植物生态学报 ›› 2007, Vol. 31 ›› Issue (6): 1119-1131.DOI: 10.17521/cjpe.2007.0140

所属专题: 碳水能量通量

• 论文 • 上一篇    下一篇

基于EALCO模型对中亚热带人工针叶林CO2通量季节变异的模拟

米娜1,2, 于贵瑞2,*(), 王盘兴1, 温学发2, 孙晓敏2, 张雷明2, 宋霞2, 王树森3   

  1. 1 南京信息工程大学,南京 210044
    2 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京 100101
    3 加拿大遥感中心,渥太华
  • 收稿日期:2006-10-16 接受日期:2007-02-22 出版日期:2007-10-16 发布日期:2007-11-30
  • 通讯作者: 于贵瑞
  • 作者简介:* E-mail: yugr@igsnrr.ac.cn
  • 基金资助:
    国家重点基础研究发展规划项目(C2002CB412501);国家自然科学基金面上项目(30670384);国家自然科学基金重大项目(30590381)

MODELING SEASONAL VARIATION OF CO2 FLUX IN A SUBTROPICAL CONIFEROUS FOREST USING THE EALCO MODEL

MI Na1,2, YU Gui-Rui2,*(), WANG Pan-Xing1, WEN Xue-Fa2, SUN Xiao-Min2, ZHANG Lei-Ming2, SONG Xia2, WANG Shu-Sen3   

  1. 1Nanjing University of Information Science and Technology, Nanjing 210044, China
    2Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3Canada Centre for Remote Sensing, Ottawa, Canada
  • Received:2006-10-16 Accepted:2007-02-22 Online:2007-10-16 Published:2007-11-30
  • Contact: YU Gui-Rui

摘要:

EALCO模型是一个基于生理生态学过程,模拟生态系统下垫面与大气之间水、热和碳通量交换的综合模型。将该模型应用在亚热带常绿针叶林,对其生态系统过程进行了模拟,以深入探讨季节性干旱对生态系统过程的影响。对EALCO模型进行了参数化与初始化并对模型的光合作用时段和落叶机制进行了改进,以更好地模拟亚热带人工针叶林生态系统。千烟洲通量观测站自2002年底开始应用涡度相关技术对中亚热带人工针叶林生态系统进行通量观测,该站点2003年经历了一次较严重的季节性干旱(由高温与少雨综合作用造成),降水量仅为多年平均值的65%,而2004年的年降水量与多年平均值较为接近,利用该站点2003和2004年特殊的气候条件,使用其通量观测数据对模型的模拟效果进行检验。从模拟结果的总体趋势来看,模型能较好地从半小时、日及年尺度上反映两年内土壤-植被-大气之间的碳交换状况。总初级生产力(Gross primary production, GPP)在一年中呈现单峰型变化,遇高温及干旱胁迫GPP值下降。由于受到干旱胁迫的影响,2003年GPP值比2004年偏低12.9%。模拟结果显示,2003年GPP值比2004年偏低11.2%。观测数据与模拟结果均显示,水分胁迫期间净碳交换量(Net ecosystem production, NEP)模拟值与实测值的日变化均呈现一种“偏态",即一天中生态系统碳交换量最大值出现在上午某一时刻,之后逐渐降低。模拟结果显示,水分匮缺对光合能力的影响比对生态系统呼吸作用的影响更为强烈,因而导致了净生态系统生产力的降低。进一步分析表明,水分匮缺期间,晴天正午之前,深层土壤(>20 cm) 水分的匮缺抑制了光合作用能力,正午之后,高温与深层土壤水分匮缺共同削弱光合作用能力,影响各占一半。

关键词: 人工针叶林, 碳通量, EALCO模型, 生态系统过程, 季节性干旱

Abstract:

Aims Seasonal drought frequently occurs in the mid-subtropical region of China and commonly combines with high temperature. Our objectives were to test the sensitivity of carbon exchange to this seasonal drought and discuss the influence of seasonal drought on carbon assimilation.

Methods We used flux measurements obtained from eddy covariance technology since October 2002 over a human-planted forest ecosystem at Qianyanzhou (QYZ) (26°44' N, 115°03' E, 110.8 m als.). The EALCO (ecological assimilation of land and climate observations) model is parameterized to simulate the ecosystem carbon exchange process in the human-planted evergreen forest. Simulation results were validated using half-hourly carbon fluxes and daily and annualGPP (gross primary production), NEP (net ecosystem production) and TER (total ecosystem respiration) estimated from eddy covariance measurements.

Important findings In general, the model can effectively simulate the two years' carbon fluxes among soil-plant-atmosphere on hourly, daily and annual scales. Both simulations and observations showed strong impact of drought on GPP in 2003. Compared with 2004, the annual GPP in 2003 was 12.9% lower according to observations (1 610 vs. 1 865 g C·m-2) and 11.2% lower according to model results (1 637 vs. 1 844 g C·m-2). The diurnal variations of NEP from both observations and simulations during the period of soil water deficit showed asymmetric format, i.e., the peak value of carbon exchange accrued at a certain time in the morning and then decreased with time. Modeling results indicated that water stress has more influence on photosynthesis than TER, which led to the decrease of NEP. Further analysis suggested that deep soil water content controls canopy photosynthesis in sunny days before noon during soil water stress. Afternoon, both high temperature and deep soil water content eliminate the GPP, and their elimination percents are equal. On cloudy days, radiation and deep soil water content primarily determine the photosynthesis, and temperature becomes a generally minor controlling factor.

Key words: coniferous plantation, carbon flux, EALCO model, ecosystem processes, seasonal drought