Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (11): 969-978.doi: 10.17521/cjpe.2019.0189

• Research Articles • Previous Articles     Next Articles

Variations in the first-order root diameter in 89 woody species in a subtropical evergreen broadleaved forest

WANG Xue1,CHEN Guang-Shui1,*(),YAN Xiao-Jun1,2,CHEN Ting-Ting1,JIANG Qi1,CHEN Yu-Hui1,FAN Ai-Lian1,JIA Lin-Qiao1,XIONG De-Cheng1,HUANG Jin-Xue1   

  1. 1School of Geographical Sciences, Fujian Normal University/State Key Laboratory for Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China
    2 Mudu High School of Jiangsu, Suzhou, Jiangsu 215101, China
  • Received:2019-07-19 Accepted:2019-10-22 Online:2020-03-26 Published:2019-11-20
  • Contact: CHEN Guang-Shui E-mail:gshuichen@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(31830014);Supported by the National Natural Science Foundation of China(31422012)

Abstract:

Aims The diameter variation of fine roots plays an important role for the study of fine root variation. Phylogeny is a significant factor. In order to examine the diameter variation of the first-order roots in subtropical evergreen broadleaved forests, we investigated 89 woody plant species from a natural evergreen broadleaved forest in Wanmulin Nature Reserve, Jianou, Fujian Province.Methods We selected three trees of each species with similar diameters at breast height or ground diameters, and sampled the root system with intact soil block method. We classed fine root with root order method. One-way ANOVA was used to test the first-order root diameter difference among the life forms (evergreen and deciduous trees), growth forms (tree, semi-tree or shrub and shrub) and the taxonomic classes. Then the Blomberg’s K value was calculated to determine phylogenetic signal. We analyzed the correlation between divergence time and first-order root diameter by using linear regression from family perspective.Important findings 1) The coefficient of variation for the first-order root diameter was 23% in this subtropical evergreen broad-leaved forest. 2) There were no differences in first-order root diameter between evergreen and deciduous trees, but that of the shrubs was significantly different from that of the semi-tree, shrub and tree species. 3) Phylogenetic signal in first-order root diameter was not significant. In addition, the divergence time was positively correlated with the first-order root diameter in the family-level. These results showed that, the variations for first-order root diameter in the tested subtropical woody species was little affected by phylogenetic structure.

Key words: diameter variation, first-order root, subtropical evergreen broadleaved forest, phylogeny

Fig. 1

Phylogenetic tree of 89 woody species in a subtropical evergreen broadleaved forest. Species of same family are indicated by same color."

Fig. 2

First-order root diameter of 89 woody species ranked in ascending order in a subtropical evergreen broadleaved forest. 1, Itea omeiensis; 2, Maesa japonica; 3, Symplocos glauca; 4, Elaeocarpus chinensis; 5, Ilex chinensis; 6, Symplocos anomala; 7, Styrax suberifolius; 8, Daphniphyllum oldhamii; 9, Vaccinium carlesii; 10, Ternstroemia gymnanthera; 11, Pinus massoniana; 12, Machilus chrysotricha; 13, Rhododendron championiae; 14, Cyclobalanopsis glauca; 15, Elaeocarpus decipiens; 16, Aidia cochinchinensis; 17, Ilex rotunda; 18, Adinandra millettii; 19, Ziziphus jujuba; 20, Photinia prunifolia; 21, Sloanea sinensis; 22, Castanopsis sclerophylla; 23, Liquidambar formosana; 24, Vaccinium bracteatum; 25, Gmelina chinensis; 26, Schima superba; 27, Phyllanthus glaucus; 28, Ilex tutcheri; 29, Ficus altissima; 30, Castanopsis lamontii; 31, Alniphyllum fortunei; 32, Machilus grijsii; 33, Heteropanax chinensis; 34, Vernicia fordii; 35, Diospyros oleifera; 36, Symplocos lancifolia; 37, Ilex pubescens; 38, Ilex triflora; 39, Castanopsis faberi; 40, Rhus chinensis; 41, Symplocos sumuntia; 42, Castanopsis jucunda; 43, Eurya nitida; 44, Syzygium buxifolium; 45, Meliosma rigida var. pannosa; 46, Diplospora dubia; 47, Castanopsis carlesii; 48, Hovenia acerba; 49, Neolitsea aurata; 50, Distyliopsis dunnii; 51, Castanopsis fargesii; 52, Ilex qingyuanensis; 53, Cornus officinalis; 54, Elaeocarpus sylvestris; 55, Antidesma bunius; 56, Photinia bodinieri; 57, Phoebe bournei; 58, Sapindus saponaria; 59, Eurya loquaiana; 60, Cornus kousa subsp. chinensis; 61, Viburnum macrocephalum f. keteleeri; 62, Meliosma rigida; 63, Loropetalum chinense; 64, Ilex ficoidea; 65, Litsea cubeba; 66, Symplocos fukienensis; 67, Ficus erecta; 68, Symplocos oblanceolata; 69, Lindera communis; 70, Cupressus funebris; 71, Dendropanax dentiger; 72, Litsea subcoriacea; 73, Michelia skinneriana; 74, Viburnum lancifolium; 75, Lithocarpus polystachyus; 76, Diospyros morrisiana; 77, Altingia gracilipes; 78, Diospyros kaki var. silvestris; 79, Cryptocarya chinensis; 80, Cinnamomum camphora; 81, Elaeocarpus japonicus; 82, Cinnamomum micranthum; 83, Cinnamomum japonicum; 84, Machilus pauhoi; 85, Michelia odora; 86, Cinnamomum austrosinense; 87, Eurya muricata; 88, Alangium chinense; 89, Michelia fujianensis."

Table 1

Basic statistics of the first-order root diameter of 89 woody species comparing by leaf habits, growth forms and families"

分类指标
Classification indicator
样本数
Number
最小值
Minimum
(mm)
最大值
Maximum
(mm)
平均直径
Average diameter
SE, mm)
偏度
Skewness
峰度
Kurtosis
变异系数
Coefficient of variation (%)
木本物种 Woody species 89 0.193 0.635 0.368 ± 0.01 0.37 0.22 23
叶片习性
Leaf form
常绿树种 Evergreen trees 72 0.193 0.635 0.364 ± 0.01a 0.39 0.05 25
落叶树种 Deciduous trees 17 0.293 0.559 0.385 ± 0.02a 1.09 2.16 17
生长型
Growth form
乔木 Tree 68 0.224 0.635 0.376 ± 0.01a 0.34 0.08 23
小乔木或灌木 Semi-tree or shrub 11 0.289 0.553 0.377 ± 0.02a 1.93 5.49 18
灌木 Shrub 10 0.193 0.438 0.303 ± 0.02b 0.36 -0.50 26
主要科
Main family
樟科 Lauraceae 13 0.265 0.508 0.432 ± 0.02a -0.99 0.57 17
壳斗科 Fagaceae 8 0.267 0.444 0.352 ± 0.02ab 0.11 0.68 15
冬青科 Aquifoliaceae 7 0.236 0.404 0.334 ± 0.02b -0.68 -0.20 18
山矾科 Symplocaceae 6 0.224 0.419 0.336 ± 0.03b -0.54 -1.70 25
五列木科 Pentaphylacaceae 5 0.264 0.553 0.373 ± 0.05ab 1.15 1.32 31
杜英科 Elaeocarpaceae 5 0.225 0.489 0.336 ± 0.05b 0.77 -0.28 31

Fig. 3

Linear regression between the first-order root diameter and divergence time. MYA , million years ago."

Table 2

A comparison of first-order root diameter variations in different studies"

气候带
Climatic zone
林分(树种类型)
Stand (Tree species group)
群落个数
Community
number
样本数
Number
平均直径
Average diameter (mm)
直径范围
Diameter range (mm)
变异系数
Coefficient of variation (%)
参考文献
Reference
亚热带
Subtropical
常绿阔叶林
Evergreen broadleaved forest
1 89 0.368 0.193-0.635 23.0 本研究
This study
热带 Tropical 阔叶树种 Broadleaved trees 2 27 0.420 0.140-1.110 - Xu, 2011
温带 Temperate 阔叶树种 Broadleaved trees 1 20 0.240 - - Shi, 2008
亚热带
Subtropical
针叶、落叶和常绿阔叶树种
Coniferous, deciduous and evergreen broadleaved species
1 6 0.330 0.230-0.480 28.7 Zou, 2015
全球 Global 木本和草本物种
Woody and herbaceous species
- 369 0.290 0.080-1.010 57.0 Ma et al., 2018
热带、亚热带
Tropical and subtropical
木本物种 Woody species 6 96 0.343 0.073-1.010 58.4 Kong et al., 2014
热带、亚热带
Tropical and subtropical
被子植物 Angiosperms 3 35 0.380 - 56.4 Chen et al., 2013
温带 Temperate 被子植物 Angiosperms 3 24 0.250 - 41.0
针叶物种 Coniferous species 6 0.290 - 8.4
亚热带 Subtropical 针叶、落叶和常绿阔叶树种
Coniferous, deciduous and evergreen broadleaved species
2 21 - 0.040-0.740 - Huang, 2010
温带、亚热带、热带
Temperate, subtropical and tropical
- 5 45 0.320 0.070-0.890 22.5 Chang & Guo, 2008
温带 Temperate 落叶阔叶林和落叶针叶林
Deciduous broadleaved and coniferous forests
3 15 0.240 0.110-0.420 -
亚热带 Subtropical 常绿阔叶林
Evergreen broadleaved forest
1 15 0.340 0.130-0.570 -
热带 Tropical 季雨林 Monsoon forest 1 15 0.380 0.070-0.890 -
[1] Blomberg SP, Garland T, Ives AR ( 2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745.
[2] Bremer B, Bremer K, Chase MW, Fay MF, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Moore MJ, Olmstead RG, Rudall PJ, Sytsma KJ, Tank DC, Wurdack K, Xiang QY, Zmarzty S ( 2009). An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121.
[3] Chang WJ, Guo DL ( 2008). Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forests in China. Journal of Plant Ecology (Chinese version), 32, 1248-1257.
[ 常文静, 郭大立 ( 2008). 中国温带、亚热带和热带森林45个常见树种细根直径变异. 植物生态学报, 32, 1248-1257.]
[4] Chen WL, Zeng H, Eissenstat DM, Guo DL ( 2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology and Biogeography, 22, 846-856.
[5] Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL ( 2000). Building roots in a changing environment: Implications for root longevity. New Phytologist, 147, 33-42.
[6] Fitter AH ( 1985). Functional significance of root morphology and root system architecture. Ecological Interactions in Soil, 4, 87-106.
[7] Geng ZZ ( 2018). The Variability of the First-order Root Functional Traits of Main Woody Plants in Three Plots in Northeast China. Master degree dissertation, Shenyang Agricultural University, Shenyang.
[ 耿珍珍 ( 2018). 东北三地主要木本植物1级根功能性状变异特征. 硕士学位论文, 沈阳农业大学, 沈阳.]
[8] Gill RA, Jackson RB ( 2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31.
[9] Gu JC, Xu Y, Dong XY, Wang HF, Wang ZQ ( 2014). Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiology, 34, 415-425.
[10] Guo DL, Mitchell RJ, Hendricks JJ ( 2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457.
[11] Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ ( 2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
[12] Hu RZ, Du ZQ, Liu S, Shi JW ( 2016). Fine root morphology characteristics of Larix principis-rupprechtii along an elevation gradient. Chinese Journal of Ecology, 35, 1248-1253.
[ 胡瑞芝, 杜自强, 刘爽, 史建伟 ( 2016). 不同海拔华北落叶松细根形态特征. 生态学杂志, 35, 1248-1253.]
[13] Huang D ( 2010). Comparation of Fine Root Morphology of Twenty-one Tree Species in Subtropical Forest in Hubei Province. Master degree dissertation, Huazhong Agricultural University, Wuhan.
[ 黄冬 ( 2010). 湖北省21个典型树种细根形态结构比较研究. 硕士学位论文, 华中农业大学, 武汉.]
[14] Jackson RB, Mooney HA, Schulze ED ( 1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
[15] Jia QQ, Liu QJ, Liang Y ( 2016). Fine root morphology of three common conifer tree species. Journal of Central South University of Forestry & Technology, 36(2), 33-39.
[ 贾全全, 刘琪璟, 梁宇 ( 2016). 三种常见针叶树种的细根形态比较. 中南林业科技大学学报, 36(2), 33-39.]
[16] Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL ( 2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872.
[17] Kong DL, Wu HF, Wang M, Simmons M, Lü XT, Yu Q, Han XG ( 2010). Structural and chemical differences between shoot- and root-derived roots of three perennial grasses in a typical steppe in Inner Mongolia China. Plant and Soil, 336, 209-217.
[18] Liu BT, Li HB, Zhu B, Koide RT, Eissenstat DM, Guo DL ( 2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136.
[19] Liu C, Xiang WH, Zou LM, Lei PF, Zeng YL, Ouyang S, Deng XW, Fang X, Liu ZL, Peng CH ( 2019). Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests. Plant and Soil, 436, 347-364.
[20] Long YQ, Kong DL, Chen ZX, Zeng H ( 2013). Variation of the linkage of root function with root branch order. PLOS ONE, e57153. DOI: 10.1371/journal.pone.0057153.
[21] Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO ( 2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
[22] Norby RJ, Jackson RB ( 2000). Root dynamics and global change: Seeking an ecosystem perspective. New Phytologist, 147, 3-12.
[23] Pregitzer KS ( 2002). Fine roots of trees—A new perspective. New Phytologist, 154, 267-270.
[24] Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL ( 2002). Fine root architecture of nine north American trees. Ecological Monographs, 72, 293-309.
[25] Shi W ( 2008). Comparison of Root Morphology and Leaf Morphology of Twenty Hardwood Species in Maoershan Natural Secondary Forest. Master degree dissertation, Northeast Forestry University, Harbin.
[ 师伟 ( 2008). 帽儿山天然次生林20个阔叶树种细根形态与叶形态的比较研究. 硕士学位论文, 东北林业大学, 哈尔滨.]
[26] St John TV ( 1980). Root size, root hairs and mycorrhizal infection: A re-examination of Baylis’s hypothesis with tropical trees. New Phytologist, 84, 483-487.
[27] Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB ( 2017). A worldview of root traits: The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist, 215, 1562-1573.
[28] Valverde-Barrantes OJ, Smemo KA, Blackwood CB ( 2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796-807.
[29] Wikström N, Savolainen V, Chase MW ( 2001). Evolution of the angiosperms: Calibrating the family tree. Proceedings of the Royal Society B: Biological Sciences, 268, 2211-2220.
[30] Xu Y ( 2011). Fine Root Morphology, Anatomy and Tissue Nitrogen and Carbon of the First Five Order Roots in Twenty-seven Chinese Tropical Hardwood Tree Species. Master degree dissertation, Northeast Forestry University, Harbin.
[ 许旸 ( 2011). 中国热带27个阔叶树种不同根序细根的形态特征、解剖结构和碳氮研究. 硕士学位论文, 东北林业大学, 哈尔滨.]
[31] Yu LZ, Ding GQ, Shi JW, Yu SQ, Zhu JJ, Zhao LF ( 2007). Effects of fertilization on fine root diameter, root length, and specific root length in Larix kaempferi plantation. Chinese Journal of Applied Ecology, 18, 957-962.
[ 于立忠, 丁国泉, 史建伟, 于水强, 朱教君, 赵连富 ( 2007). 施肥对日本落叶松人工林细根直径、根长和比根长的影响. 应用生态学报, 18, 957-962.]
[32] Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM ( 2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
[33] Zhou M, Bai WM, Zhang YS, Zhang WH ( 2018). Multi- dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes. Journal of Ecology, 106, 2320-2331.
[34] Zhu JM, Jiang ZL, Zheng QR, Jiang W ( 1997). A study on the species diversity in the forest community of Wanmulin Nature Reserve, Fujian Province. Journal of Nanjing Forestry University (Natural Sciences), 21, 11-16.
[ 朱锦懋, 姜志林, 郑群瑞, 蒋伟 ( 1997). 福建万木林自然保护区森林群落物种多样性研究. 南京林业大学学报(自然科学版), 21, 11-16.]
[35] Zhu WR, Wang QT, Liu ML, Wang HT, Wang YP, Zhang GC, Li CR ( 2015). Interactive effects of phenolic acid and nitrogen on morphological traits of poplar ( Populus × euramericana ‘Neva’) fine roots. Chinese Journal of Plant Ecology, 39, 1198-1208.
[ 朱婉芮, 汪其同, 刘梦玲, 王华田, 王延平, 张光灿, 李传荣 ( 2015). 酚酸和氮素交互作用下欧美杨107细根形态特征. 植物生态学报, 39, 1198-1208.]
[36] Zobel RW, Kinraide TB, Baligar VC ( 2007). Fine root diameters can change in response to changes in nutrient concentrations. Plant and Soil, 297, 243-254.
[37] Zou B, Cai F, Zheng JM, Dai W ( 2015). Biomass vertical distribution of fine root and its traits of four tree species in subtropical natural forest. Journal of Northeast Forestry University, 43(3), 18-22.
[ 邹斌, 蔡飞, 郑景明, 戴伟 ( 2015). 亚热带天然林4种树木细根生物量垂直分布和主要功能性状的差异. 东北林业大学学报, 43(3), 18-22.]
[38] Zou LM ( 2015). Root Identification and Variation in Architecture of Fine Roots of Subtropical Tree Species in Southern China. Master degree dissertation, Central South University of Forestry and Technology, Changsha.
[ 邹丽梅 ( 2015). 亚热带6个树种细根形态比较与根序分级构型研究. 硕士学位论文, 中南林业科技大学, 长沙.]
[1] Gang Yao. Phylogenetic study of Amaranthaceae s.l. based on multiple plastid DNA fragments [J]. Chin Bull Bot, 2020, 55(4): 0-0.
[2] Gu Yufeng,Jin Dongmei,Liu Baodong,Dai Xiling,Yan Yuehong. Morphology Characters and Evolution of Ferns Scale Ι: Pteridaceae [J]. Chin Bull Bot, 2020, 55(2): 163-176.
[3] TANG Li-Li,ZHANG Mei,ZHAO Xiang-Lin,KANG Mu-Yi,LIU Hong-Yan,GAO Xian-Ming,YANG Tong,ZHENG Pu-Fan,SHI Fu-Chen. Species distribution and community assembly rules of Juglans mandshurica in North China [J]. Chin J Plant Ecol, 2019, 43(9): 753-761.
[4] Bin Cao, Guojie Li, Ruilin Zhao. Species diversity and geographic components of Russula from the Greater and Lesser Khinggan Mountains [J]. Biodiv Sci, 2019, 27(8): 854-866.
[5] Zhao Yuemei, Yang Zhenyan, Zhao Yongping, Li Xiaoling, Zhao Zhixin, Zhao Guifang. Chloroplast Genome Structural Characteristics and Phylogenetic Relationships of Oleaceae [J]. Chin Bull Bot, 2019, 54(4): 441-454.
[6] Chen Zuoyi, Xu Xiaojing, Zhu Suying, Zhai Mengyi, Li Yang. Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China [J]. Biodiv Sci, 2019, 27(2): 149-158.
[7] Zhiyuan Chen,Jun Liu,Xingpeng Yang,Meng Liu,Ya Wang,Zhibin Zhang,Du Zhu. Community composition and diversity of cultivable endophytic bacteria isolated from Dongxiang wild rice [J]. Biodiv Sci, 2019, 27(12): 1320-1329.
[8] Xuerui Dong, Hong Zhang, Minggang Zhang. Explaining the diversity and endemic patterns based on phylogenetic approach for woody plants of the Loess Plateau [J]. Biodiv Sci, 2019, 27(12): 1269-1278.
[9] Meiling Ge,Qinzeng Xu,Shiliang Fan,Zongxing Wang,Xuelei Zhang. Taxonomy at order and family levels of the benthic groups of Polychaeta in the coastal waters of China [J]. Biodiv Sci, 2018, 26(9): 998-1003.
[10] Luo Junjie, Wang Ying, Shang Hui, Zhou Xile, Wei Hongjin, Huang Sunan, Gu Yufeng, Jin Dongmei, Dai Xiling, Yan Yuehong. Phylogeny and Systematics of the Genus Microlepia (Dennstaedtiaceae) based on Palynology and Molecular Evidence [J]. Chin Bull Bot, 2018, 53(6): 782-792.
[11] Lingyun Wu,Shuangquan Huang. Insect-pollinated cereal buckwheats: Its biological characteristics and research progress [J]. Biodiv Sci, 2018, 26(4): 396-405.
[12] Shaojun Ling, Qianwan Meng, Liang Tang, Mingxun Ren. Gesneriaceae on Hainan Island: distribution patterns and phylogenetic relationships [J]. Biodiv Sci, 2017, 25(8): 807-815.
[13] Wenying Li, Xia Li, Kaizhi Xie, Wangqiu Deng, Wenying Zhuang. Systematics and species diversity of botryosphaeriaceous fungi [J]. Biodiv Sci, 2017, 25(8): 874-885.
[14] Xue Zhang, Yurui Wang, Yangbo Fan, Xiaotian Luo, Xiaozhong Hu, Feng Gao. Morphology, ontogeny and molecular phylogeny of Euplotes aediculatus Pierson, 1943 (Ciliophora, Euplotida) [J]. Biodiv Sci, 2017, 25(5): 549-560.
[15] Xiaoxu Jia, Xiujun Tang, Yanfeng Fan, Junxian Lu, Shenghai Huang, Qinglian Ge, Yushi Gao, Wei Han. Genetic diversity of local chicken breeds in East China based on mitochondrial DNA D-loop region [J]. Biodiv Sci, 2017, 25(5): 540-548.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lin liang-qiu;Zhang Qing-qi and Wu Wen-shan. A Study on Pollen Morphology of Rosa laevigata and Its Nutrition Composition[J]. Chin Bull Bot, 1994, 11(04): 43 -44 .
[2] Jie Dong;Fenghui Qi;Yaguang Zhan. Establishment of the Suspension Culture System and Optimization of Biosynthesis of Gallic Acid in Acer ginnala[J]. Chin Bull Bot, 2008, 25(06): 734 -740 .
[3] Li Guo-zhen;Qin Ming-bo;Kang Ning-ling;Xie De-yu;Ye He-chun and Li Guo-feng. Tissue Culture and Chromosome Analysis of Arnebia euchroma[J]. Chin Bull Bot, 1992, 9(01): 37 -41 .
[4] Han Bi-wen. The Synthitic Activities of Roots and their Relation to the Above-grond Parts[J]. Chin Bull Bot, 1984, 2(23): 23 -25 .
[5] Guiling Wang;Zhiwei Qin;Xiuyan Zhou;Zhiyun Zhao. Genetic Analysis and SSR Markers of Tuberculate Trait in Cucumis sativus[J]. Chin Bull Bot, 2007, 24(02): 168 -172 .
[6] Hui Yang;Lizhe An;Zhiye Wang;Jianping Zhou;Xunling Wang. Effects of Enhanced UV-B Radiation on Pollen Activities of 2 Tomato Cultivars in Terms of Endogenous Hormone,Polyamine and Proline Levels in Stamens[J]. Chin Bull Bot, 2007, 24(02): 161 -167 .
[7] Hao Zhao;Zhao Xue-chen;Zheng Shu-jun and Qu Chun-ying. Winter Hardiness of Wheat Seedling at Differant Leaf-Age[J]. Chin Bull Bot, 1985, 3(05): 38 -40 .
[8] Chang Huey-ju;Guan Zhong-tian;Zhou Lin and Hsu Kuo-shih. Comparison of two natural cycad communities in China[J]. Chin Bull Bot, 1995, 12(专辑): 52 -58 .
[9] . Positional Information and Plant Development [J]. Chin Bull Bot, 2005, 22(03): 366 -374 .
[10] Deyong Ren, Guanghua He, Yinghua Ling, Xianchun Sang, Zhenglin Yang, Fangming Zhao. Analysis of Quantitative Trait Loci Additive and Epistasis Effects for Panicle Length with Single Segment Substitution Lines in Rice[J]. Chin Bull Bot, 2010, 45(06): 662 -669 .