植物生态学报 ›› 2011, Vol. 35 ›› Issue (6): 653-662.DOI: 10.3724/SP.J.1258.2011.00653
收稿日期:
2011-01-14
接受日期:
2011-03-18
出版日期:
2011-01-14
发布日期:
2011-06-30
通讯作者:
梁宗锁
作者简介:
* E-mail: liangzs@ms.iswc.ac.cn
SHAN Chang-Juan1,2, HAN Rui-Lian1, LIANG Zong-Suo1,*()
Received:
2011-01-14
Accepted:
2011-03-18
Online:
2011-01-14
Published:
2011-06-30
Contact:
LIANG Zong-Suo
摘要:
通过盆栽实验, 对干旱胁迫下黄土高原地区冰草(Agropyron cristatum)叶片的抗坏血酸和谷胱甘肽合成及循环代谢相关酶及物质含量进行了研究。结果表明: 冰草可以通过增强叶片的抗坏血酸和谷胱甘肽合成及循环代谢酶: 抗坏血酸过氧化物酶、谷胱甘肽还原酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、L-半乳糖酸-1, 4-内酯脱氢酶和γ-谷氨酰半胱氨酸合成酶活性, 维持植物体内抗坏血酸和谷胱甘肽水平及氧化还原状态, 从而抵御干旱造成的氧化胁迫。但叶片抗坏血酸和谷胱甘肽合成及循环代谢对不同水平干旱胁迫的响应, 随胁迫时间的延长而不同。在胁迫24天以前, 严重干旱下叶片的抗坏血酸和谷胱甘肽合成及循环代谢增强较显著; 在胁迫24天后, 由于该胁迫下植物所遭受的氧化胁迫较为严重, 叶片中上述6种酶的活性均呈降低趋势。而在中度干旱下叶片抗坏血酸和谷胱甘肽合成及循环代谢相关的6种酶在整个胁迫过程中均保持较高的活性。这说明, 冰草能够长时间有效地抵御中度干旱所造成的氧化胁迫, 但只能在一定时间范围内有效地抵御严重干旱所造成的氧化胁迫, 胁迫时间延长则会降低其抵御严重干旱的能力。
单长卷, 韩蕊莲, 梁宗锁. 黄土高原冰草叶片抗坏血酸和谷胱甘肽合成及循环代谢对干旱胁迫的生理响应. 植物生态学报, 2011, 35(6): 653-662. DOI: 10.3724/SP.J.1258.2011.00653
SHAN Chang-Juan, HAN Rui-Lian, LIANG Zong-Suo. Responses to drought stress of the biosynthetic and recycling metabolism of glutathione and ascorbate in Agropyron cristatum leaves on the Loess Plateau of China. Chinese Journal of Plant Ecology, 2011, 35(6): 653-662. DOI: 10.3724/SP.J.1258.2011.00653
图1 干旱胁迫对冰草叶片抗坏血酸和谷胱甘肽循环代谢酶抗坏血酸过氧化物酶(APX) (A)、谷胱甘肽还原酶(GR) (B)、脱氢抗坏血酸还原酶(DHAR) (C)和单脱氢抗坏血酸还原酶(MDHAR) (D)活性的影响(平均值±标准误差)。N、M、S分别表示正常水分处理、中度干旱处理和严重干旱处理。小写字母表示各处理间差异显著(p = 0.05)。
Fig. 1 Effects of drought stress on the activities of ascorbate peroxidase (APX) (A), glutathione reductase (GR) (B), dehydroascorbate reductase (DHAR) (C) and monodehydroascorbate reductase (MDHAR) (D) in the leaves of Agropyron cristatum (mean ± SE). N, M, S stand for normal water treatment, moderate drought treatment and serious drought treatment, respectively. Small letters stand for the significant difference at p = 0.05 level.
图2 干旱胁迫对冰草叶片抗坏血酸和谷胱甘肽合成酶L-半乳糖酸-1, 4-内酯脱氢酶(GalLDH)(A)和γ-谷氨酰半胱氨酸合成酶(γ-ECS)(B)活性的影响(平均值±标准误差)。N、M、S分别表示正常水分处理、中度干旱处理和严重干旱处理。小写字母表示各处理间差异显著(p = 0.05)。
Fig. 2 Effects of drought stress on the activities of galactonolactone dehydrogenase (GalLDH) (A) and gamma glutamyl cysteine synthetase (γ-ECS) (B) in the leaves of Agropyron cristatum (mean ± SE). N, M, S stand for normal water treatment, moderate drought treatment and serious drought treatment, respectively. Small letters stand for the significant difference at p = 0.05 level.
图3 干旱胁迫对冰草叶片还原型抗坏血酸(AsA) (A)、总抗坏血酸(B)、还原型谷胱甘肽(GSH) (C)和总谷胱甘肽(D)含量的影响(平均值±标准误差)。N、M、S分别表示正常水分处理、中度干旱处理和严重干旱处理。小写字母表示各处理间差异显著(p = 0.05)。
Fig. 3 Effects of drought stress on the contents of reduced ascorbate (AsA) (A), total ascorbate (B), reduced glutathione (GSH) (C) and total glutathione (D) in the leaves of Agropyron cristatum (mean ± SE). N, M, S stand for normal water treatment, moderate drought treatment and serious drought treatment, respectively. Small letters stand for the significant difference at p = 0.05 level.
图4 干旱胁迫对冰草叶片还原型抗坏血酸/脱氢抗坏血酸(AsA/DHA) (A)和还原型谷胱甘肽/氧化型谷胱苷肽(GSH/GSSG) (B)的影响(平均值±标准误差)。N、M、S分别表示正常水分处理、中度干旱处理和严重干旱处理。小写字母表示各处理间差异显著(p = 0.05)。
Fig. 4 Effects of drought stress on reduced ascorbate/dehydroascorbate acid (AsA/DHA) (A) and reduced glutathione/oxidized glutathione (GSH/GSSG) (B) in the leaves of Agropyron cristatum (mean ± SE). N, M, S stand for normal water treatment, moderate drought treatment and serious drought treatment, respectively. Small letters stand for the significant difference at p = 0.05 level.
图5 干旱胁迫对冰草叶片H2O2 (A)和丙二醛(MDA) (B)含量的影响(平均值±标准误差)。N、M、S分别表示正常水分处理、中度干旱处理和严重干旱处理。小写字母表示各处理间差异显著(p = 0.05)。
Fig. 5 Effects of drought stress on the contents of H2O2 (A) and malondialdehyde (MDA) (B) in the leaves of Agropyron cristatum (mean ± SE). N, M, S stand for normal water treatment, moderate drought treatment and serious drought treatment, respectively. Small letters stand for the significant difference at p = 0.05 level.
测定指标 Parameters | N | M | M + A | M + BSO | S | S + A | S + BSO |
---|---|---|---|---|---|---|---|
H2O2 (μmol·g-1 DW) | 9.5 ± 0.88e | 20.5 ± 1.59d | 27.0 ± 1.99c | 29.3 ± 2.17c | 39.2 ± 3.06b | 47.7 ± 4.29a | 52.0 ± 4.75a |
MDA (nmol·g-1 DW) | 35.0 ± 2.65e | 64.5 ± 5.41d | 73.0 ± 6.13c | 77.1 ± 6.43c | 106.0 ± 8.55b | 120.0 ± 9.36a | 128.0 ± 9.02a |
表1 干旱胁迫下抗坏血酸和谷胱甘肽合成抑制剂对冰草叶片H2O2和MDA含量的影响(平均值±标准误差)
Table 1 Effects of biosynthetic inhibitors for ascorbate and glutathione on the contents of H2O2 and MDA in leaves of Agropyron cristatum of under drought stress (mean ± SE)
测定指标 Parameters | N | M | M + A | M + BSO | S | S + A | S + BSO |
---|---|---|---|---|---|---|---|
H2O2 (μmol·g-1 DW) | 9.5 ± 0.88e | 20.5 ± 1.59d | 27.0 ± 1.99c | 29.3 ± 2.17c | 39.2 ± 3.06b | 47.7 ± 4.29a | 52.0 ± 4.75a |
MDA (nmol·g-1 DW) | 35.0 ± 2.65e | 64.5 ± 5.41d | 73.0 ± 6.13c | 77.1 ± 6.43c | 106.0 ± 8.55b | 120.0 ± 9.36a | 128.0 ± 9.02a |
图6 干旱胁迫对冰草株高(A)和单株总生物量(B)的影响(平均值±标准误差)。N、M、S分别表示正常水分处理、中度干旱处理和严重干旱处理。小写字母表示各处理间差异显著(p = 0.05)。
Fig. 6 Effects of drought stress on the plant height (A) and total biomass (B) per plant of Agropyron cristatum (mean ± SE). N, M, S stand for normal water treatment, moderate drought treatment and serious drought treatment, respectively. Small letters stand for the significant difference at p = 0.05 level.
[1] | Bartoli CG, Guiamet JJ, Kiddle G, Pastori GM, Di Cagno R, Theodoulou FL, Foyer CH (2005). Ascorbate content of wheat leaves is not determined by maximal L-galactono-1, 4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant, Cell & Environment, 28, 1073-1081. |
[2] |
Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
DOI URL PMID |
[3] | Chen KM (陈坤明) (2003). Antioxidant Defense Systems and Redox Balance of Plants Responding to Environmental Stresses (植物逆境抗氧化系统和逆境氧化还原平衡). PhD dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract) |
[4] |
Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ (1986). Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proceedings of the National Academy of Sciences of the United States of America, 83, 3811-3815.
DOI URL PMID |
[5] | Gao HJ (高海娟), Yun JF (云锦凤), Liu DF (刘德福) (2007). Study on seed germination of three wheatgrass species in desert steppe. Pratacultural Science (草业科学), 24(5), 64-68. (in Chinese with English abstract) |
[6] |
Grace SC, Logan BA (1996). Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiology, 112, 1631-1640.
DOI URL PMID |
[7] |
Griffith OW (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 106, 207-212.
URL PMID |
[8] |
Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1996). Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiologia Plantarum, 98, 685-692.
DOI URL |
[9] |
Hodges DM, DeLong JM, Forney CF, Prange RK (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604-611.
DOI URL |
[10] |
Jiang MY, Zhang JH (2002). Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 53, 2401-2410.
URL PMID |
[11] | Li JX (李景欣), Yun JF (云锦凤), Su BD (苏布道), Wuren TY (乌仁图雅), Yiru GLT (义如格乐图) (2004). Study on the drought resistance comparision of 6 populations of Agropyron cristatum in the germination period and seedling stage. Journal of Arid Land Resources and Environment (干旱区资源与环境), 18(5), 163-167. (in Chinese with English abstract) |
[12] | Luo XY (罗新义), Tan DH (谭大海), Sha W (沙伟) (2005). Effect of osmotic stress on activities of protective enzymes system in Agropyron cristatum. Journal of Qiqihar University (Natural Science Edition) (齐齐哈尔大学学报(自然科学版)), 21(4), 94-96. (in Chinese with English abstract) |
[13] | Ma YH (马玉华), Ma FW (马锋旺), Ma XW (马小卫), Li MJ (李明军), Wang YH (王永红), Han MY (韩明玉), Shu HR (束怀瑞) (2008). Effects of drought stress on ascorbic acid contents and activities of related metabolic enzymes in apple leaves. Journal of Northwest A & F University (Natural Science Edition) (西北农林科技大学学报(自然科学版)), 36(3), 150-154. (in Chinese with English abstract) |
[14] | Miyake C, Asada K (1992). Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant & Cell Physiology, 33, 541-553. |
[15] | Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22, 867-880. |
[16] |
Pinheiro HA, DaMatta FM, Chaves ARM, Fontes EPB, Loureiro ME (2004). Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Science, 167, 1307-1314.
DOI URL |
[17] |
Rüegsegger A, Brunold C (1992). Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. Plant Physiology, 99, 428-433.
DOI URL PMID |
[18] |
Selote DS, Khanna-Chopra R (2006). Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiologia Plantarum, 127, 494-500.
DOI URL |
[19] |
Shao HB, Chu LY, Shao MA, Jaleel CA, Mi HM (2008). Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biologies, 331, 433-441.
URL PMID |
[20] |
Sharma SS, Dietz KJ (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57, 711-726.
DOI URL PMID |
[21] |
Šircelj H, Tausz M, Grill D, Batič F (2005). Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. Journal of Plant Physiology, 162, 1308-1318.
DOI URL PMID |
[22] |
Tabata K, Ôba K, Suzuki K, Esaka M (2001). Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA of L-galactono-1, 4-lactone dehydrogenase. The Plant Journal, 27, 139-148.
DOI URL PMID |
[23] | Tang L (唐龙) (2005). Studies on Water Physiological Ecology Characteristics of 4 Native Herbs Communities in Loess Hill Region (陕北黄土丘陵区四种乡土草种水分生理生态特征研究). Master dissertation, Northwest A & F University, Yangling, Shaanxi. (in Chinese with English abstract) |
[1] | 贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍. 2001-2020年黄土高原光合植被时空变化及其驱动机制[J]. 植物生态学报, 2023, 47(3): 306-318. |
[2] | 张雪, 韩凤朋, 肖波, 沈思铭. 黄土高原生物结皮对地表粗糙度和灌草植物种子二次扩散的影响[J]. 植物生态学报, 2023, 47(12): 1668-1683. |
[3] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[4] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[5] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[6] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[7] | 乔鲜果, 郭柯, 赵利清, 王孜, 刘长成. 中国长芒草群系的群落特征[J]. 植物生态学报, 2020, 44(9): 986-994. |
[8] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[9] | 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773. |
[10] | 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应[J]. 植物生态学报, 2018, 42(2): 240-251. |
[11] | 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9): 1020-1032. |
[12] | 岑宇, 刘美珍. 凝结水对干旱胁迫下羊草和冰草生理生态特征及叶片形态的影响[J]. 植物生态学报, 2017, 41(11): 1199-1207. |
[13] | 郭瑞, 周际, 杨帆, 李峰, 李昊如, 夏旭, 刘琪. 拔节孕穗期小麦干旱胁迫下生长代谢变化规律[J]. 植物生态学报, 2016, 40(12): 1319-1327. |
[14] | 李单凤, 于顺利, 王国勋, 方伟伟. 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制[J]. 植物生态学报, 2015, 39(5): 453-465. |
[15] | 安东升, 曹娟, 黄小华, 周娟, 窦美安. 基于Lake模型的叶绿素荧光参数在甘蔗苗期抗旱性研究中的应用[J]. 植物生态学报, 2015, 39(4): 398-406. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19