植物生态学报 ›› 2025, Vol. 49 ›› Issue (5): 1-0.DOI: 10.17521/cjpe.2024.0070  cstr: 32100.14.cjpe.2024.0070

• •    

紫花苜蓿耐阴性综合评价及其鉴定指标的筛选

张琨1,钱敏1,汪阳1,李志华1,孔令娜2,李明洋1,马瑾煜3,努尔艾合麦提·玉苏普1,陈乙一1,成沂芮1,张焕仕4,覃凤飞2,渠晖5   

  1. 1. 南京农业大学草业学院
    2. 南京农业大学
    3. 南京农业大学植保学院
    4. 金陵科技学院园艺园林学院
    5. 中国农业科学院草原研究所
  • 收稿日期:2024-03-14 修回日期:2024-07-09 出版日期:2025-05-20 发布日期:2024-08-26

Comprehensive Evaluation and Screening of Identification Indexes for Shade Tolerance of Alfalfa

Kun ZHANG1,min qian2,yang wang2,zhihua li2,lingna kong3,mingyang li2,jinyu ma4,yusupu nueraihemaiti2,yiyi chen2,yirui cheng2, 1,Feng-Fei QIN1,hu qu5   

  1. 1.
    2. College of Agro-grassland Science, Nanjing Agricultural University
    3. College of Agriculture, Nanjing Agricultural University
    4. College of Plant Protection, Nanjing Agricultural University
    5. Grassland Research Institute, Chinese Academy of Agricultural Sciences
  • Received:2024-03-14 Revised:2024-07-09 Online:2025-05-20 Published:2024-08-26

摘要: 紫花苜蓿(Medicago sativa L.)是我国牧草间作系统的重要草种。然而,间作系统极端的弱光环境常造成紫花苜蓿产量大幅下降,选育耐阴品种是解决这一瓶颈问题的主要途径。为此,试验以20份紫花苜蓿种质资源为供试材料,采用绿色遮阳网叠加设置遮光率为0%(全光照)、52.9%和71.8%,3种遮阴处理,测定不同光强下紫花苜蓿分蘖期6个形态指标(茎粗、株高、一级侧根数、根瘤数、茎叶夹角和根颈分蘖数)、7个生长指标(叶干重、单株生物量、叶面积、比叶面积、叶重比、茎重比和根重比)和5个生理指标(叶绿素a含量、叶绿素b含量、叶绿素总量、类胡萝卜素含量和叶绿素a/b比值)的变化,以0%和52.9%遮光率的耐阴系数为基础数据,通过主成分分析、隶属函数分析、聚类分析和逐步回归分析法综合评价20份紫花苜蓿供试材料的耐阴性并筛选其鉴定指标。结果表明:随光强减弱,紫花苜蓿的茎粗、根瘤数和根颈分蘖数呈下降趋势;叶绿素总量呈上升趋势;一级侧根数、叶干重、单株生物量和叶面积呈先上升后下降趋势,其它指标变化趋势不一致,且不同品种间存在较大差异。结合主成分分析、隶属函数分析和聚类分析,按耐阴性的强弱可将20份供试材料划分为3个类型:耐阴型(4份材料)、半耐阴型(8份材料)和敏感型(8份材料)。通过逐步回归分析,建立了评价紫花苜蓿耐阴性的最优回归方程:D=-0.108+0.071X10+0.049X6+0.208X14+0.027X4+0.096X7+0.052X3+0.048X5,估计精度在93.72%以上,筛选出叶面积、叶干重、茎叶夹角、根瘤数、一级侧根数、根颈分蘖数和叶绿素a含量等7个指标作为紫花苜蓿耐阴性鉴定指标。研究结果可为紫花苜蓿耐阴品种的选育提供优良材料和科学依据,并有助于紫花苜蓿高效间作体系的构建与优化。

关键词: 紫花苜蓿, 耐阴性, 综合评价, 多元统计分析, 鉴定指标

Abstract: Alfalfa (Medicago sativa L.) is an important forage in the intercropping system. However, the extreme weak light environment in the intercropping system often leads to a significant decrease in alfalfa yield, and breeding shade-tolerant cultivars is the main way to solve this bottleneck problem. In this experiment, 20 alfalfa germplasm resources were used as test materials, and the shading rates were 0% (full light), 52.9% and 71.8%. Three shading treatments were used to determine the changes in six morphological indexes (stem diameter, height, primary lateral root, root nodule, root crown tiller, angle of stem to leaf), seven growth indexes (leaf weight, plant biomass, leaf area, specific leaf area, leaf mass ratio, stem mass ratio, root mass ratio), and five physiological indexes (chlorophyll a content, chlorophyll b content, total chlorophyll content, carotenoid, chlorophyll a/b ratio) during the tillering stage of alfalfa under different light intensities. Based on the shading tolerance coefficients of 0% and 52.9%, principal component analysis, membership function analysis, cluster analysis, and stepwise regression analysis were used to comprehensively evaluate the shade tolerance of alfalfa germplasm resources and screen their identification indicators. The results showed that the stem diameter, the number of root nodule, and the number of root neck tillering of alfalfa decreased with the decrease of light intensity. The total chlorophyll content showed an increasing trend. The number of primary lateral root, leaf dry weight, biomass per plant, and leaf area showed a trend of first increasing and then decreasing, while the trends of other indexes were inconsistent, and there were significant differences among different cultivars. Combining principal component analysis, membership function analysis and cluster analysis, the 20 test materials could be divided into three types according to their shade tolerance: shade tolerant (4 test materials), semi-shade tolerant (8 test materials), and sensitive (8 test materials). By stepwise regression analysis, the optimal regression equation was established: D=-0.108+0.071X10+0.049X6+0.208X14+0.027X4+0.096X7+0.052X3+0.048X5, the precision of estimation was above 93.72%, Seven indexes, including leaf area, leaf dry weight, angle between stem and leaf, number of root nodules, primary lateral roots, number of root neck tillering, and chlorophyll a content were selected as shade tolerance identification indexes of alfalfa. The research results can provide good materials and scientific basis for the breeding of alfalfa cultivars with shade tolerance, and contribute to the construction and optimization of alfalfa intercropping systems.

Key words: Alfalfa, Shade tolerance, Comprehensive evaluation, Multivariate statistical analysis, Identification indexes