植物生态学报 ›› 2008, Vol. 32 ›› Issue (5): 1041-1051.DOI: 10.3773/j.issn.1005-264x.2008.05.009
所属专题: 全球变化与生态系统; 生态系统碳水能量通量; 碳循环
顾峰雪1, 于贵瑞2,*(), 温学发2, 陶波2, 李克让2, 刘允芬2
收稿日期:
2007-12-06
接受日期:
2008-02-25
出版日期:
2008-12-06
发布日期:
2008-09-30
通讯作者:
于贵瑞
作者简介:
*(yugr@igsnrr.ac.cn)基金资助:
GU Feng-Xue1, YU Gui-Rui2,*(), WEN Xue-Fa2, TAO Bo2, LI Ke-Rang2, LIU Yun-Fen2
Received:
2007-12-06
Accepted:
2008-02-25
Online:
2008-12-06
Published:
2008-09-30
Contact:
YU Gui-Rui
摘要:
干旱对陆地生态系统的影响已成为全球变化研究的焦点问题之一。该研究基于生态系统过程模型——CEVSA2, 结合涡度相关通量观测, 分析了不同程度干旱对亚热带人工针叶林碳交换的影响及其关键控制因素。结果表明: 1)干旱使生态系统碳交换显著下降, 2003和2004年的干旱使得年净生态系统生产力(Net ecosystem production,NEP)相比无干旱影响情景的模拟结果分别减少了63%和47%; 2)光合和呼吸对干旱具有不同的响应, 干旱时光合的下降比呼吸更为显著, 这导致了NEP的显著下降; 3)当饱和水气压差(Vapor pressure deficit, VPD)达到1.5 kPa以上时, 生态系统的光合、呼吸和净碳吸收均开始下降, 当VPD大于2.5 kPa、土壤相对含水量(土壤含水量/土壤饱和含水量)(Relative soil water content, RSW)低于40%时, 生态系统的碳收支由碳汇转为碳源; 4)土壤干旱是造成碳交换下降的主要驱动因素, 对年NEP下降的平均贡献率为46%, 而大气干旱的贡献率仅为4%。
顾峰雪, 于贵瑞, 温学发, 陶波, 李克让, 刘允芬. 干旱对亚热带人工针叶林碳交换的影响. 植物生态学报, 2008, 32(5): 1041-1051. DOI: 10.3773/j.issn.1005-264x.2008.05.009
GU Feng-Xue, YU Gui-Rui, WEN Xue-Fa, TAO Bo, LI Ke-Rang, LIU Yun-Fen. DROUGHT EFFECTS ON CARBON EXCHANGE IN A SUBTROPICAL CONIFEROUS PLANTATION IN CHINA. Chinese Journal of Plant Ecology, 2008, 32(5): 1041-1051. DOI: 10.3773/j.issn.1005-264x.2008.05.009
图1 2003和2004年气温、降水量的季节变化特征及其与多年平均值(1962~2004年)的比较
Fig. 1 Seasonal variations of monthly average air temperature and total precipitation in 2003 and 2004 and comparison with average annual monthly values (1962~2004)
图2 2003和2004年土壤含水量(SWC, 50 cm平均值)和 饱和水汽压差(VPD)观测值的季节变化特征
Fig. 2 Seasonal variations of observed soil water content (SWC) and vapor pressure deficit (VPD) in 2003 and 2004
参数/单位 Parameter/Unit | 描述 Description | 数值 Value | 来源 Source |
---|---|---|---|
Lon | 经度 Longitude | 115.07 | Li等 ( |
Lat | 纬度 Latitude | 26.73 | Li等 ( |
VGTY | 植被类型 Vegetation type | 常绿针叶林 Evengreen broad-leave forestry | CERN |
VEGC/ gC·m-2 | 植被碳 Vegetation carbon | 10 931 | CERN、李家永和袁小华( |
iLAI / m2·m-2 | 初始叶面积指数 Initial LAI | 3.2 | 张红旗等( |
YSMC /gC·m-2 | 土壤碳 Soil carbon | 12 949 | CERN、李家永和袁小华( |
YSAN/ gN·m-2 | 土壤有效氮 Soil available nitrogen content | 22.0 | CERN |
rato / demensionless | 土壤N:C比 Soil nitrogen and carbon ratio | 0.063 | CERN |
INSWC /mm | 初始土壤含水量 Initial soil moisture | 429 | 流量观测数据 Flux observation data |
SAND、SILT、CLAY /% | 土壤颗粒组成 Percentage of soil particle | 0.20、0.62、0.18 | CERN |
MSAT /cm-3·cm-3 | 饱和含水量 (体积) Saturated soil water content (volume) | 0.42 | CERN |
whc / cm-3·cm-3 | 田间持水量(体积) Soil moisture at field capacity (volume) | 0.25 | CERN |
Wilt / cm-3·cm-3 | 凋萎系数 (体积) Soil moisture at wilt point (volume) | 0.12 | CERN |
SMOPT /% | 分解的最优含水量 Soil optimum moisture for decomposition | 68.0 | CERN |
SMIE / dimensionless | 土壤有机质分解参数 Parameter for decomposition (dimensionless) | -0.29 | CERN |
SMAT / dimensionless | 土壤有机质分解参数 Parameter for decomposition (dimensionless) | 0.63 | CERN |
SLA /m2·g-1C | 比叶面积 Specific leaf area | 0.025 | Kaduk和Heimann ( |
ω/ dimensionless | 决定分配过程对环境变化敏感程度的参数 Allocation parameter (dimensionless) | 0.50 | Arora和Boer ( |
εL / dimensionless | 控制向叶分配的参数 Parameter controlling allocation to leaves (dimensionless) | 0.06 | Arora和Boer ( |
εS / dimensionless | 控制向茎分配的参数 Parameter controlling allocation to stem (dimensionless) | 0.05 | Arora和Boer ( |
εR / dimensionless | 控制向根分配的参数 Parameter controlling allocation to roots (dimensionless) | 0.89 | Arora和Boer ( |
表1 CEVSA2中的主要参数和初始变量值
Table 1 Main parameters and initial state variables in CEVSA2 model
参数/单位 Parameter/Unit | 描述 Description | 数值 Value | 来源 Source |
---|---|---|---|
Lon | 经度 Longitude | 115.07 | Li等 ( |
Lat | 纬度 Latitude | 26.73 | Li等 ( |
VGTY | 植被类型 Vegetation type | 常绿针叶林 Evengreen broad-leave forestry | CERN |
VEGC/ gC·m-2 | 植被碳 Vegetation carbon | 10 931 | CERN、李家永和袁小华( |
iLAI / m2·m-2 | 初始叶面积指数 Initial LAI | 3.2 | 张红旗等( |
YSMC /gC·m-2 | 土壤碳 Soil carbon | 12 949 | CERN、李家永和袁小华( |
YSAN/ gN·m-2 | 土壤有效氮 Soil available nitrogen content | 22.0 | CERN |
rato / demensionless | 土壤N:C比 Soil nitrogen and carbon ratio | 0.063 | CERN |
INSWC /mm | 初始土壤含水量 Initial soil moisture | 429 | 流量观测数据 Flux observation data |
SAND、SILT、CLAY /% | 土壤颗粒组成 Percentage of soil particle | 0.20、0.62、0.18 | CERN |
MSAT /cm-3·cm-3 | 饱和含水量 (体积) Saturated soil water content (volume) | 0.42 | CERN |
whc / cm-3·cm-3 | 田间持水量(体积) Soil moisture at field capacity (volume) | 0.25 | CERN |
Wilt / cm-3·cm-3 | 凋萎系数 (体积) Soil moisture at wilt point (volume) | 0.12 | CERN |
SMOPT /% | 分解的最优含水量 Soil optimum moisture for decomposition | 68.0 | CERN |
SMIE / dimensionless | 土壤有机质分解参数 Parameter for decomposition (dimensionless) | -0.29 | CERN |
SMAT / dimensionless | 土壤有机质分解参数 Parameter for decomposition (dimensionless) | 0.63 | CERN |
SLA /m2·g-1C | 比叶面积 Specific leaf area | 0.025 | Kaduk和Heimann ( |
ω/ dimensionless | 决定分配过程对环境变化敏感程度的参数 Allocation parameter (dimensionless) | 0.50 | Arora和Boer ( |
εL / dimensionless | 控制向叶分配的参数 Parameter controlling allocation to leaves (dimensionless) | 0.06 | Arora和Boer ( |
εS / dimensionless | 控制向茎分配的参数 Parameter controlling allocation to stem (dimensionless) | 0.05 | Arora和Boer ( |
εR / dimensionless | 控制向根分配的参数 Parameter controlling allocation to roots (dimensionless) | 0.89 | Arora和Boer ( |
长白山 CBS (n=1 095) | 哈佛 HF (n=4 745) | 千烟洲 QYZ (n=730) | |
---|---|---|---|
总生态系统生产力 GEP | 0.91 | 0.90 | 0.73 |
生态系统呼吸 Re | 0.96 | 0.78 | 0.93 |
净生态系统生产力 NEP | 0.60 | 0.81 | 0.28 |
表2 CEVSA2模型在各森林站点碳交换及其分量模拟值与观测值的相关系数(r)
Table 2 Relative coefficients between modeled and measured carbon exchanges in different forest ecosystems
长白山 CBS (n=1 095) | 哈佛 HF (n=4 745) | 千烟洲 QYZ (n=730) | |
---|---|---|---|
总生态系统生产力 GEP | 0.91 | 0.90 | 0.73 |
生态系统呼吸 Re | 0.96 | 0.78 | 0.93 |
净生态系统生产力 NEP | 0.60 | 0.81 | 0.28 |
图3 2003~2004年GEP(a)、Re (b)和NEP(c)观测值和 模拟值的季节动态特征 GEP、Re、NEP: 同表2 See Table 2
Fig. 3 Seasonal variations of modeled and measured GEP (a), Re (b) and NEP (c) in 2003 and 2004
年 Year | 情景 Scenarios | GEP变化 Change rate of GEP | Re变化 Change rate of Re | NEP变化 Change rate of NEP |
---|---|---|---|---|
2003 | 观测值 Observation | -0.32 | -0.20 | -0.55 |
VPD-RSW | -0.38 | -0.25 | -0.63 | |
VPD | -0.02 | -0.01 | -0.05 | |
RSW | -0.31 | -0.21 | -0.48 | |
NONE | 0.00 | 0.00 | 0.00 | |
2004 | 观测值 Observation | -0.21 | -0.05 | -0.49 |
VPD-RSW | -0.25 | -0.14 | -0.47 | |
VPD | -0.02 | -0.01 | -0.04 | |
RSW | -0.23 | -0.13 | -0.44 | |
NONE | 0.00 | 0.00 | 0.00 | |
平均 | 观测值 Observation | -0.27 | -0.12 | -0.52 |
Average | VPD-RSW | -0.32 | -0.19 | -0.55 |
VPD | -0.02 | -0.01 | -0.04 | |
RSW | 0.00 | 0.00 | 0.00 | |
NONE | -0.27 | -0.17 | -0.46 |
表3 不同水分情景下碳交换相比不受水分亏缺情景(NONE)模拟值的变化率
Table 3 Change rate of modeled and measured carbon exchanges under different water scenarios compared to simulations under no water deficit (NONE)
年 Year | 情景 Scenarios | GEP变化 Change rate of GEP | Re变化 Change rate of Re | NEP变化 Change rate of NEP |
---|---|---|---|---|
2003 | 观测值 Observation | -0.32 | -0.20 | -0.55 |
VPD-RSW | -0.38 | -0.25 | -0.63 | |
VPD | -0.02 | -0.01 | -0.05 | |
RSW | -0.31 | -0.21 | -0.48 | |
NONE | 0.00 | 0.00 | 0.00 | |
2004 | 观测值 Observation | -0.21 | -0.05 | -0.49 |
VPD-RSW | -0.25 | -0.14 | -0.47 | |
VPD | -0.02 | -0.01 | -0.04 | |
RSW | -0.23 | -0.13 | -0.44 | |
NONE | 0.00 | 0.00 | 0.00 | |
平均 | 观测值 Observation | -0.27 | -0.12 | -0.52 |
Average | VPD-RSW | -0.32 | -0.19 | -0.55 |
VPD | -0.02 | -0.01 | -0.04 | |
RSW | 0.00 | 0.00 | 0.00 | |
NONE | -0.27 | -0.17 | -0.46 |
图5 饱和水汽压差VPD对千烟洲人工针叶林碳通量各 分量GEP (a)、Re (b)和NEP (c)的影响 GEP、Re、NEP、VPD: 同表3 See Table 3
Fig. 5 The effects of VPD on GEP (a), Re (b) and NEP (c) at Qianyanzhou site
[1] | Alexandrov VA, Hoogenboom G (2000). Vulnerability and adaptation assessments of agricultural crops under climate change in the southeastern USA. Theoretical and Applied Climatology, 67,45-63. |
[2] | Arora VK, Boer GJ (2005). A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology, 11,39-59. |
[3] | Baldocchi DD, Wilson KB (2001). Modeling CO 2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modelling, 142,155-184. |
[4] | Cao MK, Woodward FI (1998). Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393,249-252. |
[5] | Churkina G, Running SW (1998). Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems, 1,206-215. |
[6] | Granier A, Reichstein M, Breda N, Janssens IA, Falge E, Ciais P, Grunwald T, Aubinet M, Bergigier P, Bernhofer C, Buchmann N, Facini O, Grassi G, Heinesch B, Ilvesniemi H, Keronen P, Knohl A, Kostner B, Lagergren F, Lindroth A, Longdoz B, Loustau D, Mateus J, Montagnani L, Nys C, Moors E, Papale D, Peiffer M, Pilegaard K, Pita G, Pumpanen J, Rambal S, Rebmann C, Rodrigues A, Seufert G, Tenhunen J, Vesala T, Wang Q (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143,123-145. |
[7] | Grant RF, Arain A, Arora V, Barr A, Black TA, Chen J, Wang S, Yuan F, Zhang Y (2005). Intercomparison of techniques to model high temperature effects on CO 2 and energy exchange in temperate and boreal coniferous forests. Ecological Modelling, 188,217-252. |
[8] | Gu FX, Cao MK, Wen XF, Liu YF, Tao B (2006). A comparison between simulated and measured CO 2 and water flux in a sub-tropical coniferous forest. Science in China Series D—Earth Sciences, 49 (Suppl.II),241-251. |
[9] | Gu FX (顾峰雪), Cao MK (曹明奎), Yu GR (于贵瑞), Wen XF (温学发), Tao B (陶波), Liu YF (刘允芬), Zhang LM (张雷明) (2007). Modeling carbon exchange in different forest ecosystems by CEVSA model: comparison with eddy covariance measurements. Advances in Earth Science (地球科学进展), 22,223-234. (in Chinese with English abstract) |
[10] |
Harley PC, Tenhunen, JD, Lange OL(1986). Use of an analytical model to study limitations on net photosynthesis in Arbutus unedo under field conditions. Oecologia, 70,393-401.
DOI URL PMID |
[11] | Huang XZ (黄祥忠), Hao YB (郝彦宾), Wang YF (王艳芬), Zhou XQ (周小奇), Han X (韩喜), He JJ (贺俊杰) (2006). Impacts of extreme drought on net ecosystem exchange from Lemus chinese steppe in Xilin River Basin, China. Journal of Plant Ecology (Chinese Version)(植物生态学报), 30,894-900. (in Chinese with English abstract) |
[12] | Infante JM, Damesin C, Rambal S, Fernández-Alés R (1999). Modelling leaf gas exchange in holm-oak trees in southern Spain. Agricultural and Forest Meteorology, 95,203-223. |
[13] | IPCC Intergvernmental Panel on Climate Change (2007). Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[14] | Kaduk J, Heimann M (1996). A prognostic phenology scheme for global terrestrial carbon cycle models. Climate Research, 6(1),1-19. |
[15] | Kalvova J, Nemesova I (1997). Projections of climate change for the Czech Republic. Climatic Change, 36,41-64. |
[16] |
Kloeppel BD, Gower ST, Vogel JG, Reich PB (2000). Diurnal, seasonal, and edaphic limitations on the foliar gas exchange of Larix occidentalis and sympatric evergreen conifers in western Montana. Functional Ecology, 14,281-292.
DOI URL |
[17] | Larcher W (1997). (Translated by Zhai ZX (翟志席), Guo YH (郭玉海), Ma YZ (马永泽)). Plant Eco-Physiology (植物生态生理学), China Agricultural University Press, Beijing. (in Chinese) |
[18] | Law BE, Williams M, Anthoni PM, Baldocchi DD, Unsworth MH (2000). Measuring and modeling seasonal variation of carbon dioxide and water vapour exchange of a Pinus ponderosa forest subject to soil water deficit. Global Change Biology, 6,613-630. |
[19] | Li F (李飞) (1998). Reestablishment of forest ecosystems and nutrient cycling characteristics at Qianyanzhou. Resources Science (资源科学), 20(Suppl.),41-48. (in Chinese with English abstract) |
[20] | Li JY (李家永), Yuan XH (袁小华) (2001). A comparative study on organic carbon storage in different land-use systems in red earth hilly area. Resources Science (资源科学), 23(5),73-76. (in Chinese with English abstract) |
[21] | Li ZQ, Yu GR, Wen XF, Zhang LM, Ren CY, Fu YL (2005). Energy balance closure at ChinaFLUX sites. Science in China Series D—Earth Sciences, 48 (Suppl. I),51-62. |
[22] | Liao JX (廖建雄), Wang GX (王根轩) (2000). The effects of increasing CO 2, temperature and drought on the chemical composition of wheat leaves. Acta Phytoecologica Sinica (植物生态学报), 24,744-747. (in Chinese with English abstract) |
[23] | Melillo JM, McGuire AD, Kicklighter DW (1993). Global climate change and terrestrial net primary production. Nature, 363,234-240. |
[24] | Rambal S, Debussche G (1995). Water balance of Mediterranean ecosystems under a changing climate. In: Moreno JM, Oechel WC eds. Global Change and Mediterranean-Type Ecosystems. Springer-Verlag, New York, 386-407. |
[25] |
Rambal S, Ourcival JM, Joffer R, Mouillot F, Nouvellon Y, Reichstein M, Rocheteau A (2003). Drought controls over conductance and assimulation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy. Global Change Biology, 9,1813-1824.
DOI URL |
[26] | Reichstein M, Tenhunen JD, Roupsard O, Ourcival J, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2002). Severe drought effects on ecosystem CO 2 and H 2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Global Change Biology, 8,999-1017. |
[27] | Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS, Hibbard KA (1999). A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment, 70,108-127. |
[28] |
Sala A, Tenhunen JD (1994). Site-specific water relations and stomatal response of Quercus ilex in a Mediterranean watershed. Tree Physiology, 14,601-617.
DOI URL PMID |
[29] | Sun XM, Wen XF, Yu GR, Liu YF, Liu QJ (2006). Seasonal drought effects on carbon sequestration of a mid-subtropical planted forest of southeastern China. Science in China Series D—Earth Sciences, 49 (Suppl. II),110-118. |
[30] | Tao B, Cao MK, Li KR, Gu FX, Ji JJ, Huang M, Zhang LM (2007). Spatial patterns of terrestrial net ecosystem productivity in China during 1981-2000. Science in China Series D—Earth Sciences, 50,745-753. |
[31] | Tian HQ (田汉勤), Xu XF (徐小峰), Song X (宋霞) (2007). Drought impacts on terrestrial ecosystem productivity. Journal of Plant Ecology (Chinese Version)(植物生态学报), 31,231-241. (in Chinese with English abstract) |
[32] | Wen XF (温学发) (2005). Measurements of Carbon Sequestration by Long-Term Eddy Covariance in a Mid-subtropical Pinus Plantation of Southeastern China. PhD dissertation, Graduate University of Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[33] | Wen XF, Yu GR, Sun XM, Li QK, Liu YF, Zhang LM, Ren CY, Fu YL, Li ZQ (2006). Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agricultural and Forest Meteorology, 137,166-175. |
[34] | Yang JW (杨建伟), Liang ZS (梁宗锁), Han RL (韩蕊莲), Sun Q (孙群), Cui LJ (崔浪军) (2004). Water use efficiency and water consumption characteristics of poplar under soil drought conditions. Acta Phytoecologica Sinica (植物生态学报), 28,630-636. (in Chinese with English abstract) |
[35] | Yu GR (于贵瑞), Sun XM (孙晓敏) (2006). Principles of Flux Measurement in Terrestrial Ecosystems(陆地生态系统通量观测的原理与方法). Higher Education Press,Beijing. (in Chinese) |
[36] | Zhang HQ (张红旗), Chen YR (陈永瑞), Niu D (牛栋) (2004). Retrieving effective leaf area index of conifer forests using Landsat TM images in red soil hilly region. Acta Agriculturae Universitatis Jiangxiensis (江西农业大学学报), 26,159-163. (in Chinese with English abstract) |
[37] | Zhang WH (张文辉), Duan BL (段宝利), Zhou JY (周建云), Liu XJ (刘翔君) (2004). Water relations and activity of cell defense enzymes to water stress in seedling leaves of different provenances of Quercus variabilis. Acta Phytoecologica Sinica (植物生态学报), 28,483-490. (in Chinese with English abstract) |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[4] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[5] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[6] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[7] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[8] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[9] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[10] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[11] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[12] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[13] | 冯印成, 王云琦, 王玉杰, 王凯, 王松年, 王杰帅. 重庆缙云山针阔混交林水汽通量特征及其影响因子[J]. 植物生态学报, 2022, 46(8): 890-903. |
[14] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[15] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19