植物生态学报 ›› 2013, Vol. 37 ›› Issue (4): 279-295.DOI: 10.3724/SP.J.1258.2013.00028
所属专题: 生态系统结构与功能; 青藏高原植物生态学:生态系统生态学; 生物多样性
• 研究论文 • 下一篇
收稿日期:
2012-11-20
接受日期:
2013-02-25
出版日期:
2013-11-20
发布日期:
2013-04-09
通讯作者:
朱志红
作者简介:
*(E-mail:zhuzhihong@snnu.edu.cn)基金资助:
WANG Hai-Dong, ZHANG Lu-Lu, ZHU Zhi-Hong*()
Received:
2012-11-20
Accepted:
2013-02-25
Online:
2013-11-20
Published:
2013-04-09
Contact:
ZHU Zhi-Hong
摘要:
植物群落中不同“功能身份”物种的多样性与特定生态系统功能之间具有何种关系及其作用机制尚不明确。通过在高寒矮嵩草(Kobresia humilis)草甸为期5年的刈割(不刈割、留茬3 cm、留茬1 cm)、施肥(施肥、不施肥)和浇水(浇水、不浇水)控制实验, 研究了刈割与土壤资源获得性梯度上不同“功能身份”物种(群落中所有物种、响应物种、作用物种和共有物种)的多样性变化与群落地上净初级生产力和稳定性的关系以及稳定性机制。研究结果显示: 群落中响应物种、作用物种和共有物种数分别占全部物种数的36.6%、18.3%和64.8%, 物种多样性对生态系统功能具有不同的效应, 净初级生产力主要受响应物种和作用物种的多样性变化影响, 而稳定性则主要由共有物种的多样性变化决定; 群落稳定性的维持主要依赖于共有物种的多样性增加, 其作用机制是投资组合效应, 而超产效应和异步性效应对稳定性并无作用; 刈割和施肥对物种多样性、稳定性和净初级生产力具有相反的影响, 前者能增加物种多样性和稳定性, 并降低净初级生产力, 而后者的作用正相反。这与群落中全部物种的多样性变化受刈割影响较大, 而作用物种的多样性变化受资源获得性影响较大有关。上述结果表明高寒草甸生态系统地上净初级生产力主要由少数影响生产力的作用物种的多样性决定, 而稳定性则由大量共有物种的多样性所掌控。投资组合效应是物种多样性导致稳定性的机制。由于群落中不同物种的多样性效应具有分异性, 对于特定的生态系统功能而言, 物种的“功能身份”可能比物种多样性本身更重要, 不加区别地笼统定义物种多样性与生态系统功能的关系可能欠妥。
王海东, 张璐璐, 朱志红. 刈割、施肥对高寒草甸物种多样性与生态系统功能关系的影响及群落稳定性机制. 植物生态学报, 2013, 37(4): 279-295. DOI: 10.3724/SP.J.1258.2013.00028
WANG Hai-Dong, ZHANG Lu-Lu, ZHU Zhi-Hong. Effects of clipping and fertilizing on the relationships between species diversity and ecosystem functioning and mechanisms of community stability in alpine meadow. Chinese Journal of Plant Ecology, 2013, 37(4): 279-295. DOI: 10.3724/SP.J.1258.2013.00028
植物种 Plant species | 变异来源(自由度) Sources of variance (df (m, n)) | R2 (n = 36) | 物种类型 Species type | |||||||
---|---|---|---|---|---|---|---|---|---|---|
B (2, 4) | C (2, 4) | F (1, 18) | W (1, 18) | C × F (2, 18) | C × W (2, 18) | F × W (1, 18) | C × F × W (2, 18) | |||
矮嵩草 Kobresia humilis | 4.43 | 0.32 | 5.29* | 0.96 | 1.25 | 0.23 | 0.52 | 0.24 | 0.006 | RS |
鹅绒委陵菜 Potentilla anserina | 12.71* | 6.96* | 14.87** | 0 | 5.52* | 4.86* | 0.01 | 0.89 | 0.014 | RS |
甘肃马先蒿 Pedicularis kansuensis | 0.27 | 2.56 | 5.51* | 4.55* | 0.54 | 1.01 | 3.91 | 1.19 | 0.013 | RS |
海乳草 Glaux maritima | 8.53* | 7.01* | 0.58 | 0.30 | 6.91** | 0.12 | 0.01 | 0.43 | 0 | RS |
尖叶龙胆 Gentiana lawrencei | 1.48 | 5.02 | 41.23** | 4.02 | 2.58 | 0.06 | 0.13 | 1.96 | 0.014 | RS |
美丽风毛菊 Saussurea superba | 2.61 | 7.16* | 1.33 | 0.02 | 0.80 | 0.91 | 1.28 | 0.05 | 0.024 | RS |
棉毛茛 Ranunculus membranaceus | 1.72 | 10.86* | 7.13* | 0.79 | 2.19 | 0.48 | 0.35 | 1.87 | 0.022 | RS |
蒲公英 Taraxacum mongolicum | 1.46 | 16.47* | 0.03 | 0.35 | 0.54 | 1.61 | 0.16 | 0.95 | 0.033 | RS |
溚草 Koeleria cristata | 1.00 | 1.46 | 15.83** | 0.83 | 1.77 | 0.12 | 0.46 | 0.53 | 0.009 | RS |
麻花艽 Gentiana macrophylla | 2.62 | 4.21 | 4.64* | 0.39 | 0.29 | 4.69* | 4.21 | 0.36 | 0.033 | RS |
小米草 Euphrasia regelii | 1.41 | 2.61 | 10.92** | 0.61 | 0.95 | 0.71 | 0.21 | 0.34 | 0.002 | RS |
亚洲蒲公英 Taraxacum leucanthum | 0.19 | 5.08** | 1.97 | 1.76 | 6.23** | 3.02 | 0.26 | 0.96 | 0.028 | RS |
紫菀 Aster alpinus | 1.81 | 8.21* | 0.68 | 0.86 | 3.43 | 0.40 | 0.28 | 5.06* | 0.016 | RS |
矮火绒草 Leontopodium nanum | 1.20 | 3.76 | 6.20* | 0.13 | 1.45 | 0.13 | 0.03 | 0.05 | 0.072** | RS, ES |
繁缕 Stellaria umbellata | 0.55 | 0.56 | 79.92** | 3.43 | 0.25 | 0.13 | 1.58 | 0.04 | 0.153** | RS, ES |
甘肃棘豆 Oxytropis kansuensis | 1.34 | 3.10 | 51.59** | 0.09 | 3.12 | 0.17 | 1.30 | 0.09 | 0.172** | RS, ES |
黄花棘豆 Oxytropis ochrocephala | 0.30 | 1.92 | 25.48** | 1.65 | 2.63 | 0.71 | 2.35 | 1.18 | 0.039* | RS, ES |
黄芪 Astragalus licentianus | 0.60 | 1.5 | 17.70** | 0.22 | 3.67* | 0.92 | 3.93 | 1.31 | 0.088** | RS, ES |
米口袋 Gueldenstaedtia verna | 2.21 | 3.91 | 20.17** | 0.27 | 0.98 | 0.14 | 1.17 | 0.79 | 0.101** | RS, ES |
垂穗披碱草 Elymus nutans | 0.63 | 1.66 | 26.18** | 0.26 | 0 | 0.13 | 0.07 | 2.05 | 0.145** | RS, ES |
青海棘豆 Oxytropis qinghaiensis | 0.63 | 1.22 | 35.19** | 1.88 | 1.73 | 0.56 | 0.04 | 1.56 | 0.130** | RS, ES |
三脉梅花草 Parnassia trinervis | 3.48 | 2.5 | 17.60** | 0 | 1.55 | 0.08 | 0 | 0.46 | 0.155** | RS, ES |
湿生扁蕾 Gentianopsis paludosa | 6.98 | 15.05* | 17.77** | 16.99** | 0.55 | 3.94* | 2.03 | 3.17 | 0.058* | RS, ES |
银莲花 Anemone obtusiloba | 1.05 | 11.88* | 8.32** | 1.85 | 2.95 | 2.69 | 1.3 | 2.79 | 0.125** | RS, ES |
圆萼刺参 Morina chinensis | 1.47 | 13.77* | 0 | 0.22 | 0 | 1.32 | 0.59 | 0.86 | 0.079* | RS, ES |
早熟禾 Poa sp. | 1.13 | 13.76* | 52.94** | 1.37 | 7.17** | 1.51 | 0.88 | 1.46 | 0.319** | RS, ES |
响应物种数(%) No. of response species (%) | 2 (2.8) | 11 (15.5) | 20 (28.4) | 2 (2.8) | 5 (7.0) | 3 (4.2) | 0 (0.0) | 1 (1.4) | 13 (18.3) |
表1 响应物种重要值的方差分析及其与群落地上净初级生产力的回归分析
Table 1 ANOVA for important value (IV) of response species and regression analysis for the IV with aboveground net primary productivity
植物种 Plant species | 变异来源(自由度) Sources of variance (df (m, n)) | R2 (n = 36) | 物种类型 Species type | |||||||
---|---|---|---|---|---|---|---|---|---|---|
B (2, 4) | C (2, 4) | F (1, 18) | W (1, 18) | C × F (2, 18) | C × W (2, 18) | F × W (1, 18) | C × F × W (2, 18) | |||
矮嵩草 Kobresia humilis | 4.43 | 0.32 | 5.29* | 0.96 | 1.25 | 0.23 | 0.52 | 0.24 | 0.006 | RS |
鹅绒委陵菜 Potentilla anserina | 12.71* | 6.96* | 14.87** | 0 | 5.52* | 4.86* | 0.01 | 0.89 | 0.014 | RS |
甘肃马先蒿 Pedicularis kansuensis | 0.27 | 2.56 | 5.51* | 4.55* | 0.54 | 1.01 | 3.91 | 1.19 | 0.013 | RS |
海乳草 Glaux maritima | 8.53* | 7.01* | 0.58 | 0.30 | 6.91** | 0.12 | 0.01 | 0.43 | 0 | RS |
尖叶龙胆 Gentiana lawrencei | 1.48 | 5.02 | 41.23** | 4.02 | 2.58 | 0.06 | 0.13 | 1.96 | 0.014 | RS |
美丽风毛菊 Saussurea superba | 2.61 | 7.16* | 1.33 | 0.02 | 0.80 | 0.91 | 1.28 | 0.05 | 0.024 | RS |
棉毛茛 Ranunculus membranaceus | 1.72 | 10.86* | 7.13* | 0.79 | 2.19 | 0.48 | 0.35 | 1.87 | 0.022 | RS |
蒲公英 Taraxacum mongolicum | 1.46 | 16.47* | 0.03 | 0.35 | 0.54 | 1.61 | 0.16 | 0.95 | 0.033 | RS |
溚草 Koeleria cristata | 1.00 | 1.46 | 15.83** | 0.83 | 1.77 | 0.12 | 0.46 | 0.53 | 0.009 | RS |
麻花艽 Gentiana macrophylla | 2.62 | 4.21 | 4.64* | 0.39 | 0.29 | 4.69* | 4.21 | 0.36 | 0.033 | RS |
小米草 Euphrasia regelii | 1.41 | 2.61 | 10.92** | 0.61 | 0.95 | 0.71 | 0.21 | 0.34 | 0.002 | RS |
亚洲蒲公英 Taraxacum leucanthum | 0.19 | 5.08** | 1.97 | 1.76 | 6.23** | 3.02 | 0.26 | 0.96 | 0.028 | RS |
紫菀 Aster alpinus | 1.81 | 8.21* | 0.68 | 0.86 | 3.43 | 0.40 | 0.28 | 5.06* | 0.016 | RS |
矮火绒草 Leontopodium nanum | 1.20 | 3.76 | 6.20* | 0.13 | 1.45 | 0.13 | 0.03 | 0.05 | 0.072** | RS, ES |
繁缕 Stellaria umbellata | 0.55 | 0.56 | 79.92** | 3.43 | 0.25 | 0.13 | 1.58 | 0.04 | 0.153** | RS, ES |
甘肃棘豆 Oxytropis kansuensis | 1.34 | 3.10 | 51.59** | 0.09 | 3.12 | 0.17 | 1.30 | 0.09 | 0.172** | RS, ES |
黄花棘豆 Oxytropis ochrocephala | 0.30 | 1.92 | 25.48** | 1.65 | 2.63 | 0.71 | 2.35 | 1.18 | 0.039* | RS, ES |
黄芪 Astragalus licentianus | 0.60 | 1.5 | 17.70** | 0.22 | 3.67* | 0.92 | 3.93 | 1.31 | 0.088** | RS, ES |
米口袋 Gueldenstaedtia verna | 2.21 | 3.91 | 20.17** | 0.27 | 0.98 | 0.14 | 1.17 | 0.79 | 0.101** | RS, ES |
垂穗披碱草 Elymus nutans | 0.63 | 1.66 | 26.18** | 0.26 | 0 | 0.13 | 0.07 | 2.05 | 0.145** | RS, ES |
青海棘豆 Oxytropis qinghaiensis | 0.63 | 1.22 | 35.19** | 1.88 | 1.73 | 0.56 | 0.04 | 1.56 | 0.130** | RS, ES |
三脉梅花草 Parnassia trinervis | 3.48 | 2.5 | 17.60** | 0 | 1.55 | 0.08 | 0 | 0.46 | 0.155** | RS, ES |
湿生扁蕾 Gentianopsis paludosa | 6.98 | 15.05* | 17.77** | 16.99** | 0.55 | 3.94* | 2.03 | 3.17 | 0.058* | RS, ES |
银莲花 Anemone obtusiloba | 1.05 | 11.88* | 8.32** | 1.85 | 2.95 | 2.69 | 1.3 | 2.79 | 0.125** | RS, ES |
圆萼刺参 Morina chinensis | 1.47 | 13.77* | 0 | 0.22 | 0 | 1.32 | 0.59 | 0.86 | 0.079* | RS, ES |
早熟禾 Poa sp. | 1.13 | 13.76* | 52.94** | 1.37 | 7.17** | 1.51 | 0.88 | 1.46 | 0.319** | RS, ES |
响应物种数(%) No. of response species (%) | 2 (2.8) | 11 (15.5) | 20 (28.4) | 2 (2.8) | 5 (7.0) | 3 (4.2) | 0 (0.0) | 1 (1.4) | 13 (18.3) |
物种类型 Species type | 不施肥 Unfertilized | 施肥 Fertilized | 施肥效应 Fertilized effect | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
不刈割 Unclipped | 中度刈割 Stubbled 3 cm | 重度刈割 Stubbled 1 cm | F | 平均值 Mean | 不刈割Unclipped | 中度刈割Stubbled 3 cm | 重度刈割Stubbled 1 cm | F | 平均值 Mean | F | ||
全部物种数 No. of total species | 28.7b | 33.4a | 28.9b | 13.79*** | 30.4 | 22.8c | 30.1a | 27.1b | 17.64*** | 26.6 | 20.33*** | |
响应物种(%) Response species (%) | 58.6a | 56.3a | 60.8a | 2.89 | 58.6 | 54.9b | 53.1b | 56.7a | 15.20*** | 54.9 | 40.32*** | |
作用物种(%) Effect species (%) | 28.4b | 28.4b | 31.5a | 3.76* | 29.5 | 23.9b | 24.2b | 27.5a | 10.23*** | 25.2 | 48.50*** | |
共有物种(%) Common species (%) | 94.0a | 91.5b | 93.8a | 12.64*** | 93.1 | 95.1a | 92.6b | 94.7a | 15.21*** | 94.1 | 20.55*** |
表2 全部物种数及各类物种所占比例在不同处理间差异的方差分析
Table 2 ANOVA for difference in the number of total species and percentage of each species type accounted for total species among different treatments
物种类型 Species type | 不施肥 Unfertilized | 施肥 Fertilized | 施肥效应 Fertilized effect | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
不刈割 Unclipped | 中度刈割 Stubbled 3 cm | 重度刈割 Stubbled 1 cm | F | 平均值 Mean | 不刈割Unclipped | 中度刈割Stubbled 3 cm | 重度刈割Stubbled 1 cm | F | 平均值 Mean | F | ||
全部物种数 No. of total species | 28.7b | 33.4a | 28.9b | 13.79*** | 30.4 | 22.8c | 30.1a | 27.1b | 17.64*** | 26.6 | 20.33*** | |
响应物种(%) Response species (%) | 58.6a | 56.3a | 60.8a | 2.89 | 58.6 | 54.9b | 53.1b | 56.7a | 15.20*** | 54.9 | 40.32*** | |
作用物种(%) Effect species (%) | 28.4b | 28.4b | 31.5a | 3.76* | 29.5 | 23.9b | 24.2b | 27.5a | 10.23*** | 25.2 | 48.50*** | |
共有物种(%) Common species (%) | 94.0a | 91.5b | 93.8a | 12.64*** | 93.1 | 95.1a | 92.6b | 94.7a | 15.21*** | 94.1 | 20.55*** |
图1 刈割和施肥对物种多样性的影响(平均值±标准误差, n = 36)。 NH, 不刈割; H3, 中度刈割; H1, 重度刈割。相同的大写字母表示不施肥样方中刈割处理间无显著差异(p > 0.05); 相同的小写字母表示施肥样方中刈割处理间无显著差异(p > 0.05); **, p < 0.01。
Fig. 1 Effects of clipping and fertilizing on species diversity (mean ± SE, n = 36). NH, unclipped; H3, stubbled 3 cm; H1, stubbled 1 cm. Same capital letters indicate no significant difference among clipping treatments in unfertilized quadrat (p < 0.05). Same small letters indicate no significant difference among clipping treatments in fertilized quadrat (p < 0.05); **, p < 0.01.
图2 不同处理对高寒草甸生态系统功能的影响(平均值±标准误差, n = 36)。 NH, 不刈割; H3, 中度刈割; H1, 重度刈割; **, p < 0.01; 相同的大写字母表示不施肥样方中刈割处理间无显著差异(p > 0.05); 相同的小写字母表示施肥样方中刈割处理间无显著差异(p > 0.05)。
Fig. 2 Effects of different treatments on ecosystem function in alpine meadow (mean ± SE, n = 36). NH, unclipped; H3, stubbled 3 cm; H1, stubbled 1 cm; **, p < 0.01. Same capital letters indicate no significant difference among clipping treatments in unfertilized quadrat (p > 0.05). Small letters indicate no significant difference among clipping treatments in fertilized quadrat (p > 0.05).
物种类型 Species type | 施肥梯度 Fertility gradient | 刈割梯度 Clipping gradient | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
不施肥 Unfertilized | 施肥 Fertilized | 不刈割 Unclipped | 中度刈割 Stubbled 3 cm | 重度刈割 Stubbled 1 cm | |||||||||||||||
K | F | R2 | K | F | R2 | K | F | R2 | K | F | R2 | K | F | R2 | |||||
全部物种 Total species | 2.90 | 2.7 | 0.05 | -0.84 | 1.4 | 0.03 | -0.71 | 0.7 | 0.02 | -1.00 | 0.1 | 0 | 2.41 | 0.8 | 0.02 | ||||
响应物种 Response species | 1.31 | 1.4 | 0.03 | -1.13 | 5.5* | 0.10 | -1.58 | 10.3** | 0.23 | -0.16 | 0 | 0 | 0.80 | 0.2 | 0.01 | ||||
作用物种 Effect species | 0.03 | 0 | 0 | -0.28 | 0.8 | 0.02 | -0.86 | 5.1* | 0.13 | 0.02 | 0 | 0 | -0.54 | 0.7 | 0.02 | ||||
共有物种 Common species | 2.84 | 2.6 | 0.05 | -0.81 | 1.3 | 0.02 | -0.68 | 0.6 | 0.02 | -0.55 | 0 | 0 | 2.62 | 0.9 | 0.03 | ||||
样方数 No. of quadrat | 54 | 54 | 36 | 36 | 36 |
表3 物种多样性与群落地上净初级生产力关系的回归分析
Table 3 Regression analysis for the relationship between species diversity and aboveground net primary productivity of community
物种类型 Species type | 施肥梯度 Fertility gradient | 刈割梯度 Clipping gradient | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
不施肥 Unfertilized | 施肥 Fertilized | 不刈割 Unclipped | 中度刈割 Stubbled 3 cm | 重度刈割 Stubbled 1 cm | |||||||||||||||
K | F | R2 | K | F | R2 | K | F | R2 | K | F | R2 | K | F | R2 | |||||
全部物种 Total species | 2.90 | 2.7 | 0.05 | -0.84 | 1.4 | 0.03 | -0.71 | 0.7 | 0.02 | -1.00 | 0.1 | 0 | 2.41 | 0.8 | 0.02 | ||||
响应物种 Response species | 1.31 | 1.4 | 0.03 | -1.13 | 5.5* | 0.10 | -1.58 | 10.3** | 0.23 | -0.16 | 0 | 0 | 0.80 | 0.2 | 0.01 | ||||
作用物种 Effect species | 0.03 | 0 | 0 | -0.28 | 0.8 | 0.02 | -0.86 | 5.1* | 0.13 | 0.02 | 0 | 0 | -0.54 | 0.7 | 0.02 | ||||
共有物种 Common species | 2.84 | 2.6 | 0.05 | -0.81 | 1.3 | 0.02 | -0.68 | 0.6 | 0.02 | -0.55 | 0 | 0 | 2.62 | 0.9 | 0.03 | ||||
样方数 No. of quadrat | 54 | 54 | 36 | 36 | 36 |
物种类型 Species type | 施肥梯度 Fertility gradient | 刈割梯度 Clipping gradient | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
不施肥 Unfertilized | 施肥 Fertilized | 不刈割 Unclipped | 中度刈割 Stubbled 3 cm | 重度刈割 Stubbled 1 cm | |||||||||||||||
K | F | R2 | K | F | R2 | K | F | R2 | K | F | R2 | K | F | R2 | |||||
全部物种 Total species | 6.18 | 161.8*** | 0.76 | 2.88 | 97.7*** | 0.65 | 2.85 | 85.8*** | 0.72 | 7.16 | 74.6*** | 0.69 | 5.52 | 62.1*** | 0.65 | ||||
响应物种 Response species | 2.39 | 22.3*** | 0.30 | 1.70 | 45.8*** | 0.47 | 1.31 | 19.5*** | 0.36 | 2.14 | 13.2*** | 0.28 | 2.95 | 28.1*** | 0.45 | ||||
作用物种 Effect species | 0.59 | 13.5*** | 0.21 | 0.83 | 22.0*** | 0.30 | 0.79 | 11.6** | 0.25 | 0.51 | 12.3** | 0.27 | 0.77 | 10.2** | 0.23 | ||||
共有物种 Common species | 6.18 | 160.4*** | 0.76 | 2.90 | 101.3*** | 0.66 | 2.83 | 87.3*** | 0.72 | 7.15 | 80.4*** | 0.70 | 5.79 | 66.2*** | 0.66 | ||||
样方数 No. of quadrats | 54 | 54 | 36 | 36 | 36 |
表4 物种多样性与群落稳定性关系的回归分析
Table 4 Regression analysis for relationships between species diversity of different species types and community stability
物种类型 Species type | 施肥梯度 Fertility gradient | 刈割梯度 Clipping gradient | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
不施肥 Unfertilized | 施肥 Fertilized | 不刈割 Unclipped | 中度刈割 Stubbled 3 cm | 重度刈割 Stubbled 1 cm | |||||||||||||||
K | F | R2 | K | F | R2 | K | F | R2 | K | F | R2 | K | F | R2 | |||||
全部物种 Total species | 6.18 | 161.8*** | 0.76 | 2.88 | 97.7*** | 0.65 | 2.85 | 85.8*** | 0.72 | 7.16 | 74.6*** | 0.69 | 5.52 | 62.1*** | 0.65 | ||||
响应物种 Response species | 2.39 | 22.3*** | 0.30 | 1.70 | 45.8*** | 0.47 | 1.31 | 19.5*** | 0.36 | 2.14 | 13.2*** | 0.28 | 2.95 | 28.1*** | 0.45 | ||||
作用物种 Effect species | 0.59 | 13.5*** | 0.21 | 0.83 | 22.0*** | 0.30 | 0.79 | 11.6** | 0.25 | 0.51 | 12.3** | 0.27 | 0.77 | 10.2** | 0.23 | ||||
共有物种 Common species | 6.18 | 160.4*** | 0.76 | 2.90 | 101.3*** | 0.66 | 2.83 | 87.3*** | 0.72 | 7.15 | 80.4*** | 0.70 | 5.79 | 66.2*** | 0.66 | ||||
样方数 No. of quadrats | 54 | 54 | 36 | 36 | 36 |
图5 施肥处理对全部物种总方差的影响(平均值±标准误差, n = 36)。 F, 施肥; NF, 不施肥。不同的小写字母表示差异显著(p < 0.05)。
Fig. 5 Effect of fertility treatment on summed variance of total species (mean ± SE, n = 36). F, Fertilized; NF, unfertilized. Different small letters indicate significant difference (p < 0.05).
参数 Parameter | 物种类型 Species type | 施肥梯度 Fertility gradient | 刈割梯度 Clipping gradient | R2 的平均值 Mean of R2 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
不施肥 Unfertilized | 施肥 Fertilized | 不刈割 Unclipped | 中度刈割 Stubbled 3 cm | 重度刈割 Stubbled 1 cm | |||||||||||||||||
K | F | R2 | K | F | R2 | K | F | R2 | K | F | R2 | K | F | R2 | |||||||
总密度 Summed density | 全部物种Total species | -2 962.36 | 0.6 | 0.04 | 6 116.24 | 12.5** | 0.44 | 608.86 | 0.2 | 0.02 | -5 788.52 | 0.9 | 0.08 | 1 783.14 | 0.1 | 0.01 | 0.12 | ||||
响应物种Response species | -3 017.15 | 1.8 | 0.10 | 4 027.39 | 7.9** | 0.33 | 1 174.81 | 2.2 | 0.18 | -4 791.46 | 3.2 | 0.24 | -3 290.57 | 0.9 | 0.09 | 0.19 | |||||
作用物种Effect species | -1 387.72 | 5.2* | 0.25 | 1 854.35 | 3.2 | 0.17 | 919.64 | 2.6 | 0.21 | -1 443.65 | 6.1* | 0.38 | -333.98 | 0.1 | 0.01 | 0.20 | |||||
共有物种Common species | -3 983.58 | 2 | 0.11 | 5 920.40 | 11.1** | 0.41 | 622.84 | 0.2 | 0.02 | -3 339.45 | 1.0 | 0.09 | 2 521.8 | 0.2 | 0.02 | 0.13 | |||||
总方差 Summed variance | 全部物种Total species | -25.69 | 7.7** | 0.32 | -1.36 | 0.2 | 0.01 | -12.74 | 11.9** | 0.54 | -31.64 | 6.0* | 0.37 | -19.37 | 3.8 | 0.27 | 0.30 | ||||
响应物种Response species | -13.79 | 5.2* | 0.25 | -0.42 | 0 | 0 | -5.07 | 2.6 | 0.21 | -15.23 | 5.8* | 0.37 | -18.19 | 11.3** | 0.53 | 0.27 | |||||
作用物种Effects species | -5.28 | 11.8** | 0.43 | 0.19 | 0 | 0 | -2.93 | 1.5 | 0.13 | -5.06 | 23.1** | 0.70 | -3.80 | 2.8 | 0.22 | 0.30 | |||||
共有物种Common species | -24.51 | 16.1** | 0.50 | -1.63 | 0.3 | 0.02 | -12.61 | 11.7** | 0.54 | -20.84 | 11.2** | 0.53 | -19.44 | 3.0 | 0.23 | 0.36 | |||||
同步性 Synchrony | 全部物种Total species | -0.19 | 37.1** | 0.70 | -0.10 | 48.0** | 0.75 | -0.10 | 12.7** | 0.56 | -0.18 | 51.9** | 0.84 | -0.11 | 6.1* | 0.38 | 0.65 | ||||
响应物种Response species | -0.09 | 12.7** | 0.44 | -0.08 | 57.5** | 0.78 | -0.05 | 8.0* | 0.44 | -0.08 | 26.3** | 0.72 | -0.09 | 9.7** | 0.49 | 0.57 | |||||
作用物种Effects species | -0.02 | 8.4** | 0.34 | -0.03 | 7.0** | 0.30 | -0.04 | 5.5* | 0.35 | -0.02 | 20.2** | 0.67 | -0.02 | 1.8 | 0.15 | 0.36 | |||||
共有物种Common species | -0.09 | 6.5* | 0.29 | -0.10 | 47.6** | 0.75 | -0.09 | 12.2** | 0.55 | -0.05 | 2.8 | 0.22 | -0.12 | 5.8* | 0.37 | 0.44 | |||||
样方数 No. of quadrats | 18 | 18 | 12 | 12 | 12 |
表5 物种多样性与群落稳定性参数关系的回归分析
Table 5 Regression analysis for relationships between species diversity and stability parameters of community
参数 Parameter | 物种类型 Species type | 施肥梯度 Fertility gradient | 刈割梯度 Clipping gradient | R2 的平均值 Mean of R2 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
不施肥 Unfertilized | 施肥 Fertilized | 不刈割 Unclipped | 中度刈割 Stubbled 3 cm | 重度刈割 Stubbled 1 cm | |||||||||||||||||
K | F | R2 | K | F | R2 | K | F | R2 | K | F | R2 | K | F | R2 | |||||||
总密度 Summed density | 全部物种Total species | -2 962.36 | 0.6 | 0.04 | 6 116.24 | 12.5** | 0.44 | 608.86 | 0.2 | 0.02 | -5 788.52 | 0.9 | 0.08 | 1 783.14 | 0.1 | 0.01 | 0.12 | ||||
响应物种Response species | -3 017.15 | 1.8 | 0.10 | 4 027.39 | 7.9** | 0.33 | 1 174.81 | 2.2 | 0.18 | -4 791.46 | 3.2 | 0.24 | -3 290.57 | 0.9 | 0.09 | 0.19 | |||||
作用物种Effect species | -1 387.72 | 5.2* | 0.25 | 1 854.35 | 3.2 | 0.17 | 919.64 | 2.6 | 0.21 | -1 443.65 | 6.1* | 0.38 | -333.98 | 0.1 | 0.01 | 0.20 | |||||
共有物种Common species | -3 983.58 | 2 | 0.11 | 5 920.40 | 11.1** | 0.41 | 622.84 | 0.2 | 0.02 | -3 339.45 | 1.0 | 0.09 | 2 521.8 | 0.2 | 0.02 | 0.13 | |||||
总方差 Summed variance | 全部物种Total species | -25.69 | 7.7** | 0.32 | -1.36 | 0.2 | 0.01 | -12.74 | 11.9** | 0.54 | -31.64 | 6.0* | 0.37 | -19.37 | 3.8 | 0.27 | 0.30 | ||||
响应物种Response species | -13.79 | 5.2* | 0.25 | -0.42 | 0 | 0 | -5.07 | 2.6 | 0.21 | -15.23 | 5.8* | 0.37 | -18.19 | 11.3** | 0.53 | 0.27 | |||||
作用物种Effects species | -5.28 | 11.8** | 0.43 | 0.19 | 0 | 0 | -2.93 | 1.5 | 0.13 | -5.06 | 23.1** | 0.70 | -3.80 | 2.8 | 0.22 | 0.30 | |||||
共有物种Common species | -24.51 | 16.1** | 0.50 | -1.63 | 0.3 | 0.02 | -12.61 | 11.7** | 0.54 | -20.84 | 11.2** | 0.53 | -19.44 | 3.0 | 0.23 | 0.36 | |||||
同步性 Synchrony | 全部物种Total species | -0.19 | 37.1** | 0.70 | -0.10 | 48.0** | 0.75 | -0.10 | 12.7** | 0.56 | -0.18 | 51.9** | 0.84 | -0.11 | 6.1* | 0.38 | 0.65 | ||||
响应物种Response species | -0.09 | 12.7** | 0.44 | -0.08 | 57.5** | 0.78 | -0.05 | 8.0* | 0.44 | -0.08 | 26.3** | 0.72 | -0.09 | 9.7** | 0.49 | 0.57 | |||||
作用物种Effects species | -0.02 | 8.4** | 0.34 | -0.03 | 7.0** | 0.30 | -0.04 | 5.5* | 0.35 | -0.02 | 20.2** | 0.67 | -0.02 | 1.8 | 0.15 | 0.36 | |||||
共有物种Common species | -0.09 | 6.5* | 0.29 | -0.10 | 47.6** | 0.75 | -0.09 | 12.2** | 0.55 | -0.05 | 2.8 | 0.22 | -0.12 | 5.8* | 0.37 | 0.44 | |||||
样方数 No. of quadrats | 18 | 18 | 12 | 12 | 12 |
[1] | Cottingham KL, Brown BL, Lennon JT (2001). Biodiversity may regulate the temporal variability of ecological system. Ecology Letters, 4, 72-85. |
[2] | Díaz S, Cabido M (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646-655. |
[3] |
Doak DF, Bigger D, Harding EK, Marvier MA, O’Malley RE, Thomson D (1998). The statistical inevitability of stability-diversity relationships in community ecology. The American Naturalist, 151, 264-276.
URL PMID |
[4] | Fox JW (2003). The long-term relationship between plant diversity and total plant biomass depends on the mechanism maintaining diversity. Oikos, 102, 630-640. |
[5] | Gonzalez A, Loreau M (2009). The causes and consequences of compensatory dynamics in ecological communities. Annual Review of Ecology, Evolution, and Systematics, 40, 393-414. |
[6] |
Grace JB, Anderson TM, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M (2007). Does species diversity limit productivity in natural grassland communities? Ecology Letters, 10, 680-689.
DOI URL PMID |
[7] |
Grime JP (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902-910.
DOI URL |
[8] |
Grman E, Lau JA, Schoolmaster DR Jr, Gross KL (2010). Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecology Letters, 13, 1400-1410.
URL PMID |
[9] | Gu MH, Wang T, Du GZ (2011). Primary productivity and species abundance of cultivated grassland under different clipping and seeding combinations. Acta Botanica Boreali-Occidentalia Sinica, 31, 1672-1676. (in Chinese with English abstract) |
[ 顾梦鹤, 王涛, 杜国祯 (2011). 刈割留茬高度和不同播种组合对人工草地初级生产力和物种丰富度的影响. 西北植物学报, 31, 1672-1676.] | |
[10] | Hillebrand H, Matthiessen B (2009). Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters, 12, 1405-1419. |
[11] | Hooper DU (1998). The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology, 79, 704-719. |
[12] | Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3-35. |
[13] |
Isbell FL, Polley HW, Wilsey BJ (2009). Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecology Letters, 12, 443-451.
DOI URL PMID |
[14] | Lehman CL, Tilman D (2000). Biodiversity, stability and productivity in competitive communities. The American Naturalist, 156, 534-552. |
[15] | Lepš J (2004). Variability in population and community biomass in a grassland community affected by environmental productivity and diversity. Oikos, 107, 64-71. |
[16] | Li XG, Zhu ZH, Zhou XS, Yuan FR, Fan RJ, Xu ML (2011). Effects of clipping, fertilizing and watering on the relationship between species diversity, functional diversity and primary productivity in alpine meadow of China. Chinese Journal of Plant Ecology, 35, 1136-1147. (in Chinese with English abstract) |
[ 李晓刚, 朱志红, 周晓松, 袁芙蓉, 樊瑞俭, 许曼丽 (2011). 刈割、施肥和浇水对高寒草甸物种多样性、功能多样性与初级生产力关系的影响. 植物生态学报, 35, 1136-1147.] | |
[17] | Li YN, Zhao XQ, Cao GM, Zhao L, Wang QX (2004). Analyses on climates and vegetation productivity background at Haibei alpine meadow ecosystem research station. Plateau Meteorology, 23, 558-567. (in Chinese with English abstract) |
[ 李英年, 赵新全, 曹广民 . 赵亮, 王勤学 (2004). 海北高寒草甸生态系统定位站气候、植被生产力背景的分析. 高原气象, 23, 558-567.] | |
[18] | Li YN, Guan DG, Zhao L, Gu S, Zhao XQ (2005). Seasonal frozen soil and its effect on vegetation production in Haibei alpine meadow. Journal of Glaciology and Geocryology, 27, 311-319.(in Chinese with English abstract) |
[ 李英年, 关定国, 赵亮, 古松, 赵新全 (2005). 海北高寒草甸的季节冻土及在植被生产力形成过程中的作用. 冰川冻土, 27, 311-319.] | |
[19] | Loreau M, de Mazancourt C (2008). Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. The American Naturalist, 172, 48-66. |
[20] | Ma KP, Liu YM (1994). Measurement of biotic community diversity I α diversity (Part 2). Chinese Biodiversity, 2, 231-239.(in Chinese with English abstract) |
[ 马克平, 刘玉明 (1994). 生物群落多样性的测度方法I. α多样性的测度方法(下). 生物多样性, 2, 231-239.] | |
[21] | Ren JZ (1998). Research Approaches on Grass Science . China Agriculture Press, Beijing. 15-16.(in Chinese) |
[ 任继周(1998). 草业科学研究方法. 中国农业出版社, 北京. 15-16.] | |
[22] |
Sasaki T, Lauenroth WK (2011). Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia, 166, 761-768.
URL PMID |
[23] | Taylor LR (1961). Aggregation, variance and the mean. Nature, 189, 732-735. |
[24] | Tilman D (1982). Resource Competition and Community Structure. Princeton University Press, Princeton. |
[25] | Tilman D (1987). Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecological Monographs, 57, 189-214. |
[26] | Tilman D (1999). The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80, 1455-1474. |
[27] |
Tilman D, Reich PB, Knops JMH (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 441, 629-632.
URL PMID |
[28] | Valone TJ, Hoffman CD (2003). A mechanistic examination of diversity-stability relationship in annual plant communities. Oikos, 103, 519-527. |
[29] | Wang CT, Long RJ, Wang QJ, Jing ZC, Ding LM (2005). Relationship between species diversity and productivity in four types of alpine meadow plant communities. Chinese Journal of Ecology, 24, 483-487. (in Chinese with English abstract) |
[ 王长庭, 龙瑞军, 王启基, 景增春, 丁路明 (2005). 高寒草甸不同草地群落物种多样性与生产力关系研究. 生态学杂志, 24, 483-487.] | |
[30] | Xi B, Zhu ZH, Li YN, Wang WJ, Zang YM (2010). Effect of grazing disturbance and nutrient availability on the compensatory responses of community in alpine meadows. Journal of Lanzhou University (Natural Sciences), 4, 77-84. (in Chinese with English abstract) |
[ 席博, 朱志红, 李英年, 王文娟, 臧岳铭 (2010). 放牧强度和生境资源对高寒草甸群落补偿能力的影响. 兰州大学学报(自然科学版), 4, 77-84.] | |
[31] | Yang ZL, van Ruijven J, Du GZ (2011). The effects of long-term fertilization on the temporal stability of alpine meadow communities. Plant and Soil, 345, 315-324. |
[32] | Zang YM, Zhu ZH, Li YN, Wang WJ, Xi B (2009). Effects of species diversity and functional diversity on primary productivity of alpine meadow. Chinese Journal of Ecology, 28, 999-1005. (in Chinese with English abstract) |
[ 臧岳铭, 朱志红, 李英年, 王文娟, 席博 (2009). 高寒矮嵩草草甸物种多样性与功能多样性对初级生产力的影响. 生态学杂志, 28, 999-1005.] | |
[33] | Zhang QG, Zhang DY (2002). Biodiversity and ecosystem functioning: recent advances and controversies. Biodiversity Science, 10, 49-60. (in Chinese with English abstract) |
[ 张全国, 张大勇 (2002). 生物多样性与生态系统功能: 进展与争论. 生物多样性, 10, 49-60.] | |
[34] | Zhang QG, Zhang DY (2003). Biodiversity and ecosystem functioning: recent advances and trends. Biodiversity Science, 11, 351-363. (in Chinese with English abstract) |
[ 张全国, 张大勇 (2003). 生物多样性与生态系统功能: 最新的进展与动向. 生物多样性, 11, 351-363.] | |
[35] | Zhao XQ (2009). Global Change and Ecological System in Alpine Meadow. Science Press, Beijing. 78. (in Chinese) |
[ 赵新全 (2009). 高寒草甸生态系统与全球变化. 科学出版社, 北京. 78.] | |
[36] | Zhou XS, Zhu ZH, Li YN, Yuan FR, Fan RJ (2011). Community compensatory mechanism under clipping, fertilizing and watering treatment in alpine meadow. Journal of Lanzhou University (Natural Sciences), 47, 50-57. (in Chinese with English abstract) |
[ 周晓松, 朱志红, 李英年, 袁芙蓉, 樊瑞俭 (2011). 刈割、施肥和浇水对高寒草甸物种多样性、功能多样性与初级生产力关系的影响. 兰州大学学报(自然科学版), 47, 50-57.] | |
[37] |
Zhu ZH, Lundholm J, Li YN, Wang XA (2008). Response of Polygonum viviparum species and community level to long-term livestock grazing in alpine shrub meadow in Qinghai-Tibet Plateau. Journal of Integrative Plant Biology, 50, 659-672.
DOI URL PMID |
[38] | Zhu ZH, Xi B, Li YN, Zang YM, Wang WJ, Liu JX, Guo H (2010). Compensatory growth of Carex scabrirostris in different habitats in alpine meadow. Chinese Journal of Plant Ecology, 34, 348-358. (in Chinese with English abstract) |
[ 朱志红, 席博, 李英年, 臧岳铭, 王文娟, 刘建秀, 郭华 (2010). 高寒草甸不同生境粗喙薹草补偿生长研究. 植物生态学报, 34, 348-358.] | |
[39] | Zhu ZH, Wang XA, Li YN, Wang G, Guo H (2012). Predicting plant traits and functional types response to grazing in an alpine shrub meadow on the Qinghai-Tibet Plateau. Science China Earth Sciences, 5, 837-851. |
[1] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[2] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[3] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[4] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[5] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[6] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[7] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[8] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[9] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[10] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[11] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[12] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[13] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[14] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[15] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19