Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (3): 238-244.doi: 10.17521/cjpe.2018.0316

• Research Articles • Previous Articles     Next Articles

Study on compositions of parenchyma in twigs of woody saplings in Dabie Mountains, Anhui, China

ZHANG Xi-Jin1,SONG Kun1,2,3,*(),PU Fa-Guang4,GAO Zhi-Wen1,NI Tian-Pin1,CHU Xing-Hang1,WANG Ze-Ying1,SHANG Kan-Kan5,DA Liang-Jun1,2,3,*()   

  1. 1 Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
    2 Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, Shanghai 200241, China
    3 Institute of Eco-Chongming, Shanghai 200062, China
    4 Anhui Dabie Mountain Forest Ecosystem National Observation Station, Jinzhai, Anhui 237354, China
    5 Shanghai Chenshan Botanical Garden (Shanghai Chenshan Plant Science Research Centre, Chinese Academy of Sciences), Shanghai 201602, China;
  • Received:2018-12-17 Revised:2019-02-27 Online:2019-04-23 Published:2019-03-20
  • Contact: SONG Kun,DA Liang-Jun E-mail:ksong@des.ecnu.edu.cn;ljda@des.ecnu.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(31500355);Supported by the National Natural Science Foundation of China(31670438);Supported by the National Natural Science Foundation of China(31600343)

Abstract:

Aims Axial parenchyma (AP) and ray parenchyma (RP) in secondary xylem have many important ecological functions, such as storage and translocation. Quantifying the compositions of parenchyma in secondary xylem will benefit the further research about their functions. However, the understanding of parenchyma compositions in current-year branches is still lacking.


Methods Eighteen woody saplings in the Tianma National Nature Reserve were selected for sampling. The proportions of cross-sectional area occupied by AP and RP were measured. The variations in parenchyma among species and their phylogenetic signals were analyzed. Compared with the related dataset, the differences between twigs and trunks were tested.


Important findings (1) The proportions of total parenchyma in twigs of the 18 woody saplings were 9.96%-18.56%, with the average of 14.80%; the proportions of RP (7.74%-15.45%) were higher than that of AP (1.13%-7.49%). (2) The total parenchyma (RAP) in twigs was lower than that in trunks, of which, RP in twigs was lower than that in trunks while AP showed an opposite pattern. The differences between twigs and trunks may be caused by the differences between different organs and different life history periods. (3) Significant phylogenetic signal was detected in the amount of AP in secondary xylem of twigs. This study primitively verified the phylogenetic signal of the secondary xylem parenchyma, and suggested that the difference between organs, and the difference between life history periods, had important effects on the variations of parenchyma.

Key words: parenchyma, phylogenetic signal, xylem, organ

Fig. 1

Dyed image of cross sections of twigs photographed by optical microscope. A, Carpinus cordata. B, Schoepfia jasminodora. Ray parenchyma cells arranged radially and were dyed blue to purple, while axial parenchyma cells arranged tangentially or paratracheally in the two pictures."

Table 1

Characteristics of woody samplings from the Dabie Mountains"

物种
Species
海拔 Altitude (m) 总计
Total number
马鬃岭 Mazongling 天堂寨 Tiantangzhai
592 837 920 960 1 130 740 922 1 000 1 017 1 200
白檀 Symplocos paniculata 1 1 1 3
豹皮樟 Litsea coreana var. sinensis 1 1 1 3
大果山胡椒 Lindera praecox 3 3 3 1 3 13
灯台树 Bothrocaryum controversum 1 2 1 4
芬芳安息香 Styrax odoratissimus 2 2 4
海金子 Pittosporum illicioides 1 3 1 1 6
黄丹木姜子 Litsea elongata 3 1 1 2 3 10
尖萼梣 Fraxinus odontocalyx 2 2 4
雷公鹅耳枥 Carpinus viminea 2 1 3
橉木 Padus buergeriana 3 3
千金榆 Carpinus cordata 3 3
青冈 Cyclobalanopsis glauca 3 3
青皮木 Schoepfia jasminodora 3 3
山胡椒 Lindera glauca 2 2 1 1 1 2 1 1 11
四照花 Cornus kousa subsp. chinensis 1 1 3 5
小叶白辛树 Pterostyrax corymbosus 1 1 1 1 3 7
细叶青冈 Cyclobalanopsis gracilis 2 2 3 1 3 3 14
紫茎 Stewartia sinensis 3 3

Table 2

Amount of parenchyma of species in the study region (mean ± SD)"

物种 Species 射线薄壁组织 RP (%) 轴向薄壁组织 AP (%) 总薄壁组织 RAP (%)
白檀 Symplocos paniculata 15.45 ± 3.37 3.11 ± 1.62 18.56 ± 4.96
豹皮樟 Litsea coreana var. sinensis 11.92 ± 2.63 4.18 ± 4.46 16.10 ± 7.09
大果山胡椒 Lindera praecox 12.65 ± 3.32 3.76 ± 1.36 16.41 ± 3.90
灯台树 Bothrocaryum controversum 9.59 ± 1.82 1.84 ± 0.53 11.43 ± 2.18
芬芳安息香 Styrax odoratissimus 12.71 ± 2.88 1.29 ± 0.83 14.00 ± 3.61
海金子 Pittosporum illicioides 9.32 ± 2.92 3.93 ± 0.65 13.25 ± 2.63
黄丹木姜子 Litsea elongata 13.88 ± 3.78 3.51 ± 1.59 17.39 ± 4.72
尖萼梣 Fraxinus odontocalyx 9.57 ± 2.28 3.07 ± 1.28 12.64 ± 2.63
雷公鹅耳枥 Carpinus viminea 10.62 ± 0.88 4.45 ± 2.57 15.07 ± 3.45
橉木 Padus buergeriana 8.72 ± 0.92 1.24 ± 0.58 9.96 ± 0.72
千金榆 Carpinus cordata 13.05 ± 1.68 4.45 ± 1.12 17.49 ± 1.68
青冈 Cyclobalanopsis glauca 8.91 ± 5.09 6.13 ± 0.81 15.03 ± 5.86
青皮木 Schoepfia jasminodora 7.74 ± 4.06 7.49 ± 1.19 15.22 ± 5.24
山胡椒 Lindera glauca 12.02 ± 1.76 4.02 ± 1.97 16.04 ± 2.33
四照花 Cornus kousa subsp. chinensis 12.55 ± 1.79 2.14 ± 0.71 14.69 ± 1.96
小叶白辛树 Pterostyrax corymbosus 9.97 ± 3.64 1.13 ± 0.64 11.10 ± 4.19
细叶青冈 Cyclobalanopsis gracilis 9.71 ± 2.38 6.36 ± 2.65 16.07 ± 3.62
紫茎 Stewartia sinensis 12.21 ± 1.17 3.77 ± 1.53 15.98 ± 2.00
最大值 Max 15.45 7.49 18.56
最小值 Min 7.74 1.13 9.96
平均值 Average 11.14 3.66 14.80
变异系数 Coefficient of variation 18.63 48.65 15.84

Fig. 2

Differences of the amount of parenchyma in sapling twigs and trunks of adult trees (mean ± SD, n = 8). The data of the amount of parenchyma in trunks were derived from Zheng & Martínez-Cabrera (2013). AP, axial parenchyma; RP, ray parenchyma; RAP, RP + AP. Different lowercase letters indicate significant differences (p < 0.05)."

Table 3

Phylogenetic signal of parenchyma in twigs of 18 woody saplings in the Dabie Mountains"

薄壁组织 Parenchyma K p
射线薄壁组织 RP 0.62 0.151
轴向薄壁组织 AP 1.03 0.004
总薄壁组织 RAP 0.65 0.152
[1] Anhui Tianma National Nature Reserve Administration, Anhui Forestry Survey and Planning Institute ( 2014). Comprehensive Scientific Investigation Report of Tianma National Nature Reserve in Anhui. Anhui Science & Technology Publishing House, Hefei.
[ 安徽天马国家级自然保护区管理局, 安徽省林业调查规划院 ( 2014). 安徽天马国家级自然保护区综合科学考察报告. 安徽科学技术出版社, 合肥.]
[2] Bel AJEV ( 1990). Xylem-phloem exchange via the rays: The undervalued route of transport. Journal of Experimental Botany, 41, 631-644.
[3] Bhat KM, Bhat KV, Dhamodaran TK ( 1985). Wood and bark properties of branches of selected tree species growing in Kerala. KFRI Research Report, Kerala Forest Research Institute. https://pdfs.semanticscholar.org/6d17/‌0853fce456bb543f7e060b3030b435dc9a9f.pdf. Cited: 2018-12-17.
[4] Blomberg SP, Garland T, Ives AR ( 2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745.
[5] Burgert I, Eckstein D ( 2001). The tensile strength of isolated wood rays of beech (Fagus sylvatica L.) and its significance for the biomechanics of living trees. Trees, 15, 168-170.
[6] Cao K, Rao MD, Yu JZ, Liu XJ, Mi XC, Chen JH ( 2013). The phylogenetic signal of functional traits and their effects on community structure in an evergreen broad-leaved forest. Biodiversity Science, 21, 564-571.
[ 曹科, 饶米德, 余建中, 刘晓娟, 米湘成, 陈建华 ( 2013). 古田山木本植物功能性状的系统发育信号及其对群落结构的影响. 生物多样性, 21, 564-571.]
[7] Du Y, Mao L, Queenborough SA, Freckleton RP, Chen B, Ma K ( 2015). Phylogenetic constraints and trait correlates of flowering phenology in the angiosperm flora of China. Global Ecology and Biogeography, 24, 928-938.
[8] Hearn DJ ( 2009). Developmental patterns in anatomy are shared among separate evolutionary origins of stem succulent and storage root-bearing growth habits in Adenia (Passifloraceae). American Journal of Botany, 96, 1941-1956.
[9] Hu Y, Yan L, Li H ( 2006). Studies on the anatomical characteristics of the stems of 14 desert plants. Journal of Arid Land Resources and Environment, 20, 204-210.
[ 胡云, 燕玲, 李红 ( 2006). 14种荒漠植物茎的解剖结构特征分析. 干旱区资源与环境, 20, 204-210.]
[10] Martínez-Cabrera HI, Zheng J, Estrada-Ruiz E ( 2017). Wood functional disparity lags behind taxonomic diversification in angiosperms. Review of Palaeobotany & Palynology, 246, 251-257.
[11] Morris H, Plavcová L, Cvecko P, Fichtler E, Gillingham MAF, Martínez-Cabrera HI, Mcglinn DJ, Wheeler E, Zheng JM, Ziemińska K, Jansen S ( 2016). A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist, 209, 1553-1565.
[12] Olano JM, Arzac A, García-Cervigón AI, von Arx G, Rozas V ( 2013). New star on the stage: Amount of ray parenchyma in tree rings shows a link to climate. New Phytologist, 198, 486-495.
[13] Plavcová L, Hoch G, Morris H, Ghiasi S, Jansen S ( 2016). The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. American Journal of Botany, 103, 1-10.
[14] Plavcová L, Jansen S ( 2015). The role of xylem parenchyma in the storage and utilization of Nonstructural Carbohydrates. In: Hacke U ed. Functional and Ecological Xylem Anatomy. Springer, Cham. 209-234.
[15] Poorter L, Mcdonald I, Alarcón A, Fichtler E, Licona JC, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen U ( 2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest species. New Phytologist, 185, 481-492.
[16] Rungwattana K, Hietz P ( 2018). Radial variation of wood functional traits reflect size-related adaptations of tree mechanics and hydraulics. Functional Ecology, 32, 260-272.
[17] Spicer R ( 2014). Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. Journal of Experimental Botany, 65, 1829-1848.
[18] Tan HY, Hao BZ, Wu JL ( 2000). Seasonal ultrastructural changes of secondary phloem parenchyma cells in a tropical tree, Dalbergia odorifera. Acta Botanica Yunnanica, 22, 461-466.
[ 谭海燕, 郝秉中, 吴继林 ( 2000). 热带落叶树降香黄檀次生韧皮部薄壁组织细胞超微结构的季节变化. 云南植物研究, 22, 461-466.]
[19] Wei X, Liu Y, Chen HB ( 2008). Anatomical and functional heterogeneity among different root orders of Phellodendron amurense. Journal of Plant Ecology (Chinese Version), 32, 1238-1247.
[ 卫星, 刘颖, 陈海波 ( 2008). 黄波罗不同根序的解剖结构及其功能异质性. 植物生态学报, 32, 1238-1247.]
[20] Wheeler EA, Baas P, Rodgers S ( 2007). Variations in dicot wood anatomy: A global analysis based on the insidewood database. Iawa Journal, 28, 229-258.
[21] Yang XD, Ji PP, Re YS, Li HX ( 2018). Relationship between flowering phenology and phylogeny in 31 woody plants of Urumqi, Xinjiang. Acta Ecologica Sinica, 38, 1003-1015.
[ 杨晓东, 姬盼盼, 热依沙, 李宏侠 ( 2018). 31种木本植物开花物候与系统发育的关系. 生态学报, 38, 1003-1015.]
[22] Zhang HY, Wang CK, Wang XC ( 2013). Comparison of concentrations of non-structural carbohydrates between new twigs and old branches for 12 temperate species. Acta Ecologica Sinica, 33, 5675-5685.
[ 张海燕, 王传宽, 王兴昌 ( 2013). 温带12个树种新老树枝非结构性碳水化合物浓度比较. 生态学报, 33, 5675-5685.]
[23] Zhang HY, Wang CK, Wang XC ( 2015). Within-crown variation in concentrations of non-structural carbohydrates of five temperate tree species. Acta Ecologica Sinica, 35, 6496-6506.
[ 张海燕, 王传宽, 王兴昌 ( 2015). 5个温带树种冠层枝叶非结构性碳水化合物浓度的空间变异. 生态学报, 35, 6496-6506.]
[24] Zheng GQ, Bao H, Yang J, Su XL, Hu ZH ( 2015). Ultrastructure of phloem and the flesh sink-cells during fruit development of Lucium barbarum. Acta Botanica Boreali-Occidentalia Sinica, 35, 2211-2218.
[ 郑国琦, 包晗, 杨涓, 苏雪玲, 胡正海 ( 2015). 宁夏枸杞果实韧皮部及其周围细胞超微结构研究. 西北植物学报, 35, 2211-2218.]
[25] Zheng GQ, Zhao M, Zhang L, Zheng GB, Hu ZH ( 2010). Structures and compositions of root and stem secondary xylem anatomy of Lycium barbarum with different irrigation amounts. Acta Botanica Boreali-Occidentalia Sinica, 30, 2170-2176.
[ 郑国琦, 赵猛, 张磊, 郑国保, 胡正海 ( 2010). 灌水量对枸杞根茎次生木质部结构和组成的影响. 西北植物学报, 30, 2170-2176.]
[26] Zheng JM, Martínez-Cabrera HI ( 2013). Wood anatomical correlates with theoretical conductivity and wood density across China: Evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany, 112, 927-935.
[27] Ziemińska K, Butler DW, Gleason SM, Wright IJ, Westoby M ( 2013). Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants , 5, plt046. DOI: 101093/aobpla/plt046.
[1] CUI Li, GUO Feng, ZHANG Jia-Lei, YANG Sha, WANG Jian-Guo, MENG Jing-Jing, GENG Yun, LI Xin-Guo, WAN Shu-Bo. Improvement of continuous microbial environment in peanut rhizosphere soil by Funneliformis mosseae [J]. Chin J Plant Ecol, 2019, 43(8): 718-728.
[2] LI Na, ZHANG Yi-He, HAN Xiao-Zeng, YOU Meng-Yang, HAO Xiang-Xiang. Effects of long-term vegetation cover changes on the organic carbon fractions in soil aggregates of mollisols [J]. Chin J Plant Ecol, 2019, 43(7): 624-634.
[3] LIU Lu, GE Jie-Lin, SHU Hua-Wei, ZHAO Chang-Ming, XU Wen-Ting, SHEN Guo-Zhen, XIE Zong-Qiang. C, N and P stoichiometric ratios in mixed evergreen and deciduous broadleaved forests in Shennongjia, China [J]. Chin J Plant Ecol, 2019, 43(6): 482-489.
[4] Xiao Yaqian,Liu Chuan,Xiao Liang. The role of model animals in the study of symbiotic microorganisms [J]. Biodiv Sci, 2019, 27(5): 505-515.
[5] YAN Peng-Fei, ZHAN Peng-Fei, XIAO De-Rong, WANG Yi, YU Rui, LIU Zhen-Ya, WANG Hang. Effects of simulated warming and decomposition interface on the litter decomposition rate of Zizania latifolia and its phyllospheric microbial community structure and function [J]. Chin J Plant Ecol, 2019, 43(2): 107-118.
[6] Chen Qiangqiang, Li Meiling, Wang Xu, Mueen Qamer Faisal, Wang Peng, Yang Jianwei, Wang Muyang, Yang Weikang. Identification of potential ecological corridors for Marco Polo sheep in Taxkorgan Wildlife Nature Reserve, Xinjiang, China [J]. Biodiv Sci, 2019, 27(2): 186-199.
[7] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[8] SUN Hui-Min, JIANG Jiang, CUI Li-Na, ZHANG Shui-Feng, ZHANG Jin-Chi. Effects of Spartina alterniflora invasion on soil organic carbon composition of mangrove wetland in Zhangjiang River Estuary [J]. Chin J Plan Ecolo, 2018, 42(7): 774-784.
[9] WANG Jun-Yu, WANG Xiao-Dong, MA Yuan-Dan, FU Lu-Cheng, ZHOU Huan-Huan, WANG Bin, ZHANG Ru-Min, GAO Yan. Physiological and ecological responses to drought and heat stresses in Osmanthus fragrans ‘Boyejingui’ [J]. Chin J Plan Ecolo, 2018, 42(6): 681-691.
[10] Shen Jinbo, Jiang Liwen. Chinese Scientists Make Groundbreaking Discoveries in Plant Cytoskeleton [J]. Chin Bull Bot, 2018, 53(6): 741-744.
[11] Yong BAO, Ying GAO, Xiao-Min ZENG, Ping YUAN, You-Tao SI, Yue-Min CHEN, Ying-Yi CHEN. Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China [J]. Chin J Plan Ecolo, 2018, 42(4): 508-516.
[12] ZHANG Lu, HAO Bi-Tai, QI Li-Xue, LI Yan-Long, XU Hui-Min, YANG Li-Na, BAOYIN Taogetao. Dynamic responses of aboveground biomass and soil organic matter content to grassland restoration [J]. Chin J Plan Ecolo, 2018, 42(3): 317-326.
[13] YANG Hao-Tian, WANG Zeng-Ru, JIA Rong-Liang. Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China [J]. Chin J Plan Ecolo, 2018, 42(3): 288-296.
[14] WANG Li-Hua, XUE Jing-Yue, XIE Yu, WU Yan. Spatial distribution and influencing factors of soil organic carbon among different climate types in Sichuan, China [J]. Chin J Plan Ecolo, 2018, 42(3): 297-306.
[15] Zhao Xuehui, Xiao Wei, Guo Jianmin, Gao Dongsheng, Fu Xiling, Li Dongmei. Effect of Blue Light on Photosynthetic Performance and Accumulation of Sugar and Organic Acids in Greenhouse Nectarine [J]. Chin Bull Bot, 2018, 53(2): 227-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] Yang Hong-yuan. Basic Principle and Method of Fluorescence Microscopy[J]. Chin Bull Bot, 1984, 2(06): 45 -48 .
[5] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[6] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[7] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[8] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[10] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .