植物生态学报 ›› 2019, Vol. 43 ›› Issue (12): 1079-1090.DOI: 10.17521/cjpe.2019.0055
收稿日期:
2019-03-12
接受日期:
2019-11-18
出版日期:
2019-12-20
发布日期:
2020-01-03
通讯作者:
曲波
基金资助:
JIANG Yu-Ling1,CHEN Xu-Hui1,MIAO Qing1,QU Bo1,2,*()
Received:
2019-03-12
Accepted:
2019-11-18
Online:
2019-12-20
Published:
2020-01-03
Contact:
QU Bo
Supported by:
摘要:
兰科植物的生存及生长高度依赖其根中的共生真菌, 其中的菌根真菌更是对兰科植物的种子萌发与后续生长有着非常重要的作用, 研究兰科植物根中的真菌, 尤其是菌根真菌, 对兰科植物的保护有重要作用。该研究利用第二代测序技术, 对中国辽宁省境内的9种属于极小种群的兰科植物的根、根际土和根围土中的真菌群落和菌根真菌组成进行了研究。结果显示, 兰科植物根中的真菌群落和根际土、根围土中的真菌群落具有显著差异。兰科植物根中的总操作分类单元(OTU)数目远小于根际土和根围土中的总OTU数目。同时, 兰科植物根中菌根真菌的种类和丰度与根际土、根围土中菌根真菌的种类与丰度没有明显联系。FunGuild分析结果显示, 丛枝菌根真菌在根际土与根围土中的丰度非常高, 但在兰科植物的根中却数量极少。这些结果表明, 兰科植物根中的真菌群落与土壤中的真菌群落在一定程度上是相互独立的。
蒋玉玲, 陈旭辉, 苗青, 曲波. 辽宁省9种兰科植物根内与根际土壤中真菌群落结构的差异[J]. 植物生态学报, 2019, 43(12): 1079-1090.
JIANG Yu-Ling, CHEN Xu-Hui, MIAO Qing, QU Bo. Difference in fungal communities between in roots and in root-associated soil of nine orchids in Liaoning, China[J]. Chin J Plant Ecol, 2019, 43(12): 1079-1090.
植物种类 Species | 株数 Number | 采集地点 Location | 生境 Biotope | 生育期 Growth stage |
---|---|---|---|---|
无柱兰 Amitostigma gracile | 1 | 辽宁大连庄河市塔子沟 Tazigou, Zhuanghe, Dalian, Liaoning | 阔叶林下水边悬崖 Waterside cliff under a broad-leaved forest | 营养期 Vegetative period |
长苞头蕊兰 Cephalanthera longibracteata | 1 | 辽宁大连庄河市塔子沟 Tazigou, Zhuanghe, Dalian, Liaoning | 针阔混交林 Mixed broadleaf-conifer forest | 花期 Flowering phase |
小斑叶兰 Goodyera repens | 1 | 辽宁大连庄河市塔子沟 Tazigou, Zhuanghe, Dalian, Liaoning | 阔叶林下水边悬崖 Waterside cliff under a broad-leaved forest | 花期 Flowering phase |
二叶舌唇兰 Platanthera chlorantha | 4 | 辽宁凤城市、凌源市、本溪市与庄河市 Fengcheng, Lingyuan, Benxi and Zhuanghe, Liaoning | 针阔混交林 Mixed broadleaf-conifer forest | 营养期、花期 Vegetative period & Flowering phase |
蜻蜓兰 Tulotis fuscescens | 1 | 辽宁丹东凤城市 Fengcheng, Dandong, Liaoning | 针阔混交林 Mixed broadleaf-conifer forest | 花期 Flowering phase |
羊耳蒜 Liparis campylostalix | 1 | 辽宁大连庄河市姑庵庙 Gu’anmiao, Zhuanghe, Dalian, Liaoning | 针阔混交林 Mixed broadleaf-conifer forest | 营养期 Vegetative period |
珊瑚兰 Corallorhiza trifida | 1 | 辽宁凌源与河北承德市交界处 Junction of Lingyuan, Liaoning and Chengde, Hebei | 阔叶林 Broad-leaved forest | 营养期 Vegetative period |
绶草 Spiranthes sinensis | 3 | 辽宁阜新市杜家店水库 Dujiadian Reservoir, Fuxin, Liaoning | 湖泊边草甸 Meadow beside a lake | 花期 Flowering phase |
山兰 Oreorchis patens | 2 | 辽宁本溪市本溪县沟门和老秃顶子 Goumen and Laotudingzi in Benxi County, Benxi, Liaoning | 针阔混交林 Mixed broadleaf-conifer forest | 花期 Flowering phase |
表1 辽宁省9种兰科植物物种鉴定与采集
Table 1 Species identification and location of nine orchids in Liaoning, China
植物种类 Species | 株数 Number | 采集地点 Location | 生境 Biotope | 生育期 Growth stage |
---|---|---|---|---|
无柱兰 Amitostigma gracile | 1 | 辽宁大连庄河市塔子沟 Tazigou, Zhuanghe, Dalian, Liaoning | 阔叶林下水边悬崖 Waterside cliff under a broad-leaved forest | 营养期 Vegetative period |
长苞头蕊兰 Cephalanthera longibracteata | 1 | 辽宁大连庄河市塔子沟 Tazigou, Zhuanghe, Dalian, Liaoning | 针阔混交林 Mixed broadleaf-conifer forest | 花期 Flowering phase |
小斑叶兰 Goodyera repens | 1 | 辽宁大连庄河市塔子沟 Tazigou, Zhuanghe, Dalian, Liaoning | 阔叶林下水边悬崖 Waterside cliff under a broad-leaved forest | 花期 Flowering phase |
二叶舌唇兰 Platanthera chlorantha | 4 | 辽宁凤城市、凌源市、本溪市与庄河市 Fengcheng, Lingyuan, Benxi and Zhuanghe, Liaoning | 针阔混交林 Mixed broadleaf-conifer forest | 营养期、花期 Vegetative period & Flowering phase |
蜻蜓兰 Tulotis fuscescens | 1 | 辽宁丹东凤城市 Fengcheng, Dandong, Liaoning | 针阔混交林 Mixed broadleaf-conifer forest | 花期 Flowering phase |
羊耳蒜 Liparis campylostalix | 1 | 辽宁大连庄河市姑庵庙 Gu’anmiao, Zhuanghe, Dalian, Liaoning | 针阔混交林 Mixed broadleaf-conifer forest | 营养期 Vegetative period |
珊瑚兰 Corallorhiza trifida | 1 | 辽宁凌源与河北承德市交界处 Junction of Lingyuan, Liaoning and Chengde, Hebei | 阔叶林 Broad-leaved forest | 营养期 Vegetative period |
绶草 Spiranthes sinensis | 3 | 辽宁阜新市杜家店水库 Dujiadian Reservoir, Fuxin, Liaoning | 湖泊边草甸 Meadow beside a lake | 花期 Flowering phase |
山兰 Oreorchis patens | 2 | 辽宁本溪市本溪县沟门和老秃顶子 Goumen and Laotudingzi in Benxi County, Benxi, Liaoning | 针阔混交林 Mixed broadleaf-conifer forest | 花期 Flowering phase |
图1 辽宁九种兰科植物根与土壤中真菌群落的主成分分析(PCA)。A, 根样; B, 根际土; C, 根围土样本。
Fig. 1 Principal Component Analysis (PCA) of fungal communities in roots and soils of nine orchids in Liaoning, China. A, root; B, rhizosphere soil; C, bulk soil.
图2 基于Unifrac距离的辽宁9种兰科植物根与土壤中真菌群落的UPGMA聚类分析。样本根据彼此之间的相似度聚类, 样本间的分枝长度越短越相似。b, 根; c, 根际土; d, 根围土。右列大写字母及数字代表样本编号。
Fig. 2 UPGMA clustering analysis of fungal communities in roots and soils of nine orchids in Liaoning, China based on Unifrac distance. Samples are clustered according to their similarity, and shorter branching length means more similar. b, root; c, rhizosphere soil; d, bulk soil. Uppercase letters and number in right column indicate sample number.
图3 基于Unifrac距离的根与土壤中真菌群落的差异比较分析。A, 根样; B, 根际土; C, 根围土样本。
Fig. 3 Comparative analysis of differences in the fungal communities of roots and soils based on Unifrac distance. A, root; B, rhizosphere soil; C, bulk soil.
[1] | Batty AL, Dixon KW, Brundrett M, Sivasithamparam K ( 2001). Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland. New Phytologist, 152, 511-520. |
[2] |
Bidartondo MI, Read DJ ( 2008). Fungal specificity bottlenecks during orchid germination and development. Molecular Ecology, 17, 3707-3716.
DOI URL PMID |
[3] |
Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG ( 2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10, 57-59.
DOI URL PMID |
[4] |
Bougoure J, Ludwig M, Brundrett M, Grierson P ( 2009). Identity and specificity of the fungi forming mycorrhizas with the rare mycoheterotrophic orchid Rhizanthella gardneri. Mycological Research, 113, 1097-1106.
DOI URL PMID |
[5] |
Cao W, Wu YY, Li Y, Cong XX ( 2013). Priority conservation regions of threatened plants in Northeast China. Chinese Journal of Applied Ecology, 24, 326-330.
URL PMID |
[ 曹伟, 吴雨洋, 李岩, 丛欣欣 ( 2013). 中国东北受威胁植物的优先保护区域. 应用生态学报, 24, 326-330.]
URL PMID |
|
[6] |
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R ( 2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336.
DOI URL PMID |
[7] |
Cevallos S, Sánchez-Rodríguez A, Decock C, Declerck S, Suárez JP ( 2017). Are there keystone mycorrhizal fungi associated to tropical epiphytic orchids? Mycorrhiza, 27, 225-232.
DOI URL PMID |
[8] | Chao A ( 1984). NonparaMetric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265-270. |
[9] |
Chao A, Yang MCK ( 1993). Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika, 80, 193-201.
DOI URL |
[10] | Dearnaley JDW, Martos F, Selosse MA (2012). Orchid mycorrhizas: Molecular ecology, physiology, evolution and conservation aspects. In: Hock B ed. Fungal Associations, The Mycota IX. 2nd edn. Springer-Verlag, Berlin. 207-230. |
[11] | Diez JM ( 2007). Hierarchical patterns of symbiotic orchid germination linked to adult proximity and environmental gradients. Journal of Ecology, 95, 159-170. |
[12] |
Edgar RC ( 2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461.
DOI URL PMID |
[13] | Egidi E, May TW, Franks AE ( 2018). Seeking the needle in the haystack: Undetectability of mycorrhizal fungi outside of the plant rhizosphere associated with an endangered Australian orchid. Fungal Ecology, 33, 13-23. |
[14] |
Ercole E, Adamo M, Rodda M, Gebauer G, Girlanda M, Perotto S ( 2015). Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio. New Phytologist, 205, 1308-1319.
DOI URL PMID |
[15] |
Esposito F, Jacquemyn H, Waud M, Tyteca D ( 2016). Mycorrhizal fungal diversity and community composition in two closely related Platanthera (Orchidaceae) species. PLOS ONE, 11, e0164108. DOI: 10.1371/journal.pone.0164108.
DOI URL PMID |
[16] | Ezzi MI, Lynch JM ( 2002). Cyanide catabolizing enzymes in Trichoderma spp. Enzyme and Microbial Technology, 31, 1042-1047. |
[17] |
Gremion F, Chatzinotas A, Harms H ( 2003). Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environmental Microbiology, 5, 896-907.
DOI URL PMID |
[18] | Han JY, Xiao HF, Gao JY ( 2016). Seasonal dynamics of mycorrhizal fungi in Paphiopedilum spicerianum (Rchb. f) Pfitzer—A critically endangered orchid from China. Global Ecology & Conservation, 6, 327-338. |
[19] |
Jacquemyn H, Brys R, Vandepitte K, Honnay O, Roldán-Ruiz I, Wiegand T ( 2007). A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. New Phytologist, 176, 448-459.
DOI URL PMID |
[20] |
Jacquemyn H, Waud M, Lievens B, Brys R ( 2016). Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Annals of Botany, 118, 105-114.
DOI URL PMID |
[21] | Jiang YL ( 2018). Mycorrhizal Fungi Diversity of Nine Orchids in Liaoning Province. Master degree dissertation, Shenyang Agricuttural University, Shenyang. |
[ 蒋玉玲 ( 2018). 辽宁省内九种兰科植物菌根真菌多样性研究. 硕士学位论文, 沈阳农业大学, 沈阳.] | |
[22] | Kartzinel TR, Trapnell DW, Shefferson RP ( 2013). Highly diverse and spatially heterogeneous mycorrhizal symbiosis in a rare epiphyte is unrelated to broad biogeographic or environmental features. Molecular Ecology, 22, 949-5961. |
[23] |
Kӧljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiß M, Larsson KH ( 2013). Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22, 5271-5277.
DOI URL PMID |
[24] |
Liu T, Li CM, Han YL, Chiang TY, Chiang YC, Sung HM ( 2015). Highly diversified fungi are associated with the achlorophyllous orchid Gastrodia flavilabella. BMC Genomics, 16, 1422-1435.
DOI URL PMID |
[25] |
Lozupone CA, Hamady M, Kelley ST, Knight R ( 2007). Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology, 73, 1576-1585.
DOI URL PMID |
[26] |
Lozupone CA, Knight R ( 2005). Unifrac: A new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71, 8228-8235.
DOI URL PMID |
[27] |
Ma XY, Kang JC, Nontachaiyapoom S, Wen TC, Hyde KD ( 2015). Non-mycorrhizal endophytic fungi from orchids. Current Science, 109, 72-87.
DOI URL PMID |
[28] |
McCormick MK, Lee Taylor D, Juhaszova K, Burnett Jr RK, Whigham DF, O’Neill JP ( 2012). Limitations on orchid recruitment: Not a simple picture. Molecular Ecology, 21, 1511-1523.
DOI URL PMID |
[29] | McCormick MK, Taylor DL, Whigham DF, Burnett Jr RK ( 2016). Germination patterns in three terrestrial orchids relate to abundance of mycorrhizal fungi. Journal of Ecology, 104, 744-754. |
[30] | McKendrick SL, Leake JR, Taylor DL, Read DJ ( 2000). Symbiotic germination and development of myco-heterotrophic plants in nature: Ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytologist, 145, 523-537. |
[31] | Novotná A, Benítez Á, Herrera P, Cruz D, Filipczyková E, Suárez JP ( 2018). High diversity of root-associated fungi isolated from three epiphytic orchids in southern Ecuador. Mycoscience, 59, 24-32. |
[32] |
Oja J, Kohout P, Tedersoo L, Kull T, Kõljalg U ( 2015). Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytologist, 205, 1608-1618.
DOI URL PMID |
[33] | Ran YZ, Xu JT ( 1988). Studies on the inhibition of seed germination of Gastrodia elata Bl. by Armillaria mellea Qul. Traditional Chinese Medicine Journal, 13(10), 15-17. |
[ 冉砚珠, 徐锦堂 ( 1988). 蜜环菌抑制天麻种子发芽的研究. 中药通报, 13(10), 15-17.] | |
[34] |
Shakya M, Gottel N, Castro H, Yang ZK, Gunter L, Labbé J, Muchero W, Bonito G, Vilgalys R, Tuskan G, Podar M, Schadt CW ( 2013). A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLOS ONE, 8, e76382. DOI: 10.1371/journal.pone.0076382.
DOI URL PMID |
[35] | Smith SE, Read DJ (2008). Mycorrhizal Symbiosis. Academic Press, Cambridge, UK. |
[36] | Sun FH, Yuan J, Lu S ( 2006). The change and test of climate in northeast China over the last 100 Years. Climatic and Environmental Research, 11, 101-108. |
[ 孙凤华, 袁健, 路爽 ( 2006). 东北地区近百年气候变化及突变检测. 气候与环境研究, 11, 101-108.] | |
[37] |
Vincenot L, Tedersoo L, Richard F, Horcine H, Kõljalg U, Selosse MA ( 2008). Fungal associates of Pyrola rotundifolia, a mixotrophic Ericaceae, from two Estonian boreal forests. Mycorrhiza, 19, 15-25.
DOI URL |
[38] |
Voyron S, Ercole E, Ghignone S, Perotto S, Girlanda M ( 2017). Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands. New Phytologist, 213, 1428-1439.
DOI URL PMID |
[39] |
Vujanovic V, St-Arnaud M, Barabé D, Thibeault G ( 2000). Viability testing of orchid seed and the promotion of colouration and germination. Annals of Botany, 86, 79-86.
DOI URL |
[40] | Wang SQ, Zhou CH, Liu JY, Li KR, Yang XM ( 2001). Simulation analyses of terrestrial carbon cycle balance model in Northeast China. Acta Geographica Sinica, 56, 390-400. |
[ 王绍强, 周成虎, 刘纪远, 李克让, 杨晓梅 ( 2001). 东北地区陆地碳循环平衡模拟分析. 地理学报, 56, 390-400.] | |
[41] | Wang ZH, Li PJ, Wang YS, Hu T, Gong ZQ, Sun TH, Wan ZC, Chen DG ( 2005). Ecological function zoning in Liaoning Province. Chinese Journal of Ecology, 24, 1339-1342. |
[ 王治江, 李培军, 王延松, 胡涛, 巩宗强, 孙铁珩, 万忠成, 陈大光 ( 2005). 辽宁省生态功能分区研究. 生态学杂志, 24, 1339-1342.] | |
[42] |
Waud M, Brys R, van Landuyt W, Lievens B, Jacquemyn H ( 2017). Mycorrhizal specificity does not limit the distribution of an endangered orchid species. Molecular Ecology, 26, 1687-1701.
DOI URL PMID |
[43] | Waud M, Busschaert P, Lievens B, Jacquemyn H ( 2016). Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecology, 20, 155-165. |
[44] | Xu JT ( 2013). Review of the 50-year research of the cultivation of Gastrodia elate Bl. in China. Edible and Medicinal Mushrooms, 21, 58-63. |
[ 徐锦堂 ( 2013). 我国天麻栽培50年研究历史的回顾. 食药用菌, 21, 58-63.] | |
[45] |
Zimmer K, Meyer C, Gebauer G ( 2008). The ectomycorrhizal specialist orchid Corallorhiza trifida is a partial myco- heterotroph. New Phytologist, 178, 395-400.
DOI URL PMID |
[1] | 李军军 李萌茹 齐兴娥 王立龙 徐世健. 芨芨草叶片养分特征对氮、磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(预发表): 0-0. |
[2] | 胡宗达 刘世荣 罗明霞 胡璟 刘兴良 李亚非 余昊 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮及酶活性特征[J]. 植物生态学报, 2020, 44(9): 0-0. |
[3] | 赵河聚 岳艳鹏 贾晓红 成龙 吴波 李元寿 周虹 赵雪彬. 梯度增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 0-0. |
[4] | 解梦怡 冯秀秀 马寰菲 胡汗 王洁莹 郭垚鑫 任成杰 王俊 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 0-0. |
[5] | 罗林 黄艳 梁进 汪恩涛 胡君 贺合亮 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响[J]. 植物生态学报, 2020, 44(8): 0-0. |
[6] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
[7] | 李婷婷, 张西美. 全球变化背景下内蒙古草原土壤微生物多样性维持机制研究进展[J]. 生物多样性, 2020, 28(6): 749-758. |
[8] | 黄庆阳, 曹宏杰, 谢立红, 罗春雨, 杨帆, 王立民, 倪红伟. 五大连池火山熔岩台地草本层物种多样性及环境解释[J]. 生物多样性, 2020, 28(6): 658-667. |
[9] | 韩雪, 苏锦权, 姚娜娜, 陈宝明. 外来入侵植物的根系觅养行为研究进展[J]. 生物多样性, 2020, 28(6): 727-733. |
[10] | 靳新影, 张肖冲, 金多, 陈韵, 李靖宇. 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征[J]. 生物多样性, 2020, 28(6): 718-726. |
[11] | 李佳佳 樊妙春 上官周平. 植物根系分泌物主要生态功能研究进展[J]. 植物学报, 2020, 55(6): 0-0. |
[12] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[13] | 王宇彤, 牛克昌. 青藏高原高寒草甸土壤环境对线虫功能多样性的影响[J]. 生物多样性, 2020, 28(6): 707-717. |
[14] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[15] | 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2021 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19