Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (11): 969-978.DOI: 10.17521/cjpe.2019.0189
Special Issue: 根系生态学
• Research Articles • Previous Articles Next Articles
WANG Xue1,CHEN Guang-Shui1,*(),YAN Xiao-Jun1,2,CHEN Ting-Ting1,JIANG Qi1,CHEN Yu-Hui1,FAN Ai-Lian1,JIA Lin-Qiao1,XIONG De-Cheng1,HUANG Jin-Xue1
Received:
2019-07-19
Accepted:
2019-10-22
Online:
2019-11-20
Published:
2020-03-26
Contact:
CHEN Guang-Shui
Supported by:
WANG Xue, CHEN Guang-Shui, YAN Xiao-Jun, CHEN Ting-Ting, JIANG Qi, CHEN Yu-Hui, FAN Ai-Lian, JIA Lin-Qiao, XIONG De-Cheng, HUANG Jin-Xue. Variations in the first-order root diameter in 89 woody species in a subtropical evergreen broadleaved forest[J]. Chin J Plant Ecol, 2019, 43(11): 969-978.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0189
Fig. 2 First-order root diameter of 89 woody species ranked in ascending order in a subtropical evergreen broadleaved forest. 1, Itea omeiensis; 2, Maesa japonica; 3, Symplocos glauca; 4, Elaeocarpus chinensis; 5, Ilex chinensis; 6, Symplocos anomala; 7, Styrax suberifolius; 8, Daphniphyllum oldhamii; 9, Vaccinium carlesii; 10, Ternstroemia gymnanthera; 11, Pinus massoniana; 12, Machilus chrysotricha; 13, Rhododendron championiae; 14, Cyclobalanopsis glauca; 15, Elaeocarpus decipiens; 16, Aidia cochinchinensis; 17, Ilex rotunda; 18, Adinandra millettii; 19, Ziziphus jujuba; 20, Photinia prunifolia; 21, Sloanea sinensis; 22, Castanopsis sclerophylla; 23, Liquidambar formosana; 24, Vaccinium bracteatum; 25, Gmelina chinensis; 26, Schima superba; 27, Phyllanthus glaucus; 28, Ilex tutcheri; 29, Ficus altissima; 30, Castanopsis lamontii; 31, Alniphyllum fortunei; 32, Machilus grijsii; 33, Heteropanax chinensis; 34, Vernicia fordii; 35, Diospyros oleifera; 36, Symplocos lancifolia; 37, Ilex pubescens; 38, Ilex triflora; 39, Castanopsis faberi; 40, Rhus chinensis; 41, Symplocos sumuntia; 42, Castanopsis jucunda; 43, Eurya nitida; 44, Syzygium buxifolium; 45, Meliosma rigida var. pannosa; 46, Diplospora dubia; 47, Castanopsis carlesii; 48, Hovenia acerba; 49, Neolitsea aurata; 50, Distyliopsis dunnii; 51, Castanopsis fargesii; 52, Ilex qingyuanensis; 53, Cornus officinalis; 54, Elaeocarpus sylvestris; 55, Antidesma bunius; 56, Photinia bodinieri; 57, Phoebe bournei; 58, Sapindus saponaria; 59, Eurya loquaiana; 60, Cornus kousa subsp. chinensis; 61, Viburnum macrocephalum f. keteleeri; 62, Meliosma rigida; 63, Loropetalum chinense; 64, Ilex ficoidea; 65, Litsea cubeba; 66, Symplocos fukienensis; 67, Ficus erecta; 68, Symplocos oblanceolata; 69, Lindera communis; 70, Cupressus funebris; 71, Dendropanax dentiger; 72, Litsea subcoriacea; 73, Michelia skinneriana; 74, Viburnum lancifolium; 75, Lithocarpus polystachyus; 76, Diospyros morrisiana; 77, Altingia gracilipes; 78, Diospyros kaki var. silvestris; 79, Cryptocarya chinensis; 80, Cinnamomum camphora; 81, Elaeocarpus japonicus; 82, Cinnamomum micranthum; 83, Cinnamomum japonicum; 84, Machilus pauhoi; 85, Michelia odora; 86, Cinnamomum austrosinense; 87, Eurya muricata; 88, Alangium chinense; 89, Michelia fujianensis.
分类指标 Classification indicator | 样本数 Number | 最小值 Minimum (mm) | 最大值 Maximum (mm) | 平均直径 Average diameter (± SE, mm) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 Coefficient of variation (%) | |
---|---|---|---|---|---|---|---|---|
木本物种 Woody species | 89 | 0.193 | 0.635 | 0.368 ± 0.01 | 0.37 | 0.22 | 23 | |
叶片习性 Leaf form | 常绿树种 Evergreen trees | 72 | 0.193 | 0.635 | 0.364 ± 0.01a | 0.39 | 0.05 | 25 |
落叶树种 Deciduous trees | 17 | 0.293 | 0.559 | 0.385 ± 0.02a | 1.09 | 2.16 | 17 | |
生长型 Growth form | 乔木 Tree | 68 | 0.224 | 0.635 | 0.376 ± 0.01a | 0.34 | 0.08 | 23 |
小乔木或灌木 Semi-tree or shrub | 11 | 0.289 | 0.553 | 0.377 ± 0.02a | 1.93 | 5.49 | 18 | |
灌木 Shrub | 10 | 0.193 | 0.438 | 0.303 ± 0.02b | 0.36 | -0.50 | 26 | |
主要科 Main family | 樟科 Lauraceae | 13 | 0.265 | 0.508 | 0.432 ± 0.02a | -0.99 | 0.57 | 17 |
壳斗科 Fagaceae | 8 | 0.267 | 0.444 | 0.352 ± 0.02ab | 0.11 | 0.68 | 15 | |
冬青科 Aquifoliaceae | 7 | 0.236 | 0.404 | 0.334 ± 0.02b | -0.68 | -0.20 | 18 | |
山矾科 Symplocaceae | 6 | 0.224 | 0.419 | 0.336 ± 0.03b | -0.54 | -1.70 | 25 | |
五列木科 Pentaphylacaceae | 5 | 0.264 | 0.553 | 0.373 ± 0.05ab | 1.15 | 1.32 | 31 | |
杜英科 Elaeocarpaceae | 5 | 0.225 | 0.489 | 0.336 ± 0.05b | 0.77 | -0.28 | 31 |
Table 1 Basic statistics of the first-order root diameter of 89 woody species comparing by leaf habits, growth forms and families
分类指标 Classification indicator | 样本数 Number | 最小值 Minimum (mm) | 最大值 Maximum (mm) | 平均直径 Average diameter (± SE, mm) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 Coefficient of variation (%) | |
---|---|---|---|---|---|---|---|---|
木本物种 Woody species | 89 | 0.193 | 0.635 | 0.368 ± 0.01 | 0.37 | 0.22 | 23 | |
叶片习性 Leaf form | 常绿树种 Evergreen trees | 72 | 0.193 | 0.635 | 0.364 ± 0.01a | 0.39 | 0.05 | 25 |
落叶树种 Deciduous trees | 17 | 0.293 | 0.559 | 0.385 ± 0.02a | 1.09 | 2.16 | 17 | |
生长型 Growth form | 乔木 Tree | 68 | 0.224 | 0.635 | 0.376 ± 0.01a | 0.34 | 0.08 | 23 |
小乔木或灌木 Semi-tree or shrub | 11 | 0.289 | 0.553 | 0.377 ± 0.02a | 1.93 | 5.49 | 18 | |
灌木 Shrub | 10 | 0.193 | 0.438 | 0.303 ± 0.02b | 0.36 | -0.50 | 26 | |
主要科 Main family | 樟科 Lauraceae | 13 | 0.265 | 0.508 | 0.432 ± 0.02a | -0.99 | 0.57 | 17 |
壳斗科 Fagaceae | 8 | 0.267 | 0.444 | 0.352 ± 0.02ab | 0.11 | 0.68 | 15 | |
冬青科 Aquifoliaceae | 7 | 0.236 | 0.404 | 0.334 ± 0.02b | -0.68 | -0.20 | 18 | |
山矾科 Symplocaceae | 6 | 0.224 | 0.419 | 0.336 ± 0.03b | -0.54 | -1.70 | 25 | |
五列木科 Pentaphylacaceae | 5 | 0.264 | 0.553 | 0.373 ± 0.05ab | 1.15 | 1.32 | 31 | |
杜英科 Elaeocarpaceae | 5 | 0.225 | 0.489 | 0.336 ± 0.05b | 0.77 | -0.28 | 31 |
气候带 Climatic zone | 林分(树种类型) Stand (Tree species group) | 群落个数 Community number | 样本数 Number | 平均直径 Average diameter (mm) | 直径范围 Diameter range (mm) | 变异系数 Coefficient of variation (%) | 参考文献 Reference |
---|---|---|---|---|---|---|---|
亚热带 Subtropical | 常绿阔叶林 Evergreen broadleaved forest | 1 | 89 | 0.368 | 0.193-0.635 | 23.0 | 本研究 This study |
热带 Tropical | 阔叶树种 Broadleaved trees | 2 | 27 | 0.420 | 0.140-1.110 | - | |
温带 Temperate | 阔叶树种 Broadleaved trees | 1 | 20 | 0.240 | - | - | |
亚热带 Subtropical | 针叶、落叶和常绿阔叶树种 Coniferous, deciduous and evergreen broadleaved species | 1 | 6 | 0.330 | 0.230-0.480 | 28.7 | |
全球 Global | 木本和草本物种 Woody and herbaceous species | - | 369 | 0.290 | 0.080-1.010 | 57.0 | |
热带、亚热带 Tropical and subtropical | 木本物种 Woody species | 6 | 96 | 0.343 | 0.073-1.010 | 58.4 | |
热带、亚热带 Tropical and subtropical | 被子植物 Angiosperms | 3 | 35 | 0.380 | - | 56.4 | |
温带 Temperate | 被子植物 Angiosperms | 3 | 24 | 0.250 | - | 41.0 | |
针叶物种 Coniferous species | 6 | 0.290 | - | 8.4 | |||
亚热带 Subtropical | 针叶、落叶和常绿阔叶树种 Coniferous, deciduous and evergreen broadleaved species | 2 | 21 | - | 0.040-0.740 | - | |
温带、亚热带、热带 Temperate, subtropical and tropical | - | 5 | 45 | 0.320 | 0.070-0.890 | 22.5 | |
温带 Temperate | 落叶阔叶林和落叶针叶林 Deciduous broadleaved and coniferous forests | 3 | 15 | 0.240 | 0.110-0.420 | - | |
亚热带 Subtropical | 常绿阔叶林 Evergreen broadleaved forest | 1 | 15 | 0.340 | 0.130-0.570 | - | |
热带 Tropical | 季雨林 Monsoon forest | 1 | 15 | 0.380 | 0.070-0.890 | - |
Table 2 A comparison of first-order root diameter variations in different studies
气候带 Climatic zone | 林分(树种类型) Stand (Tree species group) | 群落个数 Community number | 样本数 Number | 平均直径 Average diameter (mm) | 直径范围 Diameter range (mm) | 变异系数 Coefficient of variation (%) | 参考文献 Reference |
---|---|---|---|---|---|---|---|
亚热带 Subtropical | 常绿阔叶林 Evergreen broadleaved forest | 1 | 89 | 0.368 | 0.193-0.635 | 23.0 | 本研究 This study |
热带 Tropical | 阔叶树种 Broadleaved trees | 2 | 27 | 0.420 | 0.140-1.110 | - | |
温带 Temperate | 阔叶树种 Broadleaved trees | 1 | 20 | 0.240 | - | - | |
亚热带 Subtropical | 针叶、落叶和常绿阔叶树种 Coniferous, deciduous and evergreen broadleaved species | 1 | 6 | 0.330 | 0.230-0.480 | 28.7 | |
全球 Global | 木本和草本物种 Woody and herbaceous species | - | 369 | 0.290 | 0.080-1.010 | 57.0 | |
热带、亚热带 Tropical and subtropical | 木本物种 Woody species | 6 | 96 | 0.343 | 0.073-1.010 | 58.4 | |
热带、亚热带 Tropical and subtropical | 被子植物 Angiosperms | 3 | 35 | 0.380 | - | 56.4 | |
温带 Temperate | 被子植物 Angiosperms | 3 | 24 | 0.250 | - | 41.0 | |
针叶物种 Coniferous species | 6 | 0.290 | - | 8.4 | |||
亚热带 Subtropical | 针叶、落叶和常绿阔叶树种 Coniferous, deciduous and evergreen broadleaved species | 2 | 21 | - | 0.040-0.740 | - | |
温带、亚热带、热带 Temperate, subtropical and tropical | - | 5 | 45 | 0.320 | 0.070-0.890 | 22.5 | |
温带 Temperate | 落叶阔叶林和落叶针叶林 Deciduous broadleaved and coniferous forests | 3 | 15 | 0.240 | 0.110-0.420 | - | |
亚热带 Subtropical | 常绿阔叶林 Evergreen broadleaved forest | 1 | 15 | 0.340 | 0.130-0.570 | - | |
热带 Tropical | 季雨林 Monsoon forest | 1 | 15 | 0.380 | 0.070-0.890 | - |
[1] | Blomberg SP, Garland T, Ives AR ( 2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745. |
[2] | Bremer B, Bremer K, Chase MW, Fay MF, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Moore MJ, Olmstead RG, Rudall PJ, Sytsma KJ, Tank DC, Wurdack K, Xiang QY, Zmarzty S ( 2009). An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121. |
[3] | Chang WJ, Guo DL ( 2008). Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forests in China. Journal of Plant Ecology (Chinese version), 32, 1248-1257. |
[ 常文静, 郭大立 ( 2008). 中国温带、亚热带和热带森林45个常见树种细根直径变异. 植物生态学报, 32, 1248-1257.] | |
[4] | Chen WL, Zeng H, Eissenstat DM, Guo DL ( 2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology and Biogeography, 22, 846-856. |
[5] | Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL ( 2000). Building roots in a changing environment: Implications for root longevity. New Phytologist, 147, 33-42. |
[6] | Fitter AH ( 1985). Functional significance of root morphology and root system architecture. Ecological Interactions in Soil, 4, 87-106. |
[7] | Geng ZZ ( 2018). The Variability of the First-order Root Functional Traits of Main Woody Plants in Three Plots in Northeast China. Master degree dissertation, Shenyang Agricultural University, Shenyang. |
[ 耿珍珍 ( 2018). 东北三地主要木本植物1级根功能性状变异特征. 硕士学位论文, 沈阳农业大学, 沈阳.] | |
[8] | Gill RA, Jackson RB ( 2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31. |
[9] | Gu JC, Xu Y, Dong XY, Wang HF, Wang ZQ ( 2014). Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiology, 34, 415-425. |
[10] | Guo DL, Mitchell RJ, Hendricks JJ ( 2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457. |
[11] | Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ ( 2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683. |
[12] | Hu RZ, Du ZQ, Liu S, Shi JW ( 2016). Fine root morphology characteristics of Larix principis-rupprechtii along an elevation gradient. Chinese Journal of Ecology, 35, 1248-1253. |
[ 胡瑞芝, 杜自强, 刘爽, 史建伟 ( 2016). 不同海拔华北落叶松细根形态特征. 生态学杂志, 35, 1248-1253.] | |
[13] | Huang D ( 2010). Comparation of Fine Root Morphology of Twenty-one Tree Species in Subtropical Forest in Hubei Province. Master degree dissertation, Huazhong Agricultural University, Wuhan. |
[ 黄冬 ( 2010). 湖北省21个典型树种细根形态结构比较研究. 硕士学位论文, 华中农业大学, 武汉.] | |
[14] | Jackson RB, Mooney HA, Schulze ED ( 1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366. |
[15] | Jia QQ, Liu QJ, Liang Y ( 2016). Fine root morphology of three common conifer tree species. Journal of Central South University of Forestry & Technology, 36(2), 33-39. |
[ 贾全全, 刘琪璟, 梁宇 ( 2016). 三种常见针叶树种的细根形态比较. 中南林业科技大学学报, 36(2), 33-39.] | |
[16] | Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL ( 2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872. |
[17] | Kong DL, Wu HF, Wang M, Simmons M, Lü XT, Yu Q, Han XG ( 2010). Structural and chemical differences between shoot- and root-derived roots of three perennial grasses in a typical steppe in Inner Mongolia China. Plant and Soil, 336, 209-217. |
[18] | Liu BT, Li HB, Zhu B, Koide RT, Eissenstat DM, Guo DL ( 2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136. |
[19] | Liu C, Xiang WH, Zou LM, Lei PF, Zeng YL, Ouyang S, Deng XW, Fang X, Liu ZL, Peng CH ( 2019). Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests. Plant and Soil, 436, 347-364. |
[20] | Long YQ, Kong DL, Chen ZX, Zeng H ( 2013). Variation of the linkage of root function with root branch order. PLOS ONE, e57153. DOI: 10.1371/journal.pone.0057153. |
[21] | Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO ( 2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97. |
[22] | Norby RJ, Jackson RB ( 2000). Root dynamics and global change: Seeking an ecosystem perspective. New Phytologist, 147, 3-12. |
[23] | Pregitzer KS ( 2002). Fine roots of trees—A new perspective. New Phytologist, 154, 267-270. |
[24] | Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL ( 2002). Fine root architecture of nine north American trees. Ecological Monographs, 72, 293-309. |
[25] | Shi W ( 2008). Comparison of Root Morphology and Leaf Morphology of Twenty Hardwood Species in Maoershan Natural Secondary Forest. Master degree dissertation, Northeast Forestry University, Harbin. |
[ 师伟 ( 2008). 帽儿山天然次生林20个阔叶树种细根形态与叶形态的比较研究. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[26] | St John TV ( 1980). Root size, root hairs and mycorrhizal infection: A re-examination of Baylis’s hypothesis with tropical trees. New Phytologist, 84, 483-487. |
[27] | Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB ( 2017). A worldview of root traits: The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist, 215, 1562-1573. |
[28] | Valverde-Barrantes OJ, Smemo KA, Blackwood CB ( 2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796-807. |
[29] | Wikström N, Savolainen V, Chase MW ( 2001). Evolution of the angiosperms: Calibrating the family tree. Proceedings of the Royal Society B: Biological Sciences, 268, 2211-2220. |
[30] | Xu Y ( 2011). Fine Root Morphology, Anatomy and Tissue Nitrogen and Carbon of the First Five Order Roots in Twenty-seven Chinese Tropical Hardwood Tree Species. Master degree dissertation, Northeast Forestry University, Harbin. |
[ 许旸 ( 2011). 中国热带27个阔叶树种不同根序细根的形态特征、解剖结构和碳氮研究. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[31] | Yu LZ, Ding GQ, Shi JW, Yu SQ, Zhu JJ, Zhao LF ( 2007). Effects of fertilization on fine root diameter, root length, and specific root length in Larix kaempferi plantation. Chinese Journal of Applied Ecology, 18, 957-962. |
[ 于立忠, 丁国泉, 史建伟, 于水强, 朱教君, 赵连富 ( 2007). 施肥对日本落叶松人工林细根直径、根长和比根长的影响. 应用生态学报, 18, 957-962.] | |
[32] | Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM ( 2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92. |
[33] | Zhou M, Bai WM, Zhang YS, Zhang WH ( 2018). Multi- dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes. Journal of Ecology, 106, 2320-2331. |
[34] | Zhu JM, Jiang ZL, Zheng QR, Jiang W ( 1997). A study on the species diversity in the forest community of Wanmulin Nature Reserve, Fujian Province. Journal of Nanjing Forestry University (Natural Sciences), 21, 11-16. |
[ 朱锦懋, 姜志林, 郑群瑞, 蒋伟 ( 1997). 福建万木林自然保护区森林群落物种多样性研究. 南京林业大学学报(自然科学版), 21, 11-16.] | |
[35] | Zhu WR, Wang QT, Liu ML, Wang HT, Wang YP, Zhang GC, Li CR ( 2015). Interactive effects of phenolic acid and nitrogen on morphological traits of poplar ( Populus × euramericana ‘Neva’) fine roots. Chinese Journal of Plant Ecology, 39, 1198-1208. |
[ 朱婉芮, 汪其同, 刘梦玲, 王华田, 王延平, 张光灿, 李传荣 ( 2015). 酚酸和氮素交互作用下欧美杨107细根形态特征. 植物生态学报, 39, 1198-1208.] | |
[36] | Zobel RW, Kinraide TB, Baligar VC ( 2007). Fine root diameters can change in response to changes in nutrient concentrations. Plant and Soil, 297, 243-254. |
[37] | Zou B, Cai F, Zheng JM, Dai W ( 2015). Biomass vertical distribution of fine root and its traits of four tree species in subtropical natural forest. Journal of Northeast Forestry University, 43(3), 18-22. |
[ 邹斌, 蔡飞, 郑景明, 戴伟 ( 2015). 亚热带天然林4种树木细根生物量垂直分布和主要功能性状的差异. 东北林业大学学报, 43(3), 18-22.] | |
[38] | Zou LM ( 2015). Root Identification and Variation in Architecture of Fine Roots of Subtropical Tree Species in Southern China. Master degree dissertation, Central South University of Forestry and Technology, Changsha. |
[ 邹丽梅 ( 2015). 亚热带6个树种细根形态比较与根序分级构型研究. 硕士学位论文, 中南林业科技大学, 长沙.] |
[1] | XIANG Wei, HUANG Dong-Liu, ZHU Shi-Dan. Absorptive root anatomical traits of 26 tropical and subtropical fern species [J]. Chin J Plant Ecol, 2022, 46(5): 593-601. |
[2] | WANG Chun-Cheng, ZHANG Yun-Ling, MA Song-Mei, HUANG Gang, ZHANG Dan, YAN Han. Phylogeny and species differentiation of four wild almond species of subgen. Amygdalus in China [J]. Chin J Plant Ecol, 2021, 45(9): 987-995. |
[3] | YANG Ke-Tong, CHANG Hai-Long, CHEN Guo-Peng, YU Xiao-Ya, XIAN Jun-Ren. Stomatal traits of main greening plant species in Lanzhou [J]. Chin J Plant Ecol, 2021, 45(2): 187-196. |
[4] | TANG Li-Li, ZHANG Mei, ZHAO Xiang-Lin, KANG Mu-Yi, LIU Hong-Yan, GAO Xian-Ming, YANG Tong, ZHENG Pu-Fan, SHI Fu-Chen. Species distribution and community assembly rules of Juglans mandshurica in North China [J]. Chin J Plant Ecol, 2019, 43(9): 753-761. |
[5] | YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China [J]. Chin J Plan Ecolo, 2017, 41(12): 1228-1238. |
[6] | LU Ning-Na,ZHAO Zhi-Gang. Flower symmetry and flower size variability: an examination of Berg’s hypotheses in an alpine meadow [J]. Chin J Plant Ecol, 2014, 38(5): 460-467. |
[7] | Jannathan MAMUT, TAN Dun-Yan. Gynomonoecy in angiosperms: phylogeny, sex expression and evolutionary significance [J]. Chin J Plant Ecol, 2014, 38(1): 76-90. |
[8] | WANG Lu,LEI Yun,ZHANG Ming-Li. A preliminary study of molecular phylogeny and biogeography distribution pattern of Zelkova inferred from trnL-trnF and nrITS sequences [J]. Chin J Plant Ecol, 2013, 37(5): 407-414. |
[9] | CHEN Yan-Song, ZHOU Shou-Biao, OU Zu-Lan, XU Zhong-Dong, HONG Xin. Seed mass variation in common plant species in Wanfoshan Natural Reservation Region, Anhui, China [J]. Chin J Plant Ecol, 2012, 36(8): 739-746. |
[10] | TAN Dun-Yan, ZHANG Yang, WANG Ai-Bo. A review of geocarpy and amphicarpy in angiosperms, with special reference to their ecological adaptive significance [J]. Chin J Plant Ecol, 2010, 34(1): 72-88. |
[11] | YE Wan-Hui, CAO Hong-Lin, HUANG Zhong-Liang, LIAN Ju-Yu, WANG Zhi-Gao, LI Lin, WEI Shi-Guang, WANG Zhang-Ming. COMMUNITY STRUCTURE OF A 20 HM2 LOWER SUBTROPICAL EVERGREEN BROADLEAVED FOREST PLOT IN DINGHUSHAN, CHINA [J]. Chin J Plant Ecol, 2008, 32(2): 274-286. |
[12] | HE Ya-Ping, LIU Jian-Quan. A Review on Recent Advances in the Studies of Plant Breeding System [J]. Chin J Plant Ecol, 2003, 27(2): 151-163. |
[13] | Ni Jian, Song Youchang. The Water-temperature Distributional Groups of Dominants and Companions of Subtropical Evergreen Broad Leaved Forest In China [J]. Chin J Plan Ecolo, 1997, 21(4): 349-359. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn