植物生态学报 ›› 2011, Vol. 35 ›› Issue (6): 641-652.DOI: 10.3724/SP.J.1258.2011.00641
所属专题: 青藏高原植物生态学:种群生态学
张璐璐1, 周晓松1, 李英年2, 袁芙蓉1, 樊瑞俭1, 朱志红1,*()
收稿日期:
2011-01-04
接受日期:
2011-04-11
出版日期:
2011-01-04
发布日期:
2011-06-30
通讯作者:
朱志红
作者简介:
* E-mail: zhuzhihong@snnu.edu.cn
ZHANG Lu-Lu1, ZHOU Xiao-Song1, LI Ying-Nian2, YUAN Fu-Rong1, FAN Rui-Jian1, ZHU Zhi-Hong1,*()
Received:
2011-01-04
Accepted:
2011-04-11
Online:
2011-01-04
Published:
2011-06-30
Contact:
ZHU Zhi-Hong
摘要:
通过对青海海北高寒矮嵩草(Kobresia humilis)草甸进行为期3年的野外控制试验, 研究了刈割(留茬1 cm、3 cm及不刈割)、施肥(2.5 g·m-2尿素+ 0.6 g·m-2磷酸二胺、不施肥)和浇水(20.1 kg·m-2、不浇水)处理对矮嵩草补偿生长(包括分株密度、株高和分株地上生物量)的影响, 及其比叶面积、叶片净光合速率和相对增长率的变化, 探讨矮嵩草补偿生长的机制。研究结果表明: 刈割后, 矮嵩草的补偿生长高度和比叶面积显著降低; 分株密度有增加的趋势, 但会随刈割强度的增加而下降; 株高和生物量的相对增长率随刈割强度的增加而呈上升趋势; 补偿地上生物量在重度刈割处理下最高。施肥能显著增加矮嵩草的补偿高度、分株密度、补偿地上生物量、株高相对增长率、生物量相对增长率、比叶面积和净光合速率; 与不浇水处理相比, 浇水处理对重度刈割处理下的分株地上生物量、密度相对增长率、比叶面积和净光合速率无影响, 而显著降低了中度刈割处理下的补偿高度和株高相对增长率, 提高了不刈割处理下的分株密度和重度刈割处理下的生物量相对增长率。刈割、施肥和浇水处理的交互作用也显示出刈割与施肥对矮嵩草补偿生长具有拮抗效应, 而刈割与浇水具有协同效应。上述结果说明, 矮嵩草在刈割后可通过增加分株密度和相对增长率等途径来提高补偿能力, 弥补在生长高度上出现的低补偿, 而施肥可显著抵消刈割的不利影响, 提高矮嵩草的补偿能力。
张璐璐, 周晓松, 李英年, 袁芙蓉, 樊瑞俭, 朱志红. 刈割、施肥和浇水对矮嵩草补偿生长的影响. 植物生态学报, 2011, 35(6): 641-652. DOI: 10.3724/SP.J.1258.2011.00641
ZHANG Lu-Lu, ZHOU Xiao-Song, LI Ying-Nian, YUAN Fu-Rong, FAN Rui-Jian, ZHU Zhi-Hong. Effects of clipping, fertilizing and watering on compensatory growth of Kobresia humilis. Chinese Journal of Plant Ecology, 2011, 35(6): 641-652. DOI: 10.3724/SP.J.1258.2011.00641
变异来源 Source of variance | 自由度 df (i, j) | GH | GD | RGRH | RGRD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F-test | p | F-test | p | F-test | p | F-test | p | ||||||
主区 Whole plot | Y C B Y × C | 2, 16 2, 16 2, 16 4, 16 | 96.611 129.002 7.809 2.974 | 0.000** 0.000** 0.004** 0.052 | 1.335 1.613 1.773 2.790 | 0.291 0.230 0.202 0.062 | 54.590 152.833 4.476 9.192 | 0.000** 0.000** 0.029* 0.000** | 24.607 0.489 1.048 11.602 | 0.000** 0.622 0.373 0.000** | |||
副区 Subplot | F W Y × F Y × W C × F C × W F × W Y × C × F Y × F × W Y × C × W C × F × W Y × C × F × W | 1, 54 1, 54 2, 54 2, 54 2, 54 2, 54 1, 54 4, 54 2, 54 4, 54 2, 54 4, 54 | 112.857 11.280 70.733 2.503 11.719 3.512 1.467 6.424 0.027 1.256 0.601 0.716 | 0.000** 0.001** 0.000** 0.091 0.000** 0.037* 0.231 0.000** 0.973 0.299 0.552 0.585 | 10.594 2.056 0.406 0.447 4.550 4.752 2.068 0.585 0.184 0.601 1.641 0.150 | 0.002** 0.157 0.668 0.642 0.015* 0.013* 0.156 0.675 0.833 0.664 0.203 0.962 | 109.522 3.098 53.104 0.316 17.097 1.786 4.249 8.301 0.697 1.626 4.779 0.375 | 0.000** 0.084 0.000** 0.730 0.000** 0.177 0.044* 0.000** 0.502 0.181 0.012* 0.825 | 0.273 2.305 0.522 0.490 0.854 0.251 0.001 2.521 2.340 0.925 0.268 0.410 | 0.603 0.135 0.596 0.615 0.432 0.779 0.982 0.052 0.106 0.457 0.766 0.800 | |||
总变异 Total variance | 107 |
表1 刈割、施肥和浇水在不同年份对矮嵩草补偿高度(GH)、补偿密度(GD)、株高相对增长率(RGRH)和密度相对增长率(RGRD)影响的方差分析
Table 1 ANOVA for the effects of clipping, fertilizing and watering on compensatory height (GH), compensatory density (GD), relative growth rate of height (RGRH) and relative growth rate of density (RGRD) of Kobresia humilis in different years
变异来源 Source of variance | 自由度 df (i, j) | GH | GD | RGRH | RGRD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F-test | p | F-test | p | F-test | p | F-test | p | ||||||
主区 Whole plot | Y C B Y × C | 2, 16 2, 16 2, 16 4, 16 | 96.611 129.002 7.809 2.974 | 0.000** 0.000** 0.004** 0.052 | 1.335 1.613 1.773 2.790 | 0.291 0.230 0.202 0.062 | 54.590 152.833 4.476 9.192 | 0.000** 0.000** 0.029* 0.000** | 24.607 0.489 1.048 11.602 | 0.000** 0.622 0.373 0.000** | |||
副区 Subplot | F W Y × F Y × W C × F C × W F × W Y × C × F Y × F × W Y × C × W C × F × W Y × C × F × W | 1, 54 1, 54 2, 54 2, 54 2, 54 2, 54 1, 54 4, 54 2, 54 4, 54 2, 54 4, 54 | 112.857 11.280 70.733 2.503 11.719 3.512 1.467 6.424 0.027 1.256 0.601 0.716 | 0.000** 0.001** 0.000** 0.091 0.000** 0.037* 0.231 0.000** 0.973 0.299 0.552 0.585 | 10.594 2.056 0.406 0.447 4.550 4.752 2.068 0.585 0.184 0.601 1.641 0.150 | 0.002** 0.157 0.668 0.642 0.015* 0.013* 0.156 0.675 0.833 0.664 0.203 0.962 | 109.522 3.098 53.104 0.316 17.097 1.786 4.249 8.301 0.697 1.626 4.779 0.375 | 0.000** 0.084 0.000** 0.730 0.000** 0.177 0.044* 0.000** 0.502 0.181 0.012* 0.825 | 0.273 2.305 0.522 0.490 0.854 0.251 0.001 2.521 2.340 0.925 0.268 0.410 | 0.603 0.135 0.596 0.615 0.432 0.779 0.982 0.052 0.106 0.457 0.766 0.800 | |||
总变异 Total variance | 107 |
图1 不同年份刈割、施肥和浇水处理对矮嵩草补偿高度、补偿密度和补偿地上生物量的影响(平均值±标准误差)。F, 施肥; H1, 重度刈割; H3, 中度刈割; NF, 不施肥; NH, 不刈割; NW, 不浇水; W, 浇水。相同字母及ns分别表示处理间或其互作效应无显著差异; 不同字母及*分别表示处理间或其互作效应差异显著(p < 0.05)。
Fig. 1 Effects of clipping, fertilizing and watering on compensatory height, compensatory density and compensatory aboveground biomass of Kobresia humilis in different years (mean ± SE). F, fertilized; H1, stubbled 1 cm; H3, stubbled 3 cm; NF, unfertilized; NH, unclipped; NW, unwatered; W, watered. The same letters and “ns” indicate no significant difference between treatments or their interaction, respectively; and different letters and “*” indicate significant differences between treatments or their interaction, respectively (p < 0.05).
变异来源 Source of variance | 自由度 df (i, j) | SLA | Pn | GB | RGRB | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F-test | p | F-test | p | F-test | p | F-test | p | ||||||
主区 Whole plot | C B | 2, 4 2, 4 | 149.715 2.304 | 0.000** 0.216 | 4.232 1.874 | 0.103 0.267 | 2.327 2.308 | 0.214 0.216 | 23.222 0.857 | 0.006** 0.490 | |||
副区 Subplot | F W C × F C × W F × W C × F × W | 1, 18 1, 18 2, 18 2, 18 1, 18 2, 18 | 11.644 0.709 0.834 0.292 0.177 0.499 | 0.003** 0.411 0.450 0.750 0.679 0.616 | 20.358 0.583 0.358 0.436 1.418 0.643 | 0.000** 0.455 0.704 0.653 0.249 0.537 | 20.546 0.827 0.781 1.570 0.009 3.450 | 0.000** 0.375 0.473 0.235 0.924 0.054 | 31.969 0.734 3.101 2.697 1.747 7.958 | 0.000** 0.403 0.070 0.095 0.203 0.003** | |||
总变异 Total variance | 35 |
表2 刈割、施肥和浇水对矮嵩草补偿地上生物量(GB)、生物量相对增长率(RGRB)、比叶面积(SLA)和净光合速率(Pn)影响的方差分析
Table 2 ANOVA for the effects of clipping, fertilizing and watering on compensatory aboveground biomass (GB), relative growth rate of biomass (RGRB), specific leaf area (SLA) and net photosynthetic rate (Pn) of Kobresia humilis
变异来源 Source of variance | 自由度 df (i, j) | SLA | Pn | GB | RGRB | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F-test | p | F-test | p | F-test | p | F-test | p | ||||||
主区 Whole plot | C B | 2, 4 2, 4 | 149.715 2.304 | 0.000** 0.216 | 4.232 1.874 | 0.103 0.267 | 2.327 2.308 | 0.214 0.216 | 23.222 0.857 | 0.006** 0.490 | |||
副区 Subplot | F W C × F C × W F × W C × F × W | 1, 18 1, 18 2, 18 2, 18 1, 18 2, 18 | 11.644 0.709 0.834 0.292 0.177 0.499 | 0.003** 0.411 0.450 0.750 0.679 0.616 | 20.358 0.583 0.358 0.436 1.418 0.643 | 0.000** 0.455 0.704 0.653 0.249 0.537 | 20.546 0.827 0.781 1.570 0.009 3.450 | 0.000** 0.375 0.473 0.235 0.924 0.054 | 31.969 0.734 3.101 2.697 1.747 7.958 | 0.000** 0.403 0.070 0.095 0.203 0.003** | |||
总变异 Total variance | 35 |
补偿指数G/C Compensation index G/C | 刈割处理 Clipping treatment | 交互作用 Interactive effect | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NH | H3 | H1 | H3×NF× NW | H3×F× NW | H3×NF× W | H3×F× W | H1×NF× NW | H1×F× NW | H1×NF× W | H1×F× W | ||
GH/C GD/C GB/C | 1 1 1 | 0.613 1.309 0.624 | 0.492 0.824 1.119 | 0.717 1.566 0.657 | 0.576 2.203 0.633 | 0.594 1.053 0.733 | 0.595 1.035 0.523 | 0.519 1.281 1.414 | 0.429 1.138 0.671 | 0.526 0.705 1.217 | 0.523 0.557 1.532 |
表3 不同处理下矮嵩草分株高度、密度及地上生物量的补偿指数
Table 3 Compensation index of height, density and aboveground biomass of Kobresia humilis ramet under different treatments
补偿指数G/C Compensation index G/C | 刈割处理 Clipping treatment | 交互作用 Interactive effect | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NH | H3 | H1 | H3×NF× NW | H3×F× NW | H3×NF× W | H3×F× W | H1×NF× NW | H1×F× NW | H1×NF× W | H1×F× W | ||
GH/C GD/C GB/C | 1 1 1 | 0.613 1.309 0.624 | 0.492 0.824 1.119 | 0.717 1.566 0.657 | 0.576 2.203 0.633 | 0.594 1.053 0.733 | 0.595 1.035 0.523 | 0.519 1.281 1.414 | 0.429 1.138 0.671 | 0.526 0.705 1.217 | 0.523 0.557 1.532 |
图2 不同年份刈割、施肥和浇水处理对矮嵩草相对增长率的影响(平均值±标准误差)。F, 施肥; H1, 重度刈割; H3, 中度刈割; NF, 不施肥; NH, 不刈割; NW, 不浇水; W, 浇水。相同字母及ns分别表示处理间或其互作效应无显著差异, 不同字母及*分别表示处理间或其互作效应差异显著(p < 0.05)。
Fig. 2 Effects of clipping, fertilizing and watering on relative growth rate of Kobresia humilis in different years (mean ± SE). F, fertilized; H1, stubbled 1 cm; H3, stubbled 3 cm; NF, unfertilized; NH, unclipped; NW, unwatered; W, watered. The same letters and “ns” indicate no significant difference between treatments and their interaction, respectively; and different letters and “*” indicate significant differences between treatments and their interaction, respectively (p < 0.05).
图3 刈割和施肥处理对矮嵩草比叶面积和净光合速率的影响(平均值±标准误差)。F, 施肥; H1, 重度刈割; H3, 中度刈割; NF, 不施肥; NH, 不刈割。相同字母及ns分别表示处理间或其互作效应无显著差异; 不同字母及*分别表示处理间或其互作效应差异显著(p < 0.05)。
Fig. 3 Effects of clipping and fertilizing on specific leaf area and net photosynthetic rate of Kobresia humilis (mean ± SE). F, fertilized; H1, stubbled 1 cm; H3, stubbled 3 cm; NF, unfertilized; NH, unclipped. The same letters and “ns” indicate no significant difference between treatments or their interaction respectively; and different letters and “*” indicate significant differences between treatments or their interaction, respectively (p < 0.05).
[1] |
Archer S, Detling JK (1986). Evaluation of potential herbivore mediation of plant water status in a North American mixedgrass prairie. Oikos, 47, 287-291.
DOI URL |
[2] |
Belsky AJ (1986). Does herbivory benefit plants? A review of the evidence. The American Naturalist, 127, 870-892.
DOI URL |
[3] |
Belsky AJ, Carson WP, Jensen CL, Fox GA (1993). Overcompensation by plants: herbivore optimization or red herring? Evolutionary Ecology, 7, 109-121.
DOI URL |
[4] |
Coughenour MB, Detling JK, Bamberg IE, Mugambi MM (1990). Production and nitrogen responses of the African dwarf shrub Indigofera spinosa to defoliation and water limitation. Oecologia, 83, 546-552.
DOI URL PMID |
[5] | Dai HJ (代红军), Xie YZ (谢应忠), Hu YL (胡艳莉) (2009). Effects of different mowing intensities on growth and net photosynthesis and soluble sugar content of Medicago sativa Linn. Plant Physiology Communications (植物生理学通讯), 45, 1061-1064. (in Chinese with English abstract) |
[6] | Du ZC (杜占池), Yang ZG (杨宗贵) (1989). The effect of cutting on the photosynthetic characteristics of Aneurolepidium chinense. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 13, 317-324. (in Chinese with English abstract) |
[7] |
Dyer MI, Turner CL, Seastedt TR (1993). Herbivory and its consequences. Ecological Applications, 3, 10-16.
DOI URL PMID |
[8] | Fan QC (范青慈) (2002). Quality analysis of several dominant grasses of Cyperaceae plants in Qinghai. Journal of Sichuan Grassland (四川草原), (4), 37-39. (in Chinese) |
[9] | Gao XZ (高新中), Li XL (李希来), Ma GH (马桂花), Ma GX (马桂祥) (2008). A primary study on propagation strategy of Kobresia pygmaea and Kobresia humilis under different degenerative gradation in alpine meadow. Prataculture & Animal Husbandry (草业与畜牧), 146(1), 7-11. (in Chinese with English abstract) |
[10] |
Gao Y, Wang DL, Ba L, Bai YG, Liu B (2008). Interactions between herbivory and resource availability on grazing tolerance of Leymus chinensis. Environmental and Experimental Botany, 63, 113-122.
DOI URL |
[11] | Gu MH (顾梦鹤), Du XG (杜小光), Wen SJ (文淑均), Ma T (马涛), Chen M (陈敏), Ren QJ (任青吉), Du GZ (杜国祯) (2008). Effect of fertilization and clipping intensities on interspecific competition between Elymus nutans, Festuca sinensis and Festuca ovina. Acta Ecologica Sinica (生态学报), 28, 2472-2479. (in Chinese with English abstract) |
[12] |
Hilbert DW, Swift DM, Detling JK, Dyer MI (1981). Relative growth rates and the grazing optimization hypothesis. Oecologia, 51, 14-18.
DOI URL PMID |
[13] |
Huhta AP, Hellströom K, Rautio P, Tuomi J (2003). Grazing tolerance of Gentianella amarella and other monocarpic herbs: Why is tolerance highest at low damage levels? Plant Ecology, 166, 49-61.
DOI URL |
[14] |
Keddy PA, Twolan-Sstrutt L, Shipley B (1997). Experimental evidence that interspecific competitive asymmetry increases with soil production. Oikos, 80, 253-256.
DOI URL |
[15] | Lavorel S, Díaz S, Cornelissen JHC, Garnier E, Harrison SP, McIntyre S, Pausas JG, Pérez-Harguindeguy NP, Roumet C, Urcelay C (2007). Plant functional types: Are we getting any closer to the Holy Grail?. In: Canadell JG, Pataki D, Pitelka L eds. Terrestrial Ecosystems in a Changing World. The IGBP Series. Springer-Verlag, Berlin. 149-164. |
[16] | Li YK (李以康), Ran F (冉飞), Bao SK (包苏科), Han F (韩发), Zhou HK (周华坤), Lin L (林丽), Zhang FW (张法伟) (2010). Physiological response of Kobresia humilis to nitrogenous fertilizer in an alpine meadow. Acta Prataculturae Sinica (草业学报), 19, 240-244. (in Chinese with English abstract) |
[17] | Li YL (李玉霖), Cui JY (崔建垣), Su YZ (苏永中) (2005). Specific leaf area and leaf dry matter content of some plants in different dune habitats. Acta Ecologica Sinica (生态学报), 25, 304-311. (in Chinese with English abstract) |
[18] | Li YN (李英年), Zhao XQ (赵新全), Cao GM (曹广民), Zhao L (赵亮), Wang QX (王勤学) (2004). Analyses on climates and vegetation productivity background at Haibei Alpine Meadow Ecosystem Research Station. Plateau Meteorology (高原气象), 23, 558-567. (in Chinese with English abstract) |
[19] | Liu JJ (刘建军), Tadaaki U, Ju ZM (鞠子茂), Shigeru M (2005). Influence of grazing pressures on belowground productivity and biomass in Mongolia Steppe. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 25, 88-93. (in Chinese with English abstract) |
[20] | Liu JX (刘建秀), Zhu ZH (朱志红), Zheng W (郑伟) (2005). Reponses of two plant species to grazing practice in alpine and cold meadow under grazing and grazing-suspension. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 25, 2043-2047. (in Chinese with English abstract) |
[21] | Ma HB (马红彬), Xie YZ (谢应忠) (2008). Plant compensatory growth under different grazing intensities in desert steppe. Scientia Agricultura Sinica (中国农业科学), 41, 3645-3650. (in Chinese with English abstract) |
[22] | Ma HB (马红彬), Yu ZJ (余治家) (2006). Review on the research of plant compensation effect for grazing grassland. Journal of Agricultural Sciences (农业科学研究), 27(1), 63-67. (in Chinese with English abstract) |
[23] |
Maschinski J, Whitham TG (1989). The continuum of plant responses to herbivory: the influence of plant association, nutrient availability and timing. The American Naturalist, 134, 1-19.
DOI URL |
[24] |
McIntyre S, Lavorel S, Landsberg J, Forbes TDA (1999). Disturbance response in vegetation-towards a global perspective on functional traits. Journal of Vegetation Science, 10, 621-630.
DOI URL |
[25] |
McNaughton SJ (1979). Grazing as an optimization process: grass-ungulate relationship in the Serengeti. The American Naturalist, 113, 691-703.
DOI URL |
[26] | McNaughton SJ, BanNyikwa FF, McNaughtonm MM (1998). Root biomass and productivity in a grazing ecosystem: the Serengeti. Ecology, 798, 587-592. |
[27] |
Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998). Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf lifespan: a test across biomes and functional groups. Oecologia, 114, 471-482.
DOI URL PMID |
[28] | Shen ZX (沈振西), Zhou XM (周兴民), Chen ZZ (陈佐忠), Zhou HK (周华坤) (2002). Influence of grazing pressures on belowground productivity and biomass in Mongolia Steppe. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 26, 288-294. (in Chinese with English abstract) |
[29] |
Smith SE (1998). Variation in response to defoliation between populations of Bouteloua curtipendula var. caespitosa (Poaceae) with different livestock grazing histories. American Journal of Botany, 85, 1266-1272.
URL PMID |
[30] | Tian GP (田冠平), Zhu ZH (朱志红), Li YN (李英年) (2010). Effects of clipping, fertilizing, and watering on compensatory growth of Elymus nutans. Chinese Journal of Ecology (生态学杂志), 29, 869-875. (in Chinese with English abstract) |
[31] |
Trlica MJ, Rittenhouse LR (1993). Grazing and plant performance. Ecological Applications, 3, 21-23.
DOI URL PMID |
[32] | Wang SP (汪诗平), Wang YF (王艳芬) (2001). Study on over-compensation growth of Cleistogenes squarrosa population in Inner Mongolia Steppe. Acta Botanica Sinica (植物学报), 43, 413-418. (in Chinese with English abstract) |
[33] | Wang WJ (王文娟), Zang YM (臧岳铭), Li YN (李英年), Xi B (席博), Guo H (郭华), Zhu ZH (朱志红) (2009). Effects of grazing disturbance pattern and nutrient availability on biomass allocation and compensatory growth in Kobresia humilis. Acta Ecologica Sinica (生态学报), 29, 2186-2194. (in Chinese with English abstract) |
[34] |
Wise MJ, Abrahamson WG (2005). Beyond the compensatory continuum: environmental resource levels and plant tolerance of herbivory. Oikos, 109, 417-428.
DOI URL |
[35] |
Wise MJ, Abrahamson WG (2007). Effects of resource availability on tolerance of herbivory: a review and assessment of three opposing models. The American Naturalist, 169, 443-454.
DOI URL PMID |
[36] |
Wise MJ, Cummins JJ, de Young C (2008). Compensation for floral herbivory in Solanum carolinense: identifying mechanisms of tolerance. Evolutionary Ecology, 22, 19-37.
DOI URL |
[37] | Xi B (席博), Zhu ZH (朱志红), Li YN (李英年), Wang WJ (王文娟), Zang YM (臧岳铭) (2010). Effect of grazing disturbance and nutrient availability on the compensatory responses of community in alpine meadows. Journal of Lanzhou University (Natural Science Edition) (兰州大学学报(自然科学版)), 46, 76-84. (in Chinese with English abstract) |
[38] | Xia JX (夏景新) (1993). Tissue turnover in the grazing sward and grazing management. Acta Prataculturae Sinica (草业学报), 2(2), 35-41. (in Chinese with English abstract) |
[39] | Zhang R (张荣), Du GZ (杜国祯) (1998). Redundance and compensation of grazed grassland communities. Acta Prataculturae Sinica (草业学报), 7(4), 13-19. (in Chinese with English abstract) |
[40] | Zhao W (赵威) (2006). Physio-ecological Responses of Leymus chinensis to Overgrazing and Clipping (羊草对过度放牧和刈割的生理生态响应). PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. 59-78. (in Chinese with English abstract) |
[41] |
Zhao W, Chen SP, Lin GH (2007). Compensatory growth responses to clipping defoliation in Leymus chinensis (Poaceae) under nutrient addition and water deficiency conditions. Plant Ecology, 196, 85-99.
DOI URL |
[42] | Zhao W (赵威), Wang ZH (王征宏) (2008). Compensatory growth of plant. Bulletin of Biology (生物学通报), 43(3), 12-13. (in Chinese) |
[43] | Zhao XQ, Zhou XM (1999). Ecological basis of alpine meadow ecosystem management in Tibet: Haibei Alpine Meadow Ecosystem Research Station. AMBIO, 28, 642-647. |
[44] | Zhou XM (周兴民), Wang QJ (王启基), Zhang YQ (张堰青), Zhao XQ (赵新全), Lin YP (林亚平) (1987). Quantitative analysis of succession law of the alpine meadow under the different grazing intensities. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 11, 276-285. (in Chinese with English abstract) |
[45] | Zhu ZH (朱志红), Li XL (李希来), Qiao YM (乔有明), Liu W (刘伟), Wang G (王刚) (2004). Study on the risk spreading strategies of clonal plant Kobresia humilis under grazing selective pressures. Acta Prataculturae Sinica (草业学报), 21(12), 62-68. (in Chinese with English abstract) |
[46] | Zhu ZH (朱志红), Sun SQ (孙尚奇) (1996). Changes of total nonstructural carbohydrates of Kobresia humilis in alpine meadow. Acta Botanica Sinica (植物学报), 38, 895-901. (in Chinese with English abstract) |
[47] | Zhu ZH (朱志红), Wang G (王刚), Wang XA (王孝安) (2006). Hierarchical responses to grazing defoliation in a clonal plant Kobresia humilis. Acta Ecologica Sinica (生态学报), 26, 281-290. (in Chinese with English abstract) |
[48] | Zhu ZH (朱志红), Wang G (王刚), Zhao SL (赵松岭) (1994). Dynamics and regulation of clonal ramet population in Komresia humilis under different stocking intensities. Acta Ecologica Sinica (生态学报), 14, 40-45. (in Chinese with English abstract) |
[49] | Zhu ZH (朱志红), Xi B (席博), Li YN (李英年), Zang YM (臧岳铭), Wang WJ (王文娟), Liu JX (刘建秀), Guo H (郭华) (2010). Compensatory growth of Carex scabrirostris in different habitats in alpine meadow. Chinese Journal of Plant Ecology (植物生态学报), 34, 348-358. (in Chinese with English abstract) |
[1] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[2] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[3] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[4] | 裴广廷, 孙建飞, 贺同鑫, 胡宝清. 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2021, 45(1): 74-84. |
[5] | 胡姝娅,刁华杰,王惠玲,薄元超,申颜,孙伟,董宽虎,黄建辉,王常慧. 北方农牧交错带温性盐碱化草地土壤呼吸对不同形态氮添加和刈割的响应[J]. 植物生态学报, 2020, 44(1): 70-79. |
[6] | 杨清培, 欧阳明, 杨光耀, 宋庆妮, 郭春兰, 方向民, 陈昕, 黄兰, 陈伏生. 竹子生态化学计量学研究: 从生物学基础到竹林培育学应用[J]. 植物生态学报, 2016, 40(3): 264-278. |
[7] | 孔彬彬, 卫欣华, 杜家丽, 李英年, 朱志红. 刈割和施肥对高寒草甸物种多样性和功能多样性时间动态及其关系的影响[J]. 植物生态学报, 2016, 40(3): 187-199. |
[8] | 潘石玉, 孔彬彬, 姚天华, 卫欣华, 李英年, 朱志红. 刈割和施肥对高寒草甸功能多样性与地上净初级生产力关系的影响[J]. 植物生态学报, 2015, 39(9): 867-877. |
[9] | 高本强,袁自强,王斌先,高慧,张荣. 施肥和刈割对亚高山草甸物种多样性与生产力及其关系的影响[J]. 植物生态学报, 2014, 38(5): 417-424. |
[10] | 朱强根, 金爱武, 王意锟, 邱永华, 李雪涛, 张四海. 不同营林模式下毛竹枝叶的生物量分配: 异速生长分析[J]. 植物生态学报, 2013, 37(9): 811-819. |
[11] | 李燕,朱志红. 高寒草甸对刈割、施肥和浇水发生响应的最优植物性状集和功能型[J]. 植物生态学报, 2013, 37(5): 384-396. |
[12] | 王海东, 张璐璐, 朱志红. 刈割、施肥对高寒草甸物种多样性与生态系统功能关系的影响及群落稳定性机制[J]. 植物生态学报, 2013, 37(4): 279-295. |
[13] | 刘洋,张健,陈亚梅,陈磊,刘强. 氮磷添加对巨桉幼苗生物量分配和C:N:P化学计量特征的影响[J]. 植物生态学报, 2013, 37(10): 933-941. |
[14] | 朱志红, 席博, 李英年, 臧岳铭, 王文娟, 刘建秀, 郭华. 高寒草甸不同生境粗喙薹草补偿生长研究[J]. 植物生态学报, 2010, 34(3): 348-358. |
[15] | 李娟, 赵秉强, 李秀英, 姜瑞波, SO Hwat Bing. 长期不同施肥制度下几种土壤微生物学特征变化[J]. 植物生态学报, 2008, 32(4): 891-899. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19