Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (10): 877-888.doi: 10.17521/cjpe.2019.0178

• Research Articles • Previous Articles     Next Articles

Effects of climate variation on the first leaf dates of 39 woody species and their thermal requirements in Xi’an, China

WANG Huan-Jiong(),TAO Ze-Xing,GE Quan-Sheng   

  1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
  • Received:2019-07-08 Accepted:2019-09-15 Online:2020-02-24 Published:2019-10-20
  • Contact: WANG Huan-Jiong E-mail:jshe@pku.edu.cn
  • Supported by:
    y the National Key R&D Program of China(2018YFA0606103);the Youth Innovation Promotion Association, Chinese Academy of Sciences(2018070)

Abstract:

Aims The frequency and intensity of exceptional climatic events such as warm spring have increased significantly over the past few decades and exerted a significant impact on the spring phenophases of plants. However, the influence of exceptional climatic events on the thermal requirements of spring phenophases is still unclear, which limits the predictive accuracy of the future phenological changes. Here we aim to demonstrate how the first leaf dates of woody plants and their associated thermal requirements change under exceptional climatic conditions and how exceptional climatic conditions affect the ability of the growing degree model to predict leaf unfolding date. Methods Using data on the first leaf date of 39 woody species at Xi’an Botanical Garden from 1963 to 2018 and the corresponding meteorological data, this study firstly classified each year into the cold year, normal year and warm year. Subsequently, we analyzed the phenological change in the years with abnormal climate compared to the years with normal climate. Second, three kinds of algorithms were used to calculate the thermal requirements of the first leaf date for each plant, and the difference in the thermal requirements between years with abnormal climate and normal climate was compared. Finally, the error of the traditional growing degree day model in the simulation of the first leaf date in exceptional climatic conditions was assessed. Important findings For all plant species, the first leaf date was earlier in warm years than that in normal years with a mean advance of 8.6 days, and it was later in cold years with a mean delay of 8.2 days. In warm years, the thermal requirement of the first leaf date (257.5 degree days on average) was significantly higher than that in normal years (195.1 degree days on average, p < 0.05) for most species. However, in cold years, the thermal requirement (168.0 degree days on average) was lower than in normal years (not statistically significant) for most species. In cold years, the ancient group delayed by more in first leaf date and showed smaller changes in thermal requirement than the young group, but there was no significant difference in warm years.There were no significant differences in changes of first leaf date and thermal requirement among different life forms. The high temperature in the previous winter caused plants to receive less chilling, and thus reduced the thermal requirement in the following year. The first leaf date of woody plants simulated by the growing degree day model was 4.1 days earlier than the observed date in warm years, and was 3.0 days later than the observed date in cold years. Therefore, when predicting the future phenological changes, it is necessary to consider changes in the thermal requirement under exceptional climatic conditions; otherwise, it will overestimate the promotion effects of climate warming on the leaf unfolding date.

Key words: climate change, phenology, first leaf date, thermal requirement, Xi’an;

Table 1

Summary of 39 woody species investigated and their first leaf date in Xi’an"

编号
No.
物种
Species
生活型
Life form
观测年数
N
分化时间(百万年)
Differentiation time (Ma)
展叶始期(月-日)
First leaf date (month-day)
1 垂柳 Salix babylonica 乔木 Tree 42 32.4a 03-15
2 牡丹 Paeonia suffruticosa 灌木 Shrub 42 115.3b 03-18
3 木瓜 Chaenomeles sinensis 灌木或小乔木 Shrub or small tree 34 3.0a 03-19
4 紫丁香 Syringa oblata 灌木或小乔木 Shrub or small tree 42 11.2a 03-19
5 山桃 Amygdalus davidiana 乔木 Tree 41 82.2b 03-22
6 杜梨 Pyrus betulifolia 乔木 Tree 32 3.0a 03-24
7 连翘 Forsythia suspensa 灌木 Shrub 31 15.2a 03-25
8 毛樱桃 Cerasus tomentosa 灌木 Shrub 32 41.1a 03-25
9 迎春花 Jasminum nudiflorum 灌木 Shrub 38 15.2a 03-25
10 枫杨 Pterocarya stenoptera 乔木 Tree 32 12.1a 03-26
11 灯台树 Cornus controversa 乔木 Tree 32 105.6b 03-29
12 Corylus heterophylla 灌木或小乔木 Shrub or small tree 32 49.3a 03-29
13 蜡梅 Chimonanthus praecox 灌木 Shrub 32 120.6b 03-30
14 水杉 Metasequoia glyptostroboides 乔木 Tree 32 290.0c 04-01
15 胡桃 Juglans regia 乔木 Tree 38 12.1a 04-01
16 栾树 Koelreuteria paniculata 乔木 Tree 40 46.1a 04-02
17 紫荆 Cercis chinensis 灌木 Shrub 42 69.2b 04-02
18 日本樱花 Cerasus yedoensis 乔木 Tree 38 41.1a 04-02
19 玉兰 Yulania denudate 乔木 Tree 41 120.6b 04-03
20 银杏 Ginkgo biloba 乔木 Tree 32 290.0c 04-04
21 色木槭 Acer pictum subsp. mono 乔木 Tree 42 46.1a 04-04
22 枸橘 Poncirus trifoliata 小乔木 Small tree 34 49.9a 04-05
23 悬铃木 Platanus orientalis 乔木 Tree 37 136.9b 04-05
24 Diospyros kaki 乔木 Tree 39 105.6b 04-06
25 毛白杨 Populus tomentosa 乔木 Tree 39 32.4a 04-07
26 女贞 Ligustrum lucidum 乔木 Tree 31 11.2a 04-07
27 紫藤 Wisteria sinensis 藤本 Liana 40 36.1a 04-07
28 刺槐 Robinia pseudoacacia 乔木 Tree 41 36.1a 04-07
29 文冠果 Xanthoceras sorbifolium 灌木或小乔木 Shrub or small tree 30 46.7a 04-08
30 Morus alba 乔木 Tree 42 54.8a 04-08
31 白蜡树 Fraxinus chinensis 乔木 Tree 34 21.7a 04-09
32 构树 Broussonetia papyrifera 乔木 Tree 30 54.8a 04-09
33 臭椿 Ailanthus altissima 乔木 Tree 42 49.9a 04-09
34 Sophora japonica 乔木 Tree 37 53.9a 04-09
35 木槿 Hibiscus syriacus 灌木 Shrub 36 69.2b 04-12
36 黄连木 Pistacia chinensis 乔木 Tree 31 70.9b 04-14
37 紫薇 Lagerstroemia indica 灌木或小乔木 Shrub or small tree 40 111.7b 04-14
38 乌桕 Sapium sebiferum 乔木 Tree 32 100.6b 04-18
39 梧桐 Firmiana simplex 乔木 Tree 30 69.2b 04-20

Fig. 1

Division of the cold years, warm years, and normal years. A, The March to April average temperature from 1963 to 2018. B, The daily mean temperature in years with abnormal and normal climate."

Fig. 2

Difference in first leaf date (FLD) of 39 woody species between the years with abnormal and normal climate in Xi?an. A, The average FLD in cold years, normal years, and warm years for each species. B, The difference in FLD between the years with abnormal and normal climate. The solid bars represent that the difference is significant (p < 0.05). See Table 1 for species No."

Table 2

Comparison of the change in the first leaf date and its thermal requirement of 39 woody species among different groups and life forms in Xi’an (mean ± SD)"

变量 Variable 类群 Group 生活型 Life form
年轻
Young
中间
Intermediate
古老
Ancient
乔木
Tree
灌木或小乔木
Shrub or small tree
藤本
Liana
物种数量 N 24 13 2 25 13 1
偏冷年物候变化(天)
PC in the cold year (day)
8.6 ± 2.9a 6.7 ± 2.6b 13.2 ± 3.2a,b 7.9 ± 3.0 8.8 ± 3.4 8.1
偏暖年物候变化(天)
PC in the warm year (day)
-8.6 ± 2.7 -8.8 ± 2.2 -7.2 ± 0.4 -8.5 ± 2.6 -8.5 ± 2.3 -11.6
偏冷年积温需求变化(度日)
CTR in the cold year (degree day)
-26.2 ± 18.7 -32.9 ± 16.4a 0.7 ± 35.8a -29.1 ± 21.5 -23.2 ± 16.2 -25.6
偏暖年积温需求变化(度日)
CTR in the warm year (degree day)
62.2 ± 31.8 61.5 ± 26.7 70.7 ± 6.1 67.7 ± 32.6 54.3 ± 18.8 36.4

Fig. 3

Comparison of thermal requirements for the first leaf date (FLD) of 39 woody species between the years with abnormal and normal climate in Xi?an. A, The results of the first method. B, The results of the second method. C, The results of the third method. The solid circles represent that the difference is significant (p < 0.05)."

Fig. 4

Comparisons among different methods for calculating thermal requirements for the first leaf date (FLD) of 39 woody species in Xi?an. A, method 1 vs. method 2. B, method 1 vs. method 3. Black circles represent the mean thermal requirement in normal years for each species. See Fig. 3 for methods."

Fig. 5

Effect of growing degree day model for simulating the first leaf date (FLD) of 39 woody species in Xi?an. A, Goodness of fit (R2) and root mean square error (RMSE) of the models. B, Error of the model in simulating the FLD in the years with abnormal and normal climate. The solid bars represent that the mean error was significant from 0 (p < 0.05). See Table 1 for species No."

[1] . Anderson JL, Richardson EA, Kesner CD (1986). Validation of chill unit and flower bud phenology models for ‘Montmorency’ sour cherry. Acta Horticulturae, 184, 71-78.
[2] . Anderson JV, Horvath DP, Chao WS, Foley ME (2010). Bud dormancy in perennial plants: A mechanism for survival. In: Lubzens E, Cerda JC, Clark M eds. Dormancy and Resistance in Harsh Environments. Springer, Berlin. 69-90.
[3] . Bai J, Ge QS, Dai JH, Wang Y (2010). Relationship between woody plants phenology and climate factors in Xiʼan, China. Chinese Journal of Plant Ecology, 34, 1274-1282.
doi: 10.3773/j.issn.1005-264x.2010.11.004
[ 白洁, 葛全胜, 戴君虎, 王英 (2010). 西安木本植物物候与气候要素的关系. 植物生态学报, 34, 1274-1282.]
doi: 10.3773/j.issn.1005-264x.2010.11.004
[4] . Bolmgren K, Vanhoenacker D, Miller-Rushing AJ (2013). One man, 73 years, and 25 species. Evaluating phenological responses using a lifelong study of first flowering dates. International Journal of Biometeorology, 57, 367-375.
doi: 10.1007/s00484-012-0560-8
[5] . Cannell MGR, Smith RI (1983). Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology, 20, 951-963.
doi: 10.2307/2403139
[6] . Carter JM, Orive ME, Gerhart LM, Stern JH, Marchin RM, Nagel J, Ward JK (2017). Warmest extreme year in US history alters thermal requirements for tree phenology. Oecologia, 183, 1197-1210.
doi: 10.1007/s00442-017-3838-z pmid: 28224350
[7] . Chen HP, Sun JQ (2015). Changes in climate extreme events in China associated with warming. International Journal of Climatology, 35, 2735-2751.
doi: 10.1002/joc.2015.35.issue-10
[8] . Chmielewski FM, Götz KP (2017). Identification and timing of dormant and ontogenetic phase for sweet cherries in Northeast Germany for modelling purposes. Journal of Horticulture, 4, 1000205. DOI: 10.4172/2376-0354.1000205.
[9] . Chow DHC, Levermore GJ (2007). New algorithm for generating hourly temperature values using daily maximum, minimum and average values from climate models. Building Services Engineering Research & Technology, 28, 237-248.
doi: 10.1177/0143624407078642
[10] . Chuine I, de Cortazar-Atauri IG, Kramer K, Hänninen H ( 2013). Plant development models. In: Schwartz MD ed. Phenology: An Integrative Environmental Science. 2nd edn. Springer, Dordrecht, Netherland. 275-293.
[11] . Clark JS, Salk C, Melillo J, Mohan J (2014). Tree phenology responses to winter chilling, spring warming, at north and south range limits. Functional Ecology, 28, 1344-1355.
doi: 10.1111/1365-2435.12309
[12] . Cleland EE, Allen JM, Crimmins TM, Dunne JA, Pau S, Travers SE, Zavaleta ES, Wolkovich EM (2012). Phenological tracking enables positive species responses to climate change. Ecology, 93, 1765-1771.
[13] . Dai JH, Wang HJ, Ge QS (2014). The spatial pattern of leaf phenology and its response to climate change in China. International Journal of Biometeorology, 58, 521-528.
doi: 10.1007/s00484-013-0679-2
[14] . de los Milagros Skansi M, Brunet M, Sigró J, Aguilar E, Arevalo Groening JA, Bentancur OJ, Castellón Geier YR, Correa Amaya RL, Jácome H, Malheiros Ramos A, Oria Rojas C, Pasten AM, Sallons Mitro S, Villaroel Jiménez C, Martínez R, Alexander LV, Jones PD (2013). Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global and Planetary Change, 100, 295-307.
doi: 10.1016/j.gloplacha.2012.11.004
[15] . Ellwood ER, Temple SA, Primack RB, Bradley NL, Davis CC (2013). Record-breaking early flowering in the eastern United States. PLOS ONE, 8, e53788. DOI: 10.1371/ journal.pone.0053788.
doi: 10.1371/journal.pone.0053788 pmid: 23342001
[16] . Fahey RT (2016). Variation in responsiveness of woody plant leaf out phenology to anomalous spring onset. Ecosphere, 7, e01209. DOI: 10.1002/ecs2.1209.
pmid: 693155
[17] . Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, Smith P, van der Velde M, Vicca S, Babst F, Beer C, Buchmann N, Canadell JG, Ciais P, Cramer W, Ibrom A, Miglietta F, Poulter B, Rammig A, Seneviratne SI, Walz A, Wattenbach M, Zavala MA, Zscheischler J (2015). Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Global Change Biology, 21, 2861-2880.
doi: 10.1111/gcb.12916 pmid: 25752680
[18] . Friedl MA, Gray JM, Melaas EK, Richardson AD, Hufkens K, Keenan TF, Bailey A, OʼKeefe J (2014). A tale of two springs: Using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environmental Research Letters, 9, 054006. DOI: 10.1088/1748-9326/9/5/054006.
doi: 10.1088/1748-9326/9/5/054006
[19] . Ge QS, Wang HJ, Rutishauser T, Dai JH (2015). Phenological response to climate change in China: A meta-analysis. Global Change Biology, 21, 265-274.
doi: 10.1111/gcb.12648 pmid: 24895088
[20] . Gonsamo A, Chen JM, Wu CY (2013). Citizen science: Linking the recent rapid advances of plant flowering in Canada with climate variability. Scientific Reports, 3, 2239. DOI: 10.1038/srep02239.
doi: 10.1038/srep02239 pmid: 23867863
[21] . Hänninen H (1990). Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica, 213, 1-47.
[22] . Huang WJ, Ge QS, Dai JH, Wang HJ (2017). Sensitivity of first flowering dates to temperature change for typical woody plants in Guiyang City, China. Progress in Geography, 36, 1015-1024.
doi: 10.18306/dlkxjz.2017.08.010
[ 黄文婕, 葛全胜, 戴君虎, 王焕炯 (2017). 贵阳木本植物始花期对温度变化的敏感度. 地理科学进展, 36, 1015-1024.]
doi: 10.18306/dlkxjz.2017.08.010
[23] . Hunter AF, Lechowicz MJ (1992). Predicting the timing of budburst in temperate trees. Journal of Applied Ecology, 29, 597-604.
doi: 10.1006/jtbi.2000.2178 pmid: 11082304
[24] . IPCC ( 2013). Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. 3-29.
[25] . Jin JX, Wang Y, Zhang Z, Magliulo V, Jiang H, Cheng M (2017). Phenology plays an important role in the regulation of terrestrial ecosystem water-use efficiency in the northern hemisphere. Remote Sensing, 9, 664. DOI: 10.3390/rs9070664.
doi: 10.3390/rs9070664
[26] . Jin LN, Qu J, Zhai Y, Zhang H (2014). Comprehensive analysis of climate change characteristics in Xiʼan over recent 63 years. Journal of Shaanxi Meteorology, ( 3), 17-20.
[ 金丽娜, 曲静, 翟园, 张弘 (2014). 西安近63年气候变化特征综合分析. 陕西气象, ( 3), 17-20.]
[27] . Jochner S, Sparks TH, Laube J, Menzel A (2016). Can we detect a nonlinear response to temperature in European plant phenology? International Journal of Biometeorology, 60, 1551-1561.
doi: 10.1007/s00484-016-1146-7 pmid: 26942933
[28] . Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and ecodormancy: Physiological terminology and classification for dormancy research. Hortscience, 22, 371-377.
[29] . Laube J, Sparks TH, Estrella N, Höfler J, Ankerst DP, Menzel A (2014). Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology, 20, 170-182.
doi: 10.1111/gcb.12360
[30] . Liu YF, Tuan ZH, Kong W, Sun B, An B (2015). The changing trend of heat island intensity and main influencing factors during 1993-2012 in Xi’an City. Journal of Natural Resources, 30, 974-985.
[ 刘宇峰, 原志华, 孔伟, 孙铂, 安彬 (2015). 1993-2012年西安城区城市热岛效应强度变化趋势及影响因素分析. 自然资源学报, 30, 974-985.]
[31] . Luedeling E, Zhang MH, McGranahan G, Leslie C (2009). Validation of winter chill models using historic records of walnut phenology. Agricultural and Forest Meteorology, 149, 1854-1864.
doi: 10.1016/j.agrformet.2009.06.013
[32] . Menzel A, Helm R, Zang C (2015). Patterns of late spring frost leaf damage and recovery in a European beech ( Fagus sylvatica L.) stand in south-eastern Germany based on repeated digital photographs. Frontiers in Plant Science,6, 110. Doi: 10.3389/fpls.2015.00110.
doi: 10.3389/fpls.2015.00110 pmid: 25759707
[33] . Okie WR, Blackburn B (2011). Increasing chilling reduces heat requirement for floral budbreak in Peach. HortScience, 46, 245-252.
[34] . Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G, Chen GS, Chen JM, Ciais P, Davis KJ, Desai AR, Dietze MC, Dragoni D, Garrity SR, Gough CM, Grant R, Hollinger DY, Margolis HA, Mccaughey H, Migliavacca M, Monson RK, Munger JW, Poulter B, Raczka BM, Ricciuto DM, Sahoo AK, Schaefer K, Tian H, Vargas R, Verbeeck H, Xiao J, Xue Y (2012). Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis. Global Change Biology, 18, 566-584.
doi: 10.1111/j.1365-2486.2011.02562.x
[35] . Sarvas R (1972). Investigations on the annual cycle of development on forest trees: Active period. Communicationes Instituti Forestalis Fenniae, 76, 1-110.
[36] . Smith MD (2011). An ecological perspective on extreme climatic events: A synthetic definition and framework to guide future research. Journal of Ecology, 99, 656-663.
doi: 10.1111/j.1365-2745.2011.01798.x
[37] . Stott P (2016). How climate change affects extreme weather events. Science, 352, 1517-1518.
doi: 10.1126/science.aaf7271 pmid: 27339968
[38] . Templ B, Templ M, Filzmoser P, Lehoczky A, Bakšienè E, Fleck S, Gregow H, Hodzic S, Kalvane G, Kubin E, Palm V, Romanovskaja D, Vŭcetić V, Žust A, Czúcz B, NS-Pheno Team (2017). Phenological patterns of flowering across biogeographical regions of Europe. International Journal of Biometeorology, 61, 1347-1358.
doi: 10.1007/s00484-017-1312-6 pmid: 28220255
[39] . Wan MW, Liu XZ ( 1979). Chinese Phenological Observation Methods. Science Press, Beijing.
[ 宛敏谓, 刘秀珍 ( 1979). 中国物候观测方法. 科学出版社, 北京.]
[40] . Wang HJ, Sun JQ, Chen HP, Zhu YL, Zhang Y, Jiang DB, Lang XM, Fan K, Yu ET, Yang S (2012). Extreme climate in China: Facts, simulation and projection. Meteorologische Zeitschrift, 21, 279-304.
doi: 10.1127/0941-2948/2012/0330
[41] . Wang HJ, Zhong SY, Tao ZX, Dai JH, Ge QS (2019). Changes in flowering phenology of woody plants from 1963 to 2014 in North China. International Journal of Biometeorology, 63, 579-590.
doi: 10.1007/s00484-017-1377-2 pmid: 28547481
[42] . Way DA, Montgomery RA (2015). Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant, Cell & Environment, 38, 1725-1736.
doi: 10.1111/pce.12431 pmid: 25142260
[43] . Wu ZY, Raven PH ( 2013). Flora of China. Science Press, Beijing.
[44] . Xia JY, Niu SL, Ciais P, Janssens IA, Chen JQ, Ammann C, Arain A, Blanken PD, Cescatti A, Bonal D, Buchmann N, Curtis PS, Chen SP, Dong J, Flanagan LB, Frankenberg C, Georgiadis T, Gough CM, Hui D, Kiely G, Li J, Lund M, Magliulo V, Marcolla B, Merbold L, Montagnani L, Moors EJ, Olesen JE, Piao S, Raschi A, Roupsard O, Suyker AE, Urbaniak M, Vaccari FP, Varlagin A, Vesala T, Wilkinson M, Weng E, Wohlfahrt G, Yan L, Luo Y (2015). Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 112, 2788-2793.
doi: 10.1073/pnas.1413090112 pmid: 25730847
[45] . Xu CC, Cui HX, Shi L, Xia F, Yin ZY, Zhang DS (2017). Response of flowering phenology of Viburnum to abnormal meteorological events. Chinese Bulletin of Botany, 52, 297-306.
[ 许聪聪, 崔洪霞, 石雷, 夏菲, 尹炤寅, 张德山 (2017). 荚蒾属植物花期物候对春季异常气象事件的响应. 植物学报, 52, 297-306.]
[46] . Xu YJ, Zhong SY, Dai JH, Tao ZX, Wang HJ (2017). Changes in flowering phenology of plants and their model simulation in Mudanjiang, China. Geographical Research, 36, 779-789.
[ 徐韵佳, 仲舒颖, 戴君虎, 陶泽兴, 王焕炯 (2017). 1978-2014年牡丹江地区植物花期变化及模型模拟. 地理研究, 36, 779-789.]
[47] . Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, Fitzjohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
doi: 10.1038/nature12872
[48] . Zhang AY, Wang HJ, Dai JH, Ding DP (2014). Applicability analysis of phenological models in the flowering time prediction of ornamental plants in Beijing area. Journal of Applied Meteorological Science, 25, 483-492.
[ 张爱英, 王焕炯, 戴君虎, 丁德平 (2014). 物候模型在北京观赏植物开花期预测中的适用性. 应用气象学报, 25, 483-492.]
[49] . Zhang HC, Liu SG, Regnier P, Yuan WP (2018). New insights on plant phenological response to temperature revealed from long-term widespread observations in China. Global Change Biology, 24, 2066-2078.
doi: 10.1111/gcb.14002 pmid: 29197142
[50] . Zheng JY, Bian JJ (2012). Merge on daily temperature data by adjusting two series of adjacent meteorological stations with observation type alternation. Geographical Research, 31, 579-588.
[ 郑景云, 卞娟娟 (2012). 类型变更的相邻气象观测站的日气温资料整合. 地理研究, 31, 579-588.]
[51] . Zhong SY, Ge QS, Dai JH, Wang HJ (2017). Development of phenological models for simulating past flowering phenology of typical ornamental plants in China. Resources Science, 39, 2116-2129.
doi: 10.18402/resci.2017.11.10
[ 仲舒颖, 葛全胜, 戴君虎, 王焕炯 (2017). 中国典型观赏植物花期模型建立及过去花期变化模拟. 资源科学, 39, 2116-2129.]
doi: 10.18402/resci.2017.11.10
[52] . Zhou T, Cao RY, Wang SP, Chen J, Tang YH (2018). Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis. Chinese Journal of Plant Ecology, 42, 526-538.
doi: 10.17521/cjpe.2017.0305
[ 周彤, 曹入尹, 王少鹏, 陈晋, 唐艳鸿 (2018). 中国草地和欧洲木本植物返青期对气温和降水变化的响应: 基于生存分析的研究. 植物生态学报, 42, 526-538.]
doi: 10.17521/cjpe.2017.0305
[1] E BAI Bing Xue. A review of influences of land use and land cover change on ecosystems [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[2] HU Wan,ZHANG Zhi-Yong,CHEN Lu-Dan,PENG Yan-Song,WANG Xu. Changes in potential geographical distribution of Tsoongiodendron odorum since the Last Glacial Maximum [J]. Chin J Plant Ecol, 2020, 44(1): 44-55.
[3] HUANG Mei, WANG Na, WANG Zhao-Sheng, GONG He. Modeling phosphorus effects on the carbon cycle in terrestrial ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 471-479.
[4] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[5] ZHANG Yi-Ping, HAI Xu-Ying, XU Jun-Liang, WU Wen-Xia, CAO Peng-He, AN Wen-Jing. Seasonal dynamics of non-structural carbohydrate content in branch of Quercus variabilis growing in east Qinling Mountain range [J]. Chin J Plant Ecol, 2019, 43(6): 521-531.
[6] JIAO Liang, WANG Ling-Ling, LI Li, CHEN Xiao-Xia, YAN Xiang-Xiang. Divergent responses of radial growth of Larix sibirica to climate change in Altay Mountains of Xinjiang, China [J]. Chin J Plant Ecol, 2019, 43(4): 320-330.
[7] LIU Xiao-Tong, YUAN Quan, NI Jian. Research advances in modelling plant species distribution in China [J]. Chin J Plant Ecol, 2019, 43(4): 273-283.
[8] ZHANG Fu-Guang, ZENG Biao, YANG Tai-Bao. Spatiotemporal distribution changes in alpine desert belt in Qilian Mountains under climate changes in past 30 years [J]. Chin J Plant Ecol, 2019, 43(4): 305-319.
[9] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[10] XING Xiao-Yi, HAO Pei-Yao, LI Guan-Heng, LI Hui, DONG Li. Seasonal dynamic of plant phenophases in Beijing—A case study in Beijing Botanical Garden [J]. Chin J Plan Ecolo, 2018, 42(9): 906-916.
[11] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[12] Xiuwei Liu, Douglas Chesters, Chunsheng Wu, Qingsong Zhou, Chaodong Zhu. A horizon scan of the impacts of environmental change on wild bees in China [J]. Biodiv Sci, 2018, 26(7): 760-765.
[13] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[14] SONG Xiao-Yan,WANG Gen-Xu,RAN Fei,YANG Yan,ZHANG Li,XIAO Yao. Flowering phenology and growth of typical shrub grass plants in response to simulated warmer and drier climate in early succession Taiga forests in the Da Hinggan Ling of northeast China [J]. Chin J Plan Ecolo, 2018, 42(5): 539-549.
[15] Yuan-Feng SUN, Hong-Wei WAN, Yu-Jin ZHAO, Shi-Ping CHEN, Yong-Fei BAI. Spatial patterns and drivers of root turnover in grassland ecosystems in China [J]. Chin J Plan Ecolo, 2018, 42(3): 337-348.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[5] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[6] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[7] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[8] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[9] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .
[10] ZHANG Zhi-Dong, ZANG Run-Guo. PREDICTING POTENTIAL DISTRIBUTIONS OF DOMINANT WOODY PLANT KEYSTONE SPECIES IN A NATURAL TROPICAL FOREST LANDSCAPE OF BAWANGLING, HAINAN ISLAND, SOUTH CHINA[J]. Chin J Plan Ecolo, 2007, 31(6): 1079 -1091 .