植物生态学报 ›› 2009, Vol. 33 ›› Issue (5): 1003-1012.DOI: 10.3773/j.issn.1005-264x.2009.05.020
王凯1,2, 朱教君1,*(), 于立忠1, 孙一荣1, 陈光华3
收稿日期:
2009-02-16
修回日期:
2009-06-02
出版日期:
2009-02-16
发布日期:
2009-09-30
通讯作者:
朱教君
作者简介:
*(jiaojunzhu@iae.ac.cn)基金资助:
WANG Kai1,2, ZHU Jiao-Jun1,*(), YU Li-Zhong1, SUN Yi-Rong1, CHEN Guang-Hua3
Received:
2009-02-16
Revised:
2009-06-02
Online:
2009-02-16
Published:
2009-09-30
Contact:
ZHU Jiao-Jun
摘要:
一直以来黄波罗(Phellodendron amurense)被认为是不耐阴树种, 然而引入美国纽约后, 发现它具有一定的耐阴性, 在全光和林下均能更新, 在纽约已经成为生物入侵种。为了探讨黄波罗的耐阴性问题, 通过设置自然光与遮阴(15%自然光)两种光环境, 观测了三年生黄波罗幼苗(遮阴1 a后)光合生理参数、光能利用效率、叶绿素和比叶重的变化。结果表明, 与自然光处理相比, 遮阴处理的黄波罗幼苗最大光合速率、表观量子效率和暗呼吸速率略有下降, 但差异不显著(p>0.05), 光补偿点下降显著(p<0.05); 同时, 单位面积叶绿素含量无显著差异(p>0.05), 而单位干重叶绿素含量显著升高, 比叶重显著下降, 叶面积显著增大(p<0.05)。上述结果说明: 遮阴的黄波罗幼苗通过降低光补偿点和暗呼吸速率利用环境中的弱光, 同时通过减小比叶重、增大叶面积和提高叶绿素b相对含量来增强对光的捕获, 使其在弱光时的光能利用效率提高。由此推断, 黄波罗幼苗能适应一定程度的遮阴。
王凯, 朱教君, 于立忠, 孙一荣, 陈光华. 遮阴对黄波罗幼苗的光合特性及光能利用效率的影响. 植物生态学报, 2009, 33(5): 1003-1012. DOI: 10.3773/j.issn.1005-264x.2009.05.020
WANG Kai, ZHU Jiao-Jun, YU Li-Zhong, SUN Yi-Rong, CHEN Guang-Hua. EFFECTS OF SHADING ON THE PHOTOSYNTHETIC CHARACTERISTICS AND LIGHT USE EFFICIENCY OF PHELLODENDRON AMURENSE SEEDLINGS. Chinese Journal of Plant Ecology, 2009, 33(5): 1003-1012. DOI: 10.3773/j.issn.1005-264x.2009.05.020
图2 自然光和遮阴环境下黄波罗幼苗叶片在春、夏、秋三季的光响应曲线 A: 春季 Spring B: 夏季 Summer C: 秋季 Autumn
Fig. 2 Responses of net photosynthetic rate to photosynthetic photon flux density in Phellodendron amurense seedlings under natural light and shade in spring, summer and autumn
春季 Spring | 夏季 Summer | 秋季 Autumn | ||||||
---|---|---|---|---|---|---|---|---|
自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | |||
最大光合速率 Maximum net photosynthetic rate (Pmax) (μmol·m-2·s-1) | 18.52±1.57a | 14.81±0.65a | 17.39±0.37a | 13.89±1.13a | 18.46±1.71a | 17.61±1.36a | ||
表观量子效率 Apparent quantum yield (AQY) (mol·mol-1) | 0.079±0.007a | 0.060±0.003a | 0.074±0.009a | 0.077±0.008a | 0.048±0.007a | 0.074±0.004a | ||
暗呼吸速率 Dark respiration rate (Rd) (μmol·m-2·s-1) | 1.601±0.006a | 1.400±0.092a | 3.194±0.134a | 2.423±0.292a | 1.614±0.310a | 0.944±0.123a | ||
光补偿点 Light compensation point (LCP) (μmol·m-2·s-1) | 30.49±0.32a | 25.58±0.67b | 70.69±3.55a | 42.45±2.89b | 32.31±2.88a | 15.08±1.99b |
表1 自然光和遮阴环境下黄波罗幼苗叶片在春、夏、秋三季的最大光合速率(Pmax)、表观量子效率(AQY)、暗呼吸速率(Rd)和光补偿点(LCP) (平均值±标准误, n=3, p<0.05)
Table 1 Maximum net photosynthetic rate (Pmax), apparent quantum yield (AQY), dark respiration rate (Rd) and light compensation point (LCP) in leaves of Phellodendron amurense seedlings under natural light and shade treatments in spring, summer and autumn (mean±SE, n=3, p<0.05)
春季 Spring | 夏季 Summer | 秋季 Autumn | ||||||
---|---|---|---|---|---|---|---|---|
自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | |||
最大光合速率 Maximum net photosynthetic rate (Pmax) (μmol·m-2·s-1) | 18.52±1.57a | 14.81±0.65a | 17.39±0.37a | 13.89±1.13a | 18.46±1.71a | 17.61±1.36a | ||
表观量子效率 Apparent quantum yield (AQY) (mol·mol-1) | 0.079±0.007a | 0.060±0.003a | 0.074±0.009a | 0.077±0.008a | 0.048±0.007a | 0.074±0.004a | ||
暗呼吸速率 Dark respiration rate (Rd) (μmol·m-2·s-1) | 1.601±0.006a | 1.400±0.092a | 3.194±0.134a | 2.423±0.292a | 1.614±0.310a | 0.944±0.123a | ||
光补偿点 Light compensation point (LCP) (μmol·m-2·s-1) | 30.49±0.32a | 25.58±0.67b | 70.69±3.55a | 42.45±2.89b | 32.31±2.88a | 15.08±1.99b |
图3 自然光和遮阴环境下黄波罗幼苗叶片在春、夏、秋三季的光能利用效率光响应 A: 春季 Spring B: 夏季 Summer C: 秋季 Autumn
Fig. 3 Light responses of light use efficiency in Phellodendron amurense seedlings under natural light and shade treatments in spring, summer and autumn
春季 Spring | 夏季 Summer | 秋季 Autumn | ||||||
---|---|---|---|---|---|---|---|---|
自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | |||
单位干重叶绿素含量 Chlorophyll content per mass (Chlmass) (mg·g-1) | 5.60±0.10a | 17.72±0.38b | 7.33±0.17a | 13.28±0.12b | 5.73±0.09a | 14.0±0.16b | ||
单位面积叶绿素含量 Chlorophyll content per area (Chlarea) (g·m-2) | 0.2627±0.0045a | 0.4142±0.0088a | 0.4323±0.0099a | 0.4186±0.0039a | 0.3457±0.0056a | 0.4469±0.0051a | ||
叶绿素a/b值 Chlorophyll a/b (Chl a/b) | 3.40±0.13a | 2.35±0.04b | 6.82±0.07a | 4.08±0.14b | 5.82±0.14a | 4.19±0.03b | ||
类胡萝卜素含量 Carotenoid content (Car) (g?m-2) | 0.0523±0.0011a | 0.0454±0.0010b | 0.1176±0.0039a | 0.0765±0.0011b | 0.0911±0.0026a | 0.0799±0.0010a | ||
类胡萝卜素/叶绿素比值 Chlorophyll/Carotenoid (Car/Chl) | 0.1989±0.0012a | 0.1098±0.0039b | 0.2720±0.035a | 0.1827±0.0010b | 0.2635±0.0033a | 0.1787±0.0005b |
表2 自然光与遮阴环境下黄波罗幼苗在春、夏、秋三季的叶绿素(Chl)和类胡萝卜素(Car)的含量 (平均值±标准误, n=3, p<0.05)
Table 2 Chlorophyll (Chl) and carotenoid (Car) contents of Phellodendron amurense seedlings under natural light and shade in spring, summer and autumn (mean±SE, n=3, p<0.05)
春季 Spring | 夏季 Summer | 秋季 Autumn | ||||||
---|---|---|---|---|---|---|---|---|
自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | |||
单位干重叶绿素含量 Chlorophyll content per mass (Chlmass) (mg·g-1) | 5.60±0.10a | 17.72±0.38b | 7.33±0.17a | 13.28±0.12b | 5.73±0.09a | 14.0±0.16b | ||
单位面积叶绿素含量 Chlorophyll content per area (Chlarea) (g·m-2) | 0.2627±0.0045a | 0.4142±0.0088a | 0.4323±0.0099a | 0.4186±0.0039a | 0.3457±0.0056a | 0.4469±0.0051a | ||
叶绿素a/b值 Chlorophyll a/b (Chl a/b) | 3.40±0.13a | 2.35±0.04b | 6.82±0.07a | 4.08±0.14b | 5.82±0.14a | 4.19±0.03b | ||
类胡萝卜素含量 Carotenoid content (Car) (g?m-2) | 0.0523±0.0011a | 0.0454±0.0010b | 0.1176±0.0039a | 0.0765±0.0011b | 0.0911±0.0026a | 0.0799±0.0010a | ||
类胡萝卜素/叶绿素比值 Chlorophyll/Carotenoid (Car/Chl) | 0.1989±0.0012a | 0.1098±0.0039b | 0.2720±0.035a | 0.1827±0.0010b | 0.2635±0.0033a | 0.1787±0.0005b |
图4 自然光与遮阴处理下黄波罗幼苗叶片 在春、夏、秋三季比叶重和叶面积 不同小写字母表示不同光处理之间具有显著差异(p<0.05) Different small letters indicate significant differences under two light intensity conditions (p<0.05)
Fig. 4 Changes in special leaf weight and leaf area of Phellodendron amurense seedlings under natural light and shade in spring, summer and autumn
[1] | An F (安锋), Lin WF (林位夫) (2005). Significances of plant shade-tolerance study and its advances. Chinese Journal of Tropical Agriculture (热带农业科学), 25(2), 68-72. (in Chinese with English abstract) |
[2] | Bai YL (白由路), Yang LP (杨俐苹) (2004). An approach to measure plant leaf area using image process. Agriculture Network Information (农业网络信息), (1), 36-38. (in Chinese with English abstract) |
[3] |
Bloor JMG (2003). Light responses of shade-tolerant tropical tree species in North-East Queensland: a comparison of forest- and shadehouse-grown seedlings. Journal of Tropical Ecology, 19, 163-170.
DOI URL |
[4] | Bungard RA, Ruban AV, Hibberd JM, Press MC, Horton P, Scholes JD (1999). Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proceedings of the National Academy of Sciences of the United States of America, 96, 1135-1139. |
[5] |
Cao KF (2000). Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest. Canadian Journal of Botany, 78, 1245-1253.
DOI URL |
[6] | Chinese Virtual Herbarium (中国数字植物标本馆) (2009). http://www.cvh.org.cn/baohu/List.asp.Cited 21 Dec.2008. |
[7] |
Demmig AB, Adams WW (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 599-626.
DOI URL |
[8] | Escalona JM, Flexas J, Medrano H (1999). Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. Australian Journal of Plant Physiology, 26, 421-433. |
[9] |
Evans JR, Poorter H (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf aera and nitorgen partitioning in maximizing carbon gain. Plant, Cell and Environment, 24, 755-767.
DOI URL |
[10] |
Falster DS, Westoby M (2003). Leaf size and angle vary widely acorss species: what consequences for light interception? New Phytologist, 158, 509-525.
DOI URL |
[11] | Farquhar GD, Caemmerer SV (1982). Modelling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H eds. Physiological Plant Ecology II: Encyclopedia of Plant Physiology. Springer, Berlin. |
[12] |
Glaeser CW, Kincaid D (2005). The non-native invasive Phellodendron amurense Rupr in a New York City woodland. Arboricultural Journal, 28, 151-164.
DOI URL |
[13] | Guo LW (郭连旺), Shen YG (沈允钢) (1996). Protective mechanisms against photodamage in photosynthetic apparatus of higher plants. Plant Physiology Communications (植物生理学通讯), 32(1), 1-8. (in Chinese with English abstract) |
[14] | Guo YH (郭玉华), Cai ZQ (蔡志全), Cao KF (曹坤芳), Wang WL (王渭玲) (2004). Leaf photosynthetic and anatomic acclimation of four tropical rainforest tree species to different growth light conditions. Journal of Wuhan Botanical Research (武汉植物学研究), 22, 240-244. (in Chinese with English abstract) |
[15] | Ishizuka M, Sugawara S (1989). Composition and structure of natural mixed forests in Central Hokkaido.Ⅱ. Effects of disturbance on the forest vegetation patterns along a topographic moisture gradient. Journal of the Japanese Forestry Society, 71, 89-98. |
[16] | Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y (2000). Susceptibility to photoinhibition of three deciduous broadleaf tree species with diferent successional traits raised under various light regimes. Plant, Cell and Environment, 23, 81-89. |
[17] | Lambers H, Poorter H (1992). Inherent variation in growth-rate between higher plants―A search for physiological causes and ecological consequences. In: Begon M, Fitter AH eds. Advances in Ecological Research. Academic Press, London, 187-261. |
[18] | Li HS (李合生) (2000). The Experiment Principle and Technique for Plant Physiology and Biochemistry(植物生理生化实验原理和技术). Higher Education Press, Beijing, 134-138. (in Chinese) |
[19] |
McKiernan M, Baker NR (1992). A method for the rapid monitoring of photosynthetic shade adaptation in leaves. Functional Ecology, 6, 405-410.
DOI URL |
[20] | Niinemets U, Tenhunen JD (1997). A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant, Cell and Environment, 20, 845-866. |
[21] | Pearcy RW, Sims DA (1994). Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. In: Caldwell MM, Pearcy RW eds. Exploitation of Environmental Heterogeneity by Plant: Ecophysiological Processes Above- and Below-ground. Academic Press, San Diego, 145-174. |
[22] | Penuelas J, Filella I, Llusia J, Siscart D, Pinol J (1998). Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees Quercus ilex and Phillyrea latifolia. Journal of Experimental Botany, 49, 229-238. |
[23] |
Poorter L, Oberbauer SF, Clark DB (1995). Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa Rica. American Journal of Botany, 82, 1257-1263.
DOI URL |
[24] | Qi X (齐欣), Cao KF (曹坤芳), Feng YL (冯玉龙) (2004). Photosynthetic acclimation to different growth light environments in seedlings of three tropical rainforest Syzygium species. Acta Phytoecologica Sinica (植物生态学报), 28, 31-38. (in Chinese with English abstract) |
[25] | Rehder A (1940). Manual of Cultivated Trees and Shrubs Hardy in North America Exclusive of the Subtropical and Warm Regions. Blackburn Press, Caldwell, NJ, USA. |
[26] |
Reich PB, Walters MB (1994). Photosynthesis-nitrogen relations in Amazonian tree pecies. 2. Variation in nitrogen vis-a-vis specific leaf-area influences mass-based and area-based expressions. Oecologia, 97, 73-81.
DOI URL PMID |
[27] |
Reich PB, Walters MB, Tjoelker MG, Vanderklein DW, Buschena C (1998). Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Functional Ecology, 12, 395-405.
DOI URL |
[28] |
Sakai T, Tanaka H, Shibata M, Suzuki W, Nomiya H, Kanazashi T, Iida S, Nakashizuka T (1999). Riparian disturbance and community structure of a Quercus-Ulmus forest in central Japan. Plant Ecology, 140, 99-109.
DOI URL |
[29] |
Walters MB, Reich PB (1996). Are shade tolerance, survival, and growth linked? Low light and nitrogen effects on hardwood seedlings. Ecology, 77, 841-853.
DOI URL |
[30] | Wang Y (王雁), Su XH (苏雪痕), Peng ZH (彭镇华) (2002). Review of studies on plant shade-tolerance. Forest Research (林业科学研究), 15, 349-355. (in Chinese with English abstract) |
[31] | Xia JB (夏江宝), Zhang GC (张光灿), Liu JT (刘京涛), Liu Q (刘庆), Chen J (陈建) (2008). Responses of photosynthetic and physiological parameters in Campsis radicans to soil moisture and light intensities. Journal of Beijing Forestry University (北京林业大学学报), 30(5), 13-18. (in Chinese with English abstract) |
[32] | Xu DQ (许大全) (2002). The Efficiency of the Photosynthesis(光合作用效率). Shanghai Science and Technology Press, Shanghai, 13-114. (in Chinese) |
[33] |
Yoshida T, Kamitani T (1999). Growth of a shade-intolerant tree species,Phellodendron amurense, as a component of a mixed-species coppice forest of central Japan. Forest Ecology and Management, 113, 57-65.
DOI URL |
[34] |
Zhang WF (张旺锋), Fan DY (樊大勇), Xie ZQ (谢宗强), Jiang XH (蒋晓晖) (2005). The seasonal photosynthetic responses of seedlings of the endangered plant Cathaya argyrophylla to different growth light environments. Biodiversity Science (生物多样性), 13, 387-397. (in Chinese with English abstract)
DOI URL |
[35] | Zhao HX (赵惠勋), Chai YX (柴一新), Zhang DL (张东力) (1991). Photosynthesis determination on some tree species and the forest management suggestions. Journal of Northeast Forestry University (东北林业大学学报), 19, 284-289. (in Chinese with English abstract) |
[36] | Zhou XF (周晓峰), Li JQ (李俊清) (1991). A study on the secondary Amur Cork tree forest. Journal of Northeast Forestry University (东北林业大学学报), 19, 140-146. (in Chinese with English abstract) |
[37] |
Zhu JJ (朱教君) (2002). A review on fundamental studies of secondary forest management. Chinese Journal of Applied Ecology (应用生态学报), 13, 1689-1694. (in Chinese with English abstract)
URL PMID |
[38] |
Zhu JJ, Matsuzaki T, Lee FQ, Gonda Y (2003). Effect of gap size created by thinning on seeding emergency, survival and establishment in a coastal pine forest. Forest Ecology and Management, 182, 339-354.
DOI URL |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[4] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[5] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[6] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[7] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[8] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[9] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[10] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[11] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[12] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[13] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[14] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[15] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19