(3), 216-221.
doi: 10.13961/j.cnki.stbctb.2017.03.036
[ 李杨梅, 贡璐, 解丽娜 ( 2017). 塔里木盆地北缘绿洲不同土地利用方式下土壤有机碳含量及其碳矿化特征. 水土保持通报, 37(3), 216-221.]
doi: 10.13961/j.cnki.stbctb.2017.03.036
[13] Liu S, Yuan WY, Li XW, Rong L, Yang M, Li DH, Wang Q ( 2008). Soil chemical characteristics and their effects on C:N ratio of rhizosphere and non-rizosphere of different herbages in triploid of Populous tomentosa woodland. Reseaech of Soil and Water Conservation, 15(2), 107-110.
[ 刘朔, 袁渭阳, 李贤伟, 荣丽, 杨渺, 李德会, 王巧 ( 2008). 不同草本层三倍体毛白杨根际与非根际土壤化学特性及其对C/N的影响. 水土保持研究, 15(2), 107-110.]
[14] Liu YQ, Wang F, Ke GQ, Wang YY, Guo SM, Fan CF ( 2011). Effects of converting cultivated land into forest land on the characteristics of soil organic carbon in limestone mountain area in Ruichang, Jiangxi. Chinese Journal of Applied Ecology, 22, 885-890.
[ 刘苑秋, 王芳, 柯国庆, 王迎迎, 郭圣茂, 范承芳 ( 2011). 江西瑞昌石灰岩山区退耕还林对土壤有机碳的影响. 应用生态学报, 22, 885-890.]
[15] Milcu A, Heim A, Ellis RJ, Scheu S, Manning P ( 2011). Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient. Ecosystems, 14, 710-719.
doi: 10.1007/s10021-011-9440-z
[16] Priha O, Grayston SJ ( 2001). Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biology & Fertility of Soils, 33, 17-24.
[17] Qian HY, Pan JJ, Sun B ( 2013). The relative impact of land use and soil properties on sizes and turnover rates of soil organic carbon pools in subtropical China. Soil Use & Management, 29, 510-518.
doi: 10.1111/sum.12067
[18] Reza MT, Becker W, Sachsenheimer K, Mumme J ( 2014). Hydrothermal carbonization (HTC): Near infrared spectroscopy and partial least-squares regression for determination of selective components in HTC solid and liquid products derived from maize silage. Bioresource Technology, 161, 91-101.
doi: 10.1016/j.biortech.2014.03.008 pmid: 24686376
[19] Riffaldi R, Saviozzi A, Levi-Minzi R ( 1996). Carbon mineralization kinetics as in?uenced by soil properties. Biological & Fertility of Soils, 22, 293-298.
[20] Ross DJ, Tate KR, Scott NA, Wilde RH, Rodda NJ, Townsend JA ( 2002). Afforestation of pastures with Pinus radiata influences soil carbon and nitrogen pools and mineralisation and microbial properties. Soil Research, 40, 1303-1318.
doi: 10.1071/sr02020
[21] Saggar S, Yeates GW, Shepherd TG ( 2001). Cultivation effects on soil biological properties, microfauna and organic matter dynamics in Eutric Gleysol and Gleyic Luvisol soils in New Zealand. Soil & Tillage Research, 8, 55-68.
doi: 10.1016/S0167-1987(00)00184-7
[22] Schaefer DA, Feng WT, Zou XM ( 2009). Plant carbon inputs and environmental factors strongly affect soil respiration in a subtropical forest of southwestern China. Soil Biology & Biochemistry, 41, 1000-1007.
doi: 10.1016/j.soilbio.2008.11.015
[23] Scott-Denton LE, Sparks KL, Monson RK ( 2003). Spatial and temporal controls of soil respiration rate in a high- elevation, subalpine forest. Soil Biology & Biochemistry, 35, 525-534.
doi: 10.1016/S0038-0717(03)00007-5
[24] Shao YH, Pan JJ, Sun B ( 2005). Study of characteristics of soil organic carbon decompositions and carbon pool under different vegetations. Journal of Soil and Water Conservation, 19(3), 24-28.
doi: 10.3321/j.issn:1009-2242.2005.03.007
[ 邵月红, 潘剑君, 孙波 ( 2005). 不同森林植被下土壤有机碳的分解特征及碳库研究. 水土保持学报, 19(3), 24-28.]
doi: 10.3321/j.issn:1009-2242.2005.03.007
[25] Song XZ, Jiang H, Yu SQ, Ma YD, Zhou GM, Dou RP, Guo PP ( 2009). Litter decomposition of dominant plant species in successional stages in mid-subtropical zone. Chinese Journal of Applied Ecology, 20, 537-542.
[ 宋新章, 江洪, 余树全, 马元丹, 周国模, 窦荣鹏, 郭培培 ( 2009). 中亚热带森林群落不同演替阶段优势种凋落物分解试验. 应用生态学报, 20, 537-542.]
[26] Song Y, Zhao XZ, Mao ZJ, Sun T, Hou LL ( 2013). SOC decomposition of four typical broad-leaved Korean pine communities in Xiaoxing ,an Mountain . Acta Ecologica Sinica, 33, 443-453.
doi: 10.5846/stxb201112021844
[ 宋媛, 赵溪竹, 毛子军, 孙涛, 侯玲玲 ( 2013). 小兴安岭4种典型阔叶红松林土壤有机碳分解特性. 生态学报 , 33, 443-453.]
doi: 10.5846/stxb201112021844
[27] Sun SQ, Bhatti JS, Jassal RS, Chang SX, Arevalo C, Black TA, Sidders D ( 2015). Stand age and productivity control soil carbon dioxide efflux and organic carbon dynamics in poplar plantations. Soil Science Society of America Journal, 79, 1638-1649.
doi: 10.2136/sssaj2015.06.0233
[28] Sun WJ, Fang X, Xiang WH, Zhang SJ, Li SL ( 2013). Active pools of soil organic carbon in subtropical forests at different successional stages in Central Hunan, China. Acta Ecologica Sinica, 33, 7765-7773.
doi: 10.5846/stxb201301060046
[ 孙伟军, 方晰, 项文化, 张仕吉, 李胜蓝 ( 2013). 湘中丘陵区不同演替阶段森林土壤活性有机碳库特征. 生态学报, 33, 7765-7773.]
doi: 10.5846/stxb201301060046
[29] Wen QX ( 1984). The Determination Method of Soil Organic Matter. Chinese Agriculture Press, Beijing. 273-284.
[ 文启孝 ( 1984). 土壤有机质研究法. 中国农业出版社, 北京. 273-284.]
[30] Wu JG, Zhang XQ, Wang YH, Xu DY ( 2002). The effects of land use changes on the distribution of soil organic carbon in physical fraction of soil. Scientia Silvae Science, 38(4), 19-29.
doi: 10.11707/j.1001-7488.20020404
[ 吴建国, 张小全, 王彦辉, 徐德应 ( 2002). 土地利用变化对土壤物理组分中有机碳分配的影响. 林业科学, 38(4), 19-29.]
doi: 10.11707/j.1001-7488.20020404
[31] Wu JG, Zhang XQ, Xu DY ( 2004). The mineralization of soil organic carbon under different land use in the Liupan Mountains forest zone. Acta Phytoecologica Sinica, 28, 530-538.
doi: 10.17521/cjpe.2004.0072
[ 吴建国, 张小全, 徐德应 ( 2004). 六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较. 植物生态学报, 28, 530-538.]
doi: 10.17521/cjpe.2004.0072
[32] Wu JH, Pan JJ, Ge XJ, Cao LD, Li BY, Chen X ( 2015). Mineralization of soil organic carbon and its relationship wih organic carbon fractions under different agriculture land use. Journal of Soil and Water Conservation, 29(6), 178-183.
doi: 10.13870/j.cnki.stbcxb.2015.06.032
[ 邬建红, 潘剑君, 葛序娟, 曹罗丹, 李炳亚, 陈昕 ( 2015). 不同农业利用方式土壤有机碳矿化及其与有机碳组分的关系. 水土保持学报, 29(6), 178-183.]
doi: 10.13870/j.cnki.stbcxb.2015.06.032
[33] Xiang WH, Fang X ( 2018). Community Structure and Soil Properties in Subtropical Secondary Forests. Science Press, Beijing.
[ 项文化, 方晰 ( 2018). 亚热带次生林群落结构与土壤特征. 科学出版社, 北京.]
[34] Xu X, Shi Z, Li DJ, Rey A, Ruan HH, Craine J, Liang JY, Zhou JZ, Luo YQ ( 2016). Soil properties control decomposition of soil organic carbon: Results from data-assimilation analysis. Geoderma, 262, 235-242.
doi: 10.1016/j.geoderma.2015.08.038
[35] Yan YP, Cao JH, Liang Y, Wang P, Wang H ( 2012). Organic carbon storage and decomposition rate of three subcategories of calcareous soil in karst area. Earth and Environment, 40(2), 219-226.
[ 严毅萍, 曹建华, 梁毅, 王培, 王宏 ( 2012). 桂林毛村岩溶区三种亚类石灰土有机碳矿化研究. 地球与环境, 40(2), 219-226.]
[36] Yang KJ, Yang WQ, He RY, Zhuang LY, Li ZJ, Nie FY, Wang Z, Xu ZF ( 2017). Soil organic carbon mineralization characteristics of three dominant subalpine forests in western Sichuan, China. China Journal Apply Environment Biology, 23(5), 851-856.
[ 杨开军, 杨万勤, 贺若阳, 庄丽燕, 李志杰, 聂富育, 王壮, 徐振锋 ( 2017). 川西亚高山3种典型森林土壤碳矿化特征. 应用与环境生物学报, 23(5), 851-856.]
[37] Zhang H, Lü MK, Jiang J, Pu XT, Wang EX, Qiu X, Xie JS ( 2016). Effects of vegetation restoration on topsoil and subsoil organic carbon mineralization in red soil erosion area. Journal of Soil and Water Conservation, 30(1), 244-249.
[ 张浩, 吕茂奎, 江军, 蒲晓婷, 王恩熙, 邱曦, 谢锦升 ( 2016). 侵蚀红壤区植被恢复对表层与深层土壤有机碳矿化的影响. 水土保持学报, 30(1), 244-249.]
[38] Zhang L, Zhang DL, Mao ZJ ( 2017). Characteristic mineralization of soil organic carbon in different successional series of broadleaved Korean pine forests in the temperate zone in China,Acta Ecology Sinica, 37, 6370-6378.
doi: 10.5846/stxb201607111415
[ 张玲, 张东来, 毛子军 ( 2017). 中国温带阔叶红松林不同演替系列土壤有机碳矿化特征. 生态学报, 37, 6370-6378.]
doi: 10.5846/stxb201607111415
[39] Zhao M, Zhou J, Kalbitzb K ( 2008). Carbon mineralization and properties of water-extractable organic carbon in soils of the south Loess Plateau in China. European Journal of Soil Biology, 44, 158-165.
doi: 10.1016/j.ejsobi.2007.09.007
[40] Zhou YY, Jia XH, Zhao X, Chen GX, Gao YH, Wu P ( 2011). Soil carbon mineralization potential under different configuration of vegetation. Chinese Journal of Ecology, 30, 2442-2448.
[ 周玉燕, 贾晓红, 赵昕, 陈国雄, 高艳红, 吴攀 ( 2011). 不同植被配置下土壤碳矿化潜力. 生态学杂志, 30, 2442-2448.]
[41] Zhu RH, Zheng ZC, Li TX, Zhang XZ, He SQ, Wang YD, Liu T, Li W ( 2017). Dynamics of soil organic carbon mineralization in tea plantations converted from farmland at Western Sichuan, China. PLOS ONE, 12(9), e0185271. DOI: 10.1371/journal.pone.0185271.
doi: 10.1371/journal.pone.0185271 pmid: 5607202
[1] CHEN Lin, WANG Lei, YANG Xin-Guo, SONG Nai-Ping, LI Yue-Fei, SU Ying, BIAN Ying-Ying, ZHU Zhong-You, MENG Wen-Ting. Reproductive characteristics of Artemisia scoparia and the analysis of the underlying soil drivers in a desert steppe of China [J]. Chin J Plant Ecol, 2019, 43(1): 65-76.
[2] YU Xiao-Ya, LI Yu-Hui, YANG Guang-Rong. Fruit types and seed dispersal modes of plants in different communities in Shilin Geopark, Yunnan, China [J]. Chin J Plan Ecolo, 2018, 42(6): 663-671.
[3] GU Xiang,ZHANG Shi-Ji,LIU Zhao-Dan,LI Lei-Da,CHEN Jin-Lei,WANG Liu-Fang,FANG Xi. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China [J]. Chin J Plan Ecolo, 2018, 42(5): 595-608.
[4] Hao ZHANG, Mao-Kui Lyu, Jin-Sheng XIE. Effect of Dicranopteris dichotoma on spectroscopic characteristic of dissolved organic matter in red soil erosion area [J]. Chin J Plan Ecolo, 2017, 41(8): 862-871.
[5] Jida Yang,Zhiming Zhang,Zehao Shen,Xiaokun Ou,Yupeng Geng,Mingyu Yang. Review of research on the vegetation and environment of dry-hot valleys in Yunnan [J]. Biodiv Sci, 2016, 24(4): 462-474.
[6] LIU Zhu, YANG Yu-Sheng, SI You-Tao, KANG Gen-Li, and ZHENG Huai-Zhou. Effects of vegetation restoration on content and spectroscopic characteristics of dissolved organic matter in eroded red soil [J]. Chin J Plan Ecolo, 2014, 38(11): 1174-1183.
[7] Guohong Wang, Xiaoping Wang, Weikang Zhang, He Li, Lianhai Du, Jigui Wu. A functional analysis of resistance of plant communities to disturbance: a case study of Beijing nature reserves [J]. Biodiv Sci, 2013, 21(2): 153-162.
[8] TANG Yi and LIU Zhi-Min. Advances, trends and challenges in seed bank research for sand dune ecosystems [J]. Chin J Plan Ecolo, 2012, 36(8): 891-898.
[9] XIAO Chan, LIU Wen-Zhi, LIU Gui-Hua. Comparison of the established vegetation and soil seed bank of tidal flat versus tributary habitats of China’s Danjiangkou Reservoir: the potential of hydrochory [J]. Chin J Plan Ecolo, 2011, 35(3): 247-255.
[10] Jing Yang, Xueli He, Lili Zhao. Species diversity of arbuscular mycorrhizal fungi in the rhizosphere of Salix psammophila in Inner Mongolia desert [J]. Biodiv Sci, 2011, 19(3): 377-385.
[11] LONG Wen-Xing, DING Yi, ZANG Run-Guo, YANG Min, CHEN Shao-Wei. Environmental characteristics of tropical cloud forests in the rainy season in Bawangling National Nature Reserve on Hainan Island, South China [J]. Chin J Plan Ecolo, 2011, 35(2): 137-146.
[12] LIU Yu-Guo, LIU Chang-Cheng, WEI Ya-Fen, LIU Yong-Gang, and GUO Ke. Species composition and community structure at different vegetation successional stages in Puding, Guizhou Province, China [J]. Chin J Plan Ecolo, 2011, 35(10): 1009-1018.
[13] Min Sheng, Ming Tang, Fengfeng Zhang, Yanhui Huang. Effect of soil factors on arbuscular mycorrhizal fungi in saline alkaline soils of Gansu, Inner Mongolia and Ningxia [J]. Biodiv Sci, 2011, 19(1): 85-92.
[14] LUO Dong-Hui, XIA Jing, YUAN Jing-Wei, ZHANG Zhong-Hua, ZHU Jie-Dong, NI Jian. Root biomass of karst vegetation in a mountainous area of southwestern China [J]. Chin J Plan Ecolo, 2010, 34(5): 611-618.
[15] Xueli He, Lingyun Wang, Jing Ma, Lili Zhao. AM fungal diversity in the rhizosphere of Salvia miltiorrhiza in Anguo City of Hebei Province [J]. Biodiv Sci, 2010, 18(2): 175-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Chen Yi-Ling. Notulae de genere Impatiens L. florae Sinicae[J]. J Syst Evol, 1978, 16(2): 36 -55 .
[2] Jie Gao, Peng Zhang, Xing Zhang, Yanhong Liu. Multi-scale analysis on species diversity within a 40-ha old-growth temperate forest[J]. Plant Diversity, 2018, 40(02): 45 -49 .
[3] ZHANG Mei-De, CHEN Wen-Hong, SHUI Yu-Min. Miscellaneous notes on the tribe Gardenieae (Rubiaceae) from China and Vietnam[J]. J Syst Evol, 2007, 45(1): 90 -93 .
[4] DENG Chao-Yang , Song Gui-Sheng , XU Jun-Wang, ZHU Zhen. Increasing Accumulation Level of Foreign Protein in Transgenic Plants Through Protein Targeting[J]. J Integr Plant Biol, 2003, 45(9): 1084 -1089 .
[5] Jin Zhao, Jin Chen, Shaobin Ma. Seed predation and dispersal of Ardisia solanacea in habitats with different degree of disturbance[J]. Biodiv Sci, 2008, 16(1): 34 -43 .
[6] Meng Xiao, Qun Li, Li Wang, Liang Guo, Jing Li, Lin Tang and Fang Chen. ISSR Analysis of the Genetic Diversity of the Endangered Species Sinopodophyllum hexandrum (Royle) Ying from Western Sichuan Province, China[J]. J Integr Plant Biol, 2006, 48(10): .
[7] Liu Rong-zhen and Wang Hou. The Effect of Ammonia Humic Acid Fertilizers on the Activity of End-Group Oxidase of Rice Seeding in Sludge[J]. Chin Bull Bot, 1985, 3(06): 21 -23 .
[8] Benyang Wang, Fuhe Luo, Xuening Zhen, Shixiao Yu. Grey forecasting of forest biodiversity dynamics in China[J]. Biodiv Sci, 2007, 15(4): 393 -399 .
[9] Tai Wang;Qian Qian;Ming Yuan;Xiaojing Wang;Weicai Yang;Lijia Qu;Hongzhi Kong;Yinong Xu;Gaoming Jiang;Kang Chong. Research Advances on Plant Science in China in 2009[J]. Chin Bull Bot, 2010, 45(03): 265 -306 .
[10] JI Hong-Wei, TANG Chong-Qin, LI Liang-Bi and KUANG Ting-Yun. Photosystem Development in Dark-grown Lotus (Nelumbo nucifera) Seedlings (in English)[J]. J Integr Plant Biol, 2001, 43(11): 1129 -1133 .