Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (4): 320-330.doi: 10.17521/cjpe.2019.0014

• Research Articles • Previous Articles     Next Articles

Divergent responses of radial growth of Larix sibirica to climate change in Altay Mountains of Xinjiang, China

JIAO Liang1,2,*(),WANG Ling-Ling1,LI Li1,CHEN Xiao-Xia1,YAN Xiang-Xiang1   

  1. 1 College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
    2 Key Laboratory of Tree-ring Physical and Chemical Research of China Meteorological Administration, Institute of Desert Meteorology, China Meteorological Administration, ürümqi, ürümqi 830002, China;
  • Received:2019-01-15 Revised:2019-03-29 Online:2019-08-29 Published:2019-04-20
  • Contact: JIAO Liang
  • Supported by:
    Supported by the National Natural Science Foundation of China(41861006);the Scientific Research Program of Higher Education Institutions of Gansu Province(2018C-02)


AimsThe objective of this study was to determine the temporal stability of relationships between radial growth of Larix sibirica and climatic factors in Altay Mountains.
MethodsTree-ring samples were collected at high altitude (2 069 m) in Altay Mountains of Xinjiang, China. Residual chronologies (RES) were established by using the tree-ring width data. Growth-climate relationships were investigated by calculating the Pearson correlation coefficients between tree-ring width chronology and climatic factors. Moreover, the variations in radial growth in response to climatic factors were calculated by a moving correlation function with a 30-year time window using the DendroClim 2002 program.
Important findings Temperature in the early and middle growing seasons exerted the greatest control on the radial growth in Larix sibirica of the study region, with a significant negative correlation between the radial growth of trees and the air temperatures in the current April (mean minimum air temperature: r = -0.308, p < 0.05; mean air temperature: r = -0.324, p < 0.05; mean maximum air temperature: r = -0.330, p < 0.05), and a significant positive correlation between the radial growth and temperatures from June to July (mean minimum air temperature: r = 0.499, p < 0.01; mean air temperature: r = 0.456, p < 0.01; mean maximum air temperature: r = 0.431, p < 0.01). The radial growth in Larix sibirica exhibited divergent responses to temperature in April and from June to July. Specifically, with the changes in climate, the radial growth response sensitivity of trees showed a gradually increasing trend to drought caused by high temperature in current April, while the sensitivity to the temperature decreased initially and then increased from the current June to July. Our results show that the radial growth of Larix sibirica in Altay Mountains was sensitive to climatic factors, making it suitable to study the relationships between tree growth and climate change. Under climate change, our findings on divergent response of radial growth in Larix sibirica to climatic factors would provide a scientific basis for accurately reconstructing historical climate and predicting forest ecosystem dynamics based on tree-ring data.

Key words: divergent response, climate change, Larix sibirica, dendroclimatology, Altay Mountains

Fig. 1

Variations in monthly mean minimum air temperature, mean air temperature, mean maximum air temperature and total precipitation from 1959 to 2012 in study area of Altay Mountains."

Fig. 2

Variations in annual mean minimum air temperature, mean air temperature, mean maximum air temperature and total precipitation during 1959-2012 in study area of Altay Mountains."

Table 1

Main parameters of tree-ring residual chronology of Larix sibirica in Altay Mountains"

统计特征 Statistics 数值 Value
平均敏感度 Mean sensitivity (MS) 0.216
标准偏差 Standard deviation (SD) 0.212
一阶自回归系数 First-order serial autocorrelation (AC1) 0.122
样本相关系数 Correlation coefficient for all series (R1) 0.467
树内相关系数 Correlation coefficients within trees (R2) 0.673
树间相关系数 Correlation coefficients between trees (R3) 0.463
第一主分量方差 Variance in first eigenvector (PC1)(%) 48.5
信噪比 Signal-to-noise ratio (SNR) 38.59
样本总体解释量 Expressed population signal (EPS) 0.975
信号强度(SSS) > 0.85起始年(树芯数)
First year of SSS > 0.85 (Number of tree-ring)
1 788 (6)

Fig. 3

Correlations between tree-ring width chronology of Larix sibirica and monthly total precipitation from 1959 to 2012 in Altay Mountains. p, previous year; c, current year."

Fig. 4

Correlations between tree-ring width chronology of Larix sibirica and monthly mean minimum temperature, mean temperature and mean maximum temperature from 1959 to 2012 in Altay Mountains. The open pentagrams represent significant correlation at the 0.05 level and the solid pentagrams represent significant correlation at the 0.01 level. p, previous year; c, current year."

Fig. 5

Moving crrelation between tree ring width chronology in Larix sibirica and monthly climnatic fators in Altay Mountains. Moving window: 30 years. The five pointed stars represent signifcance at the0.05 level. The black bars represent positive correlation and the gray bars represent negative correlation. p, previous year; c, current year."

[1] Barber V, Juday GP, Finney B (2000). Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature, 405, 668-673.
[2] Bntgen U, Frank D, Schmidhalter M, Neuwirth B, Seifert M, Esper J (2006). Growth/climate response shift in a long subalpine spruce chronology. Trees, 20, 99-110.
[3] Briffa KR, Osborn TJ, Schweingruber FH ( 2004). Large-scale temperature inferences from tree rings: A review. Global and Planetary Change, 40, 11-26.
[4] Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998). Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 391, 678-682.
[5] Chang YX, Chen ZJ, Zhang XL, Bai XP, Zhao XP, Li JX, Lu X ( 2017). Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming. Chinese Journal of Plant Ecology, 41, 279-289.
[ 常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭 ( 2017). 气候变暖下大兴安岭落叶松径向生长对温度的响应. 植物生态学报, 41, 279-289.]
[6] Chen F, Yuan YJ, Wei WS, Fan ZA, Zhang TW, Shang HM, Zhang RB, Yu SL, Ji CR, Li Q ( 2012). Climatic response of ring width and maximum latewood density of Larix sibirica in the Altay Mountains, reveals recent warming trends. Annals of Forest Science, 69, 723-733.
[7] Chen L, Yin YH, Zhao DS, Yuan QZ, Wu SH (2014). Climate response of tree growth along an altitudinal gradient in the Changbai Mountains, Northeast China. Acta Ecologica Sinica, 34, 1568-1574.
[ 陈力, 尹云鹤, 赵东升, 苑全治, 吴绍洪 (2014). 长白山不同海拔树木生长对气候变化的响应差异. 生态学报, 34, 1568-1574.]
[8] Cook E ( 1985). A Time Series Analysis Approach to Tree Ring Standardization. PhD dissertation, The University of Arizona, Tucson,USA.
[9] D’Arrigo R, Mashig E, Frank D, Wilson R, Jacoby G (2005). Temperature variability over the past millennium inferred from Northwestern Alaska tree rings. Climate Dynamics, 24, 227-236.
[10] D’Arrigo R, Wilson R, Liepert B, Cherubini P ( 2008). On the “divergence problem” in Northern Forests: A review of the tree-ring evidence and possible causes. Global and Planetary Change, 60, 289-305.
[11] Day ME, Greenwood MS, Diaz-Sala C ( 2002). Age- and size-relatedtrends in woody plant shoot development: Regulatory pathways and evidence for genetic control. Tree Physiology, 22, 507-513.
[12] Fritts HC (1976). Tree Rings and Climate. Academic Press, London.
[13] Gazol A, Camarero JJ, Gutiérrez E, Popa I, Andreu-Hayles L, Motta R, Nola P, Ribas M, Sangüesa-Barreda G, Urbinati C, Carrer M (2015). Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. Journal of Biogeography, 42, 1150-1162.
[14] Gou XH, Chen FH, Yang MX, Peng JF, Qiang WY, Chen T ( 2004). Analysis of the tree-ring width chronology of Qilian Mountains at different elevation. Acta Ecologica Sinica, 24, 172-176.
[ 勾晓华, 陈发虎, 杨梅学, 彭剑峰, 强维亚, 陈拓 ( 2004). 祁连山中部地区树轮宽度年表特征随海拔高度的变化. 生态学报, 24, 172-176.]
[15] Holmes RL ( 1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-78.
[16] Hu J, Yu SL, Yuan YJ, Zhang TW, Shang HM, Zhang RB ( 2014). Characteristics of tree-ring width chronologies in the central Altay Mountains and climate response. Desert and Oasis Meteorology, 8, 19-26.
[ 胡建, 喻树龙, 袁玉江, 张同文, 尚华明, 张瑞波 ( 2014). 阿尔泰山中部树轮宽度年表特征及其气候响应分析. 沙漠与绿洲气象, 8, 19-26.]
[17] Huang LP, Gao YQ, Li Y, Zhang TW, Hu DY, Wang L ( 2015). Growth of Siberia larch in the middle east of Altay Mountains and its response to climate change. Arid Land Geography, 38, 1169-1178.
[ 黄力平, 高亚琪, 李云, 张同文, 胡东宇, 王蕾 (2015). 阿尔泰山中东部西伯利亚落叶松生长量及其对气候变化的响应研究. 干旱区地理, 38, 1169-1178.]
[18] IPCC (2013). Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
[19] Jacoby GC, D’Arrigo RD ( 1995). Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochemical Cycles, 9, 227-234.
[20] Jiang SX, Yuan YJ, Qin L, Yu SL, Shang HM, Lu MX, Zhang TW ( 2017). Analysis on climate and hydrology change characteristics during historical time in the Altai Mountains. Journal of Glaciology and Geocryology, 39, 672-679.
[ 姜盛夏, 袁玉江, 秦莉, 喻树龙, 尚华明, 陆明鑫, 张同文 ( 2017). 阿尔泰山历史时期气候水文变化特征分析. 冰川冻土, 39, 672-679.]
[21] Jiang SX, Yuan YJ, Wei WS, Shang HM, Zhang TW, Zhang RB, Qin L ( 2016). Early summer temperature history in the Altay Mountains recorded by tree rings during 1579-2009. Journal of Desert Research, 36, 1126-1132.
[ 姜盛夏, 袁玉江, 魏文寿, 尚华明, 张同文, 张瑞波, 秦莉 ( 2016). 树轮记录的新疆阿尔泰山1579-2009年初夏温度变化. 中国沙漠, 36, 1126-1132.]
[22] Jiao L, Jiang Y, Zhang WT, Wang MC, Zhang LN, Zhao SD ( 2015). Divergent responses to climate factors in the radial growth of Larix sibirica in the eastern Tianshan Mountains, northwest China. Trees, 29, 1673-1686.
[23] Li JX, Bai XP, Zhang XL, Chang YX, Lu X, Zhao XP, Chen ZJ ( 2017). Different responses of natural Pinus sylvestris var.mongolica growth to climate change in southern and northern forested areas in the Great Xingʼan Mountains. Acta Ecologica Sinica, 37, 7232-7241.
[ 李俊霞, 白学平, 张先亮, 常永兴, 陆旭, 赵学鹏, 陈振举 ( 2017). 大兴安岭林区南、北部天然樟子松生长对气候变化的响应差异. 生态学报, 37, 7232-7241.]
[24] Li MY, Yuan YJ, Wei WS, Zhang TW, Qin L (2011). Characteristics of tree-ring width chronologies in Western Altay and their response to climate change. Desert and Oasis Meteorology, 5, 16-21.
[ 李漠岩, 袁玉江, 魏文寿, 张同文, 秦莉 (2011). 阿勒泰西部树轮宽度年表特征及其气候响应. 沙漠与绿洲气象, 5, 16-21.]
[25] Liu GH, Fu BJ ( 2001). Effects of global climate change on forest ecosystems. Journal of Natural Resources, 16, 71-78.
[ 刘国华, 傅伯杰 ( 2001). 全球气候变化对森林生态系统的影响. 自然资源学报, 16, 71-78.]
[26] Lu JP ( 1960). Relationship between forest soil and spruce and larch in Tianshan and Altay Mountains, China. Soil Notification, (4), 30-41,16.
[ 卢俊培 ( 1960). 我国天山和阿尔泰山的森林土壤与云杉和落叶松的关系. 土壤通报,(4), 30-41,16.]
[27] Martin-Benito D, Del RM, Canellas I ( 2010). Black pine (Pirrus nigra Arn.) growth divergence along a latitudinal gradient in Western Mediterranean mountains. Annals of Forest Science, 67, 401.
[28] Niu JQ, Yuan YJ, Zhang TW, Shang HM, Zhang RB, Yu SL, Chen F, Jiang SX ( 2016). Characteristics of tree-ring width chronologies in Altay and their response to climate change. Desert and Oasis Meteorology, 10, 59-67.
[ 牛军强, 袁玉江, 张同文, 尚华明, 张瑞波, 喻树龙, 陈峰, 姜盛夏 ( 2016). 阿尔泰山区两种树轮宽度年表气候响应特征. 沙漠与绿洲气象, 10, 59-67.]
[29] Peng JF, Gou XH, Chen FH, Li JB, Liu PX, Tian QH, Zhang Y, Zhang YX ( 2006). The responses of growth ring width variations of Larix sibirica Ledb. to climatic change in eastern Tianshan Mountains. Acta Ecologica Sinica, 26, 2723-2731.
[ 彭剑峰, 勾晓华, 陈发虎, 李金豹, 刘普幸, 田沁花, 张永, 张永香 ( 2006). 天山东部西伯利亚落叶松树轮生长对气候要素的响应分析. 生态学报, 26, 2723-2731.]
[30] Peng SS, Piao SL, Ciais P, Myneni RB, Chen AP, Chevallier F, Dolman AJ, Janssens IA, Penuelas J, Zhang GX, Vicca S, WanSQ, Wang SP, Zeng H ( 2013). Asymmetric effects of daytimeand night-time warming on Northern Hemisphere vegetation. Nature, 501, 88-92.
[31] Shang HM, Wei WS, Yuan YJ, Yu SL, Zhang TW, Waheti AZMT, Li XJ ( 2010). Response of tree ring width to recent climate change, south slope of Altai Mountains. Acta Ecologica Sinica, 30, 2246-2253.
[ 尚华明, 魏文寿, 袁玉江, 喻树龙, 张同文, 瓦合提•艾则买提, 李新建 ( 2010). 阿尔泰山南坡树轮宽度对气候变暖的响应. 生态学报, 30, 2246-2253.]
[32] Shao XM, Wu XD ( 1994). Tree-ring Chronologies for Pinus armandii Franch from Hua Shan, China. Acta Geographica Sinica, 49, 174-181.
[ 邵雪梅, 吴祥定 ( 1994). 华山树木年轮年表的建立. 地理学报, 49, 174-181.]
[33] Shi YF, Shen YP, Li DL, Zhang GW, Ding YJ, Hu RJ, Kang ES ( 2003). Discussion on the present climate change from warm-dry to warm-wet in northwest China. Quaternary Sciences, 23, 152-164.
[ 施雅风, 沈永平, 李栋梁, 张国威, 丁永建, 胡汝骥, 康尔泗 ( 2003). 中国西北气候由暖干向暖湿转型的特征和趋势探讨. 第四纪研究, 23, 152-164.]
[34] Vila B, Vennetier M, Ripert C, Chandioux O, Liang EY, Guibal F, Torre F ( 2008). Has global change induced divergent trends in radial growth of Pinus sylvestris and Pinus halepensis at their bioclimatic limit? The example of the Sainte-Baume forest (south-east France). Annals of Forest Science, 65, 709.
[35] Wang M, Bai SJ, Tao DL, Shan JP ( 1995). Effect of rise in air-temperature on tree ring growth of forest on Changbai Mountain. Chinese Journal of Applied Ecology, 6, 128-132.
[ 王淼, 白淑菊, 陶大立, 单建平 ( 1995). 大气增温对长白山林木直径生长的影响. 应用生态学报, 6, 128-132.]
[36] Wu XD (1990). Tree Rings and Climate Change. China Meteorological Press, Beijing.
[ 吴祥定 (1990). 树木年轮与气候变化. 气象出版社, 北京.]
[37] Yu D, Liu J, Benard JL, Zhou L, Zhou W, Fang X, Wei Y, Jiang S, Dai L ( 2013). Spatial variation and temporal instability in the climate-growth relationship of Korean pine in the Changbai Mountain region of Northeast China. Forest Ecology and Management, 300, 96-105.
[38] Yu J, Xu QQ, He X, Luo CW, Liu WH, Li JQ, Liu QJ ( 2013). Response divergence of Larix olgensis tree-ring widths to climate variation in eastern slope of Changbai Mountain, northeast China. Journal of Central South Sniversity of Forestry & Technology, 33, 89-97.
[ 于健, 徐倩倩, 何秀, 罗春旺, 刘文慧, 李俊清, 刘琪璟 ( 2013). 长白山东坡落叶松树轮宽度对气候响应的分离效应. 中南林业科技大学学报, 33, 89-97.]
[39] Yu J, Xu QQ, Liu WH, Luo CW, Yang JL, Li JQ, Liu QJ (2016). Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China. Chinese Journal of Plant Ecology, 40, 24-35.
[ 于健, 徐倩倩, 刘文慧, 罗春旺, 杨君珑, 李俊清, 刘琪璟 ( 2016). 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应. 植物生态学报, 40, 24-35.]
[40] Yu SL, Yuan YJ, Wei WS, Shang HM, Zhang TW, Tong Z, Du M (2008). Response of tree-ring to climate change and temperature reconstruction in west of Tianshan Mountains north slope. Journal of Desert Research, 28, 827-832.
[ 喻树龙, 袁玉江, 魏文寿, 尚华明, 张同文, 童忠, 杜敏 (2008). 天山北坡西部树木年轮对气候因子的响应分析及气温重建. 中国沙漠, 28, 827-832.]
[41] Yuan QX, Ye ZX, Wang LL, Shang HM, Yu SL (2010). Characteristics of tree width chronologies on Urumqi River mountainous basin and their responding to climate change. Arid Land Geography, 33, 394-403.
[ 袁晴雪, 叶芝祥, 王丽丽, 尚华明, 喻树龙 ( 2010). 乌鲁木齐河山区流域树轮宽度年表特征及其对气候的响应. 干旱区地理, 33, 394-403.]
[42] Zhang Q, Yu RD, Zheng HW, Yang ML, Gan M (2018). Response analysis of Larix sibirica to climate warming at different elevations in the eastern Tianshan Mountains. Plant Research, 38, 14-25.
[ 张晴, 于瑞德, 郑宏伟, 杨美琳, 甘淼 (2018). 天山东部不同海拔西伯利亚落叶松对气候变暖的响应分析. 植物研究, 38, 14-25.]
[43] Zhang RB, Yuan YJ, Wei WS, Shang HM, Yu SL, Zhang TW, Chen F, Fan ZA, Qin L (2012). Response of stable carbon isotope of Larix sibirica Ledeb. tree-rings to climate change. Arid Zone Research, 29, 328-334.
[ 张瑞波, 袁玉江, 魏文寿, 尚华明, 喻树龙, 张同文, 陈峰, 范子昂, 秦莉 ( 2012). 西伯利亚落叶松树轮稳定碳同位素对气候的响应. 干旱区研究, 29, 328-334.]
[44] Zhang WT, Jiang Y, Wang MC, Zhang LN, Dong MY (2015). Responses of radial growth in Larix principis-rupprechtii to climate change along an elevation gradient on the southern slope of Luya Mountain. Acta Ecologica Sinica, 35, 6481-6488.
[ 张文涛, 江源, 王明昌, 张凌楠, 董满宇 ( 2015). 芦芽山阳坡不同海拔华北落叶松径向生长对气候变化的响应. 生态学报, 35, 6481-6488.]
[45] Zhang Y, Wilmking M, Gou XH ( 2009). Changing relationships between tree growth and climate in Northwest China. Plant Ecology, 201, 39-50.
[46] Zhang Y, Yin DC, Sun M, Li LP, Tian K, Zhang WG ( 2018a). Response of radial growth of two conifers to temperature and precipitation in Potatso National Park, Southwest China. Acta Ecologica Sinica, 38, 5383-5392.
[ 张贇, 尹定财, 孙梅, 李丽萍, 田昆, 张卫国 ( 2018a). 普达措国家公园2个针叶树种径向生长对温度和降水的响应. 生态学报, 38, 5383-5392.]
[47] Zhang Y, Yin DC, Tian K, Zhang WG, He RH, He WQ, Sun JM, Liu ZY ( 2018b). Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China. Chinese Journal of Plant Ecology, 42, 629-639.
[ 张贇, 尹定财, 田昆, 张卫国, 和荣华, 和文清, 孙江梅, 刘振亚 (2018b). 玉龙雪山不同海拔丽江云杉径向生长对气候变异的响应. 植物生态学报, 42, 629-639. ]
[48] Zhang YJ, Yu RD, Zheng HW, Gan M, Yang ML, Shi BB (2017). Difference in response of radial growth of Picea schrenkiana to climate warming in the eastern and western Tianshan Mountains. Chinese Journal of Ecology, 36, 2149-2159.
[ 张艳静, 于瑞德, 郑宏伟, 甘淼, 杨美琳, 石冰冰 ( 2017). 天山东西部雪岭云杉径向生长对气候变暖的响应差异. 生态学杂志, 36, 2149-2159.]
[49] Zhou ZJ, Jiang Y, Dong MY, Tao Y, Wang MC, Ding XY ( 2018). Response of the relationship between radial growth and climatic factors to abrupt change of temperature along an altitudinal gradient on the northern slope of Changbai Mountain, Northeast China. Acta Ecologica Sinica, 38, 4668-4676.
[ 周子建, 江源, 董满宇, 陶岩, 王明昌, 丁新原 ( 2018). 长白山北坡不同海拔红松径向生长-气候因子关系对气温突变的响应. 生态学报, 38, 4668-4676.]
[50] Zhu HF, Wang LL, Shao XM, Fang XQ ( 2004). Tree ring-width response of Picea schrenkiana to climate change. Acta Geographica Sinica, 159, 863-870.
[ 朱海峰, 王丽丽, 邵雪梅, 方修琦 ( 2004). 雪岭云杉树轮宽度对气候变化的响应. 地理学报, 159, 863-870.]
[1] E BAI Bing Xue. A review of influences of land use and land cover change on ecosystems [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[2] HU Wan,ZHANG Zhi-Yong,CHEN Lu-Dan,PENG Yan-Song,WANG Xu. Changes in potential geographical distribution of Tsoongiodendron odorum since the Last Glacial Maximum [J]. Chin J Plant Ecol, 2020, 44(1): 44-55.
[3] HUANG Mei, WANG Na, WANG Zhao-Sheng, GONG He. Modeling phosphorus effects on the carbon cycle in terrestrial ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 471-479.
[4] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[5] ZHANG Fu-Guang, ZENG Biao, YANG Tai-Bao. Spatiotemporal distribution changes in alpine desert belt in Qilian Mountains under climate changes in past 30 years [J]. Chin J Plant Ecol, 2019, 43(4): 305-319.
[6] LIU Xiao-Tong, YUAN Quan, NI Jian. Research advances in modelling plant species distribution in China [J]. Chin J Plant Ecol, 2019, 43(4): 273-283.
[7] WANG Huan-Jiong, TAO Ze-Xing, GE Quan-Sheng. Effects of climate variation on the first leaf dates of 39 woody species and their thermal requirements in Xi’an, China [J]. Chin J Plant Ecol, 2019, 43(10): 877-888.
[8] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[9] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[10] Xiuwei Liu, Douglas Chesters, Chunsheng Wu, Qingsong Zhou, Chaodong Zhu. A horizon scan of the impacts of environmental change on wild bees in China [J]. Biodiv Sci, 2018, 26(7): 760-765.
[11] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[12] Yuan-Feng SUN, Hong-Wei WAN, Yu-Jin ZHAO, Shi-Ping CHEN, Yong-Fei BAI. Spatial patterns and drivers of root turnover in grassland ecosystems in China [J]. Chin J Plan Ecolo, 2018, 42(3): 337-348.
[13] WU Qi-Qian, WANG Chuan-Kuan. Dynamics in foliar litter decomposition for Pinus koraiensis and Quercus mongolica in a snow-depth manipulation experiment [J]. Chin J Plan Ecolo, 2018, 42(2): 153-163.
[14] Xiaoyu Wu,Shikui Dong,Shiliang Liu,Quanru Liu,Yuhui Han,Xiaolei Zhang,Xukun Su,Haidi Zhao,Jing Feng. Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model [J]. Biodiv Sci, 2018, 26(2): 138-148.
[15] Huijie Qiao,Xiaoyi Wang,Wei Wang,Zhenhua Luo,Ke Tang,Yan Huang,Shengnan Yang,Weiwei Cao,Xinquan Zhao,Jianping Jiang,Junhua Hu. From nature reserve to national park system pilot: Changes of environmental coverage in the Three-River-Source National Park and implications for amphibian and reptile conservation [J]. Biodiv Sci, 2018, 26(2): 202-209.
Full text



[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chin Bull Bot, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chin Bull Bot, 1999, 16(04): 439 -443 .
[5] CHEN Shao-Liang LI Jin-Ke BI Wang-Fu WANG Sha-Sheng. Genotypic Variation in Accumulation of Salt Ions, Betaine and Sugars in Poplar Under Conditions of Salt Stress[J]. Chin Bull Bot, 2001, 18(05): 587 -596 .
[6] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[7] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[8] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[9] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .
[10] Li Jiandong, Zheng Huiying. ?ber die Anwendung der Braun-Blanquet's Methode in der Steppen-Untersuchung[J]. Chin J Plan Ecolo, 1983, 7(3): 186 -203 .