植物生态学报 ›› 2008, Vol. 32 ›› Issue (1): 143-151.DOI: 10.3773/j.issn.1005-264x.2008.01.016
所属专题: 植物功能性状
收稿日期:
2006-04-12
接受日期:
2006-07-31
出版日期:
2008-04-12
发布日期:
2008-01-30
通讯作者:
黄宏文
作者简介:
* E-mail: hongwen@wbgcas.cn浙江省建德市林业局在采样工作中给予帮助,美国布朗大学生态学和进化生物学系 Ecri von Wettberg教授对数据分析提出了宝贵建议,中国科学院武汉植物园园艺中心王勇主任在试验地管理中给予帮助,谨此致谢
基金资助:
YANG Wei, YE Qi-Gang, LI Zuo-Zhou, HUANG Hong-Wen*()
Received:
2006-04-12
Accepted:
2006-07-31
Online:
2008-04-12
Published:
2008-01-30
Contact:
HUANG Hong-Wen
摘要:
研究残存居群的数量性状分化及其地方适应性有助于了解不同居群对环境的适应性并制定相应的保育策略。本研究采用同园实验,利用随机区组设计,对中华水韭(Isoetes sinensis)3个居群的9种优势基因型的数量性状进行巢式方差分析,并采用Bayesian方法计算等位酶(FST)和数量性状(QST)的居群分化值。结果表明,在测量的14个数量性状中,有10个性状在居群间有显著性差异,仅有3个性状在居群内有显著性差异;多重比较表明其中5个性状的平均值均以松阳居群最高,休宁居群最低;建德居群的大孢子囊的性状和植株高度的平均值最高,休宁居群最低;推测这可能是与奠基者效应、物种间竞争及中华水韭在自然生境下形成的营养生长和生殖生长之间的权衡有关。对居群数量性状分化的QST值和等位酶分化的FST值分析比较发现,在假设为自交系时有8个性状的QST值均大于FST值,表明存在明显的地方适应性,居群间个体的混合存在潜在的远交衰退的风险,所以不宜采用居群间相互移植个体的方法来进行中华水韭居群的遗传复壮。对休宁和松阳两个居群的保育应采用提高居群内基因流和改善生境环境的方法,促进居群内的遗传复壮;对建德居群应尽量减少人为干扰,宜建立特定生境的保护小区。
杨伟, 叶其刚, 李作洲, 黄宏文. 中华水韭残存居群的数量性状分化和地方适应性及其对保育遗传复壮策略的提示. 植物生态学报, 2008, 32(1): 143-151. DOI: 10.3773/j.issn.1005-264x.2008.01.016
YANG Wei, YE Qi-Gang, LI Zuo-Zhou, HUANG Hong-Wen. GENETIC DIFFERENTIATION OF QUANTITATIVE TRAITS AND LOCAL ADAPTABILITY OF REMNANT POPULATIONS OF ISOETES SINENSIS AND IMPLICATIONS FOR CONSERVATION AND GENETIC REINFORCEMENT. Chinese Journal of Plant Ecology, 2008, 32(1): 143-151. DOI: 10.3773/j.issn.1005-264x.2008.01.016
居群 Population | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Elevation (m) | 生境 Habitat | 水体酸度 Water pH value | 居群大小 Population size | 土壤 Soil |
---|---|---|---|---|---|---|---|
休宁 Xiuning | 29°30' | 118°09' | 300 | 梯田排水沟 Drainage ditch in terrace | 5.5 | 200~330 | 黄壤 Yellow soil |
松阳 Songyang | 28°16' | 119°16' | 1 110 | 废弃20年左右水田 Paddy field abandoned for about 20 years | 6.0 | 550~900 | 黄棕壤、红壤 Yellow-brown soil, red soil |
建德 Jiande | 29°28' | 119°15' | 28 | 淡水性沿岸潮间带 Freshwater intertidal zone | 5.5 | 20 000~ 30 000 | 沙质土 Sandy soil |
表1 中华水韭3个居群的生境
Table 1 Habitat of the three populations of Isoetes sinensis
居群 Population | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Elevation (m) | 生境 Habitat | 水体酸度 Water pH value | 居群大小 Population size | 土壤 Soil |
---|---|---|---|---|---|---|---|
休宁 Xiuning | 29°30' | 118°09' | 300 | 梯田排水沟 Drainage ditch in terrace | 5.5 | 200~330 | 黄壤 Yellow soil |
松阳 Songyang | 28°16' | 119°16' | 1 110 | 废弃20年左右水田 Paddy field abandoned for about 20 years | 6.0 | 550~900 | 黄棕壤、红壤 Yellow-brown soil, red soil |
建德 Jiande | 29°28' | 119°15' | 28 | 淡水性沿岸潮间带 Freshwater intertidal zone | 5.5 | 20 000~ 30 000 | 沙质土 Sandy soil |
性状 Trait | 区组d1 Block | 居群d2 Population | 基因型d3(居群内) Genotype (within population) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MS | F值 F value | MS | F值 F value | MS | F值 F value | |||||
平均生长速率1 Mean growth rate 1 | 14.370 | 2.100 | 46.784 | 6.870** | 2.237 | 0.330 | ||||
平均生长速率2 Mean growth rate 2 | 9.015 | 1.640 | 54.440 | 9.900** | 2.600 | 0.470 | ||||
平均发育速率1 Mean development rate 1 | 0.126 | 2.440 | 2.245 | 43.630** | 0.134 | 2.610* | ||||
平均发育速率2 Mean development rate 2 | 0.049 | 2.330 | 0.201 | 9.610** | 0.012 | 0.610 | ||||
植株高度1 Height 1 | 13.632 | 2.470 | 118.169 | 21.390** | 5.204 | 0.940 | ||||
植株高度2 Height 2 | 19.787 | 4.160* | 52.109 | 10.940** | 5.918 | 1.240 | ||||
叶片数 Number of fronds | 1.485 | 3.540* | 15.502 | 36.980** | 0.676 | 1.610 | ||||
平均叶片面积 Mean area of frond | 0.636 | 0.750 | 1.200 | 1.068 | 1.228 | 1.450 | ||||
大孢子叶高度 Height of macrosporophyll | 2.232 | 0.460 | 11.331 | 2.330 | 7.179 | 1.470 | ||||
大孢子叶基宽度 Width of the base of macrosporophyll | 0.004 | 1.960 | 0.003 | 1.780 | 0.001 | 0.680 | ||||
大孢子囊的长度 Length of macrosporangium | 0.012 | 4.400* | 0.009 | 3.220* | 0.007 | 2.440* | ||||
大孢子囊的宽度 Width of macrosporangium | 0.001 | 0.850 | 0.005 | 3.810* | 0.004 | 2.840* | ||||
大孢子囊的长宽比 Ratio of length to width | 0.091 | 2.690 | 0.009 | 0.270 | 0.043 | 1.280 | ||||
大孢子囊的产孢数 Number of macrospores per macrosporangium | 0.069 | 4.810* | 0.554 | 38.690** | 0.031 | 2.190 |
表2 中华水韭3个居群数量性状的区组、居群效应和居群内基因型效应的巢式方差分析
Table 2 Nested analysis of the effects of blocks, populations and within-population genotypes of the three populations of Isoetes sinensis
性状 Trait | 区组d1 Block | 居群d2 Population | 基因型d3(居群内) Genotype (within population) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MS | F值 F value | MS | F值 F value | MS | F值 F value | |||||
平均生长速率1 Mean growth rate 1 | 14.370 | 2.100 | 46.784 | 6.870** | 2.237 | 0.330 | ||||
平均生长速率2 Mean growth rate 2 | 9.015 | 1.640 | 54.440 | 9.900** | 2.600 | 0.470 | ||||
平均发育速率1 Mean development rate 1 | 0.126 | 2.440 | 2.245 | 43.630** | 0.134 | 2.610* | ||||
平均发育速率2 Mean development rate 2 | 0.049 | 2.330 | 0.201 | 9.610** | 0.012 | 0.610 | ||||
植株高度1 Height 1 | 13.632 | 2.470 | 118.169 | 21.390** | 5.204 | 0.940 | ||||
植株高度2 Height 2 | 19.787 | 4.160* | 52.109 | 10.940** | 5.918 | 1.240 | ||||
叶片数 Number of fronds | 1.485 | 3.540* | 15.502 | 36.980** | 0.676 | 1.610 | ||||
平均叶片面积 Mean area of frond | 0.636 | 0.750 | 1.200 | 1.068 | 1.228 | 1.450 | ||||
大孢子叶高度 Height of macrosporophyll | 2.232 | 0.460 | 11.331 | 2.330 | 7.179 | 1.470 | ||||
大孢子叶基宽度 Width of the base of macrosporophyll | 0.004 | 1.960 | 0.003 | 1.780 | 0.001 | 0.680 | ||||
大孢子囊的长度 Length of macrosporangium | 0.012 | 4.400* | 0.009 | 3.220* | 0.007 | 2.440* | ||||
大孢子囊的宽度 Width of macrosporangium | 0.001 | 0.850 | 0.005 | 3.810* | 0.004 | 2.840* | ||||
大孢子囊的长宽比 Ratio of length to width | 0.091 | 2.690 | 0.009 | 0.270 | 0.043 | 1.280 | ||||
大孢子囊的产孢数 Number of macrospores per macrosporangium | 0.069 | 4.810* | 0.554 | 38.690** | 0.031 | 2.190 |
性状Trait | 居群 Population | ||
---|---|---|---|
松阳 Songyang | 建德 Jiande | 休宁 Xiuning | |
平均生长速率1 Mean growth rate 1 | 7.999(0.659)a | 6.637(0.434)a | 5.367(0.342)c |
平均生长速率2 Mean growth rate 2 | 5.483(0.513)a | 5.320(0.369)a | 2.897(0.452)b |
平均发育速率1 Mean development rate 1 | 0.855(0.059)a | 0.452(0.048)b | 0.359(0.047)b |
平均发育速率2 Mean development rate 2 | 0.395(0.035)a | 0.341(0.023)a | 0.208(0.023)b |
植株高度1 Height 1 | 14.963(0.390)b | 18.481(0.451)a | 15.963(0.522)b |
植株高度2 Height 2 | 15.741(0.435)b | 18.981(0.457)a | 16.634(0.440)b |
叶片数 Number of fronds | 6.420(0.656)a | 5.893(0.122)a | 4.905(0.149)b |
大孢子囊的长度Length of macrosporangium | 0.352(0.013)ab | 0.368(0.012)a | 0.329(0.009)b |
大孢子囊的宽度 Width of macrosporangium | 0.253(0.009)ab | 0.267(0.007)a | 0.236(0.009)b |
大孢子囊的产孢数Number of macrospores per macrosporangium | 2.040(0.025)b | 2.309(0.029)a | 2.065(0.025)b |
表3 中华水韭3个居群的10个数量性状的平均值
Table 3 Mean values of the ten quantitative traits in the three populations of Isoetes sinensis
性状Trait | 居群 Population | ||
---|---|---|---|
松阳 Songyang | 建德 Jiande | 休宁 Xiuning | |
平均生长速率1 Mean growth rate 1 | 7.999(0.659)a | 6.637(0.434)a | 5.367(0.342)c |
平均生长速率2 Mean growth rate 2 | 5.483(0.513)a | 5.320(0.369)a | 2.897(0.452)b |
平均发育速率1 Mean development rate 1 | 0.855(0.059)a | 0.452(0.048)b | 0.359(0.047)b |
平均发育速率2 Mean development rate 2 | 0.395(0.035)a | 0.341(0.023)a | 0.208(0.023)b |
植株高度1 Height 1 | 14.963(0.390)b | 18.481(0.451)a | 15.963(0.522)b |
植株高度2 Height 2 | 15.741(0.435)b | 18.981(0.457)a | 16.634(0.440)b |
叶片数 Number of fronds | 6.420(0.656)a | 5.893(0.122)a | 4.905(0.149)b |
大孢子囊的长度Length of macrosporangium | 0.352(0.013)ab | 0.368(0.012)a | 0.329(0.009)b |
大孢子囊的宽度 Width of macrosporangium | 0.253(0.009)ab | 0.267(0.007)a | 0.236(0.009)b |
大孢子囊的产孢数Number of macrospores per macrosporangium | 2.040(0.025)b | 2.309(0.029)a | 2.065(0.025)b |
性状 Trait | 全同胞 Full-sib assumption | 克隆 Clonal assumption | 自交系 Selfing assumption | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QST | 95% L1 | 95% L2 | 与FST 比较 Compare with FST | QST | 95% L1 | 95% L2 | 与FST 比较 Compare with FST | QST | 95% L1 | 95% L2 | 与FST 比较 Compare with FST | |||
平均生长速率1 Mean growth rate 1 | 0.616 | 0.059 | 0.973 | 0.721 | 0.111 | 0.987 | 0.801 | 0.172 | 0.993 | |||||
平均生长速率2 Mean growth rate 2 | 0.678 | 0.072 | 0.978 | 0.771 | 0.113 | 0.988 | 0.841 | 0.183 | 0.995 | |||||
平均发育速率1 Mean development rate 1 | 0.553 | 0.171 | 0.909 | 0.690 | 0.292 | 0.952 | + | 0.802 | 0.452 | 0.976 | + | |||
平均发育速率2 Mean development rate 2 | 0.542 | 0.187 | 0.903 | 0.680 | 0.313 | 0.948 | + | 0.798 | 0.464 | 0.974 | + | |||
植株高度1 Height 1 | 0.727 | <0.001 | 0.991 | NA | 0.777 | <0.001 | 0.995 | NA | 0.869 | 0.002 | 0.997 | NA | ||
植株高度2 Height 2 | 0.611 | 0.031 | 0.977 | 0.715 | 0.061 | 0.988 | 0.799 | 0.130 | 0.994 | |||||
叶片数 Number of fronds | 0.656 | 0.148 | 0.958 | 0.768 | 0.233 | 0.981 | + | 0.848 | 0.324 | 0.989 | + | |||
平均叶片面积 Mean area of frond | 0.387 | 0.071 | 0.857 | 0.525 | 0.133 | 0.924 | 0.657 | 0.238 | 0.960 | + | ||||
大孢子叶高度 Height of macrosporophyll | 0.371 | 0.030 | 0.912 | 0.487 | 0.057 | 0.950 | 0.607 | 0.108 | 0.975 | |||||
大孢子叶基宽度 Width of the base of macrosporophyll | 0.550 | 0.197 | 0.906 | 0.686 | 0.317 | 0.952 | + | 0.804 | 0.205 | 0.974 | ||||
大孢子囊的长度 Length of macrosporangium | 0.544 | 0.184 | 0.907 | 0.683 | 0.313 | 0.951 | + | 0.800 | 0.487 | 0.974 | + | |||
大孢子囊的宽度 Width of macrosporangium | 0.548 | 0.199 | 0.904 | 0.685 | 0.315 | 0.951 | + | 0.800 | 0.477 | 0.976 | + | |||
大孢子囊的长宽比Ratio of length to width | 0.514 | 0.164 | 0.900 | 0.655 | 0.282 | 0.947 | + | 0.777 | 0.442 | 0.973 | + | |||
大孢子囊的产孢数 Number of macrospores per macrosporangium | 0.547 | 0.178 | 0.913 | 0.685 | 0.303 | 0.952 | + | 0.801 | 0.471 | 0.975 | + |
表4 QST值及显著性
Table 4 QST values and significance
性状 Trait | 全同胞 Full-sib assumption | 克隆 Clonal assumption | 自交系 Selfing assumption | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QST | 95% L1 | 95% L2 | 与FST 比较 Compare with FST | QST | 95% L1 | 95% L2 | 与FST 比较 Compare with FST | QST | 95% L1 | 95% L2 | 与FST 比较 Compare with FST | |||
平均生长速率1 Mean growth rate 1 | 0.616 | 0.059 | 0.973 | 0.721 | 0.111 | 0.987 | 0.801 | 0.172 | 0.993 | |||||
平均生长速率2 Mean growth rate 2 | 0.678 | 0.072 | 0.978 | 0.771 | 0.113 | 0.988 | 0.841 | 0.183 | 0.995 | |||||
平均发育速率1 Mean development rate 1 | 0.553 | 0.171 | 0.909 | 0.690 | 0.292 | 0.952 | + | 0.802 | 0.452 | 0.976 | + | |||
平均发育速率2 Mean development rate 2 | 0.542 | 0.187 | 0.903 | 0.680 | 0.313 | 0.948 | + | 0.798 | 0.464 | 0.974 | + | |||
植株高度1 Height 1 | 0.727 | <0.001 | 0.991 | NA | 0.777 | <0.001 | 0.995 | NA | 0.869 | 0.002 | 0.997 | NA | ||
植株高度2 Height 2 | 0.611 | 0.031 | 0.977 | 0.715 | 0.061 | 0.988 | 0.799 | 0.130 | 0.994 | |||||
叶片数 Number of fronds | 0.656 | 0.148 | 0.958 | 0.768 | 0.233 | 0.981 | + | 0.848 | 0.324 | 0.989 | + | |||
平均叶片面积 Mean area of frond | 0.387 | 0.071 | 0.857 | 0.525 | 0.133 | 0.924 | 0.657 | 0.238 | 0.960 | + | ||||
大孢子叶高度 Height of macrosporophyll | 0.371 | 0.030 | 0.912 | 0.487 | 0.057 | 0.950 | 0.607 | 0.108 | 0.975 | |||||
大孢子叶基宽度 Width of the base of macrosporophyll | 0.550 | 0.197 | 0.906 | 0.686 | 0.317 | 0.952 | + | 0.804 | 0.205 | 0.974 | ||||
大孢子囊的长度 Length of macrosporangium | 0.544 | 0.184 | 0.907 | 0.683 | 0.313 | 0.951 | + | 0.800 | 0.487 | 0.974 | + | |||
大孢子囊的宽度 Width of macrosporangium | 0.548 | 0.199 | 0.904 | 0.685 | 0.315 | 0.951 | + | 0.800 | 0.477 | 0.976 | + | |||
大孢子囊的长宽比Ratio of length to width | 0.514 | 0.164 | 0.900 | 0.655 | 0.282 | 0.947 | + | 0.777 | 0.442 | 0.973 | + | |||
大孢子囊的产孢数 Number of macrospores per macrosporangium | 0.547 | 0.178 | 0.913 | 0.685 | 0.303 | 0.952 | + | 0.801 | 0.471 | 0.975 | + |
[1] |
Bonnin I, Prosperi J, Olivieri I (1996). Genetic markers and quantitative genetic variation in Medicago truncatula (Leguminosae): a comparative analysis of population structure. Genetics, 143, 1795-1805.
URL PMID |
[2] | Budke JM, Hickey RJ, Heafner KD (2005). Analysis of morphological and anatomical characteristics of Isoetes using Isoetes tennesseensis. Brittonia, 57, 167-182. |
[3] | Caplen CA, Werth CR (2000). Isozymes of the Isoetes riparia complex. Ⅰ. Genetic variation and relatedness of diploid species. Systematic Botany, 25, 235-259. |
[4] | Chen JM (陈进明), Wang JY (王晶苑), Liu X (刘星), Zhang YW (张彦文), Wang QF (王青锋) (2004). RAPD analysis for genetic diversity of Isoetes sinensis. Biodiversity Science (生物多样性), 12, 348-353. (in Chinese with English abstract) |
[5] | Chen YY (陈媛媛), Ye QG (叶其刚), Huang HW (黄宏文) (2003). Preliminary study on allozyme analysis for Isoetes sinensis Palmer. Journal of Wuhan Botanical Research (武汉植物学研究), 21, 91-94. (in Chinese with English abstract) |
[6] | Chen YY (陈媛媛), Ye QG (叶其刚) Li ZZ (李作洲), Huang HW (黄宏文) (2004). Genetic structure of Xiuning population of Isoetes sinensis, a critically endangered species in China. Biodiversity Science (生物多样性), 12, 564-571. (in Chinese with English abstract) |
[7] | Corander J, Waldmann P, Sillanpää MJ (2003). Bayesian analysis of genetic differentiation between populations. Genetics, 163, 367-374. |
[8] | Dawson KJ, Belkhir K (2001). A Bayesian approach to the identification of panmictic populations and the assignment of individuals. Genetical Research, 78, 59-77. |
[9] | Ellstrand NC, Elam DR (1993). Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology and Systematics, 24, 217-242. |
[10] | Fang YY, Cheng CZ (1992). Isoetes sinensis Palmer. In: Fu LG, Jin JM eds. China Plant Red Data Book-Rare and Endangered Plants. Science Press, Beijing, 17. |
[11] | Frankham R, Ballou JD, Briscoe DA (2002). Acta Introduction to Conservation Genetics. Cambridge University Press, Cambridge. |
[12] | Gravuer K, von Wettberg E, Schmitt J (2005). Population differentiation and genetic variation inform translocation decisions for Liatris scariosa var. novae-angliae, a rare New England grassland perennial. Biological Conservation, 124, 155-167. |
[13] | Griffith B, Scott JM, Carpenter JW, Reed C (1989). Translocation as a species conservation tool: status and strategy. Science, 245, 477-480. |
[14] | Groonbridge JJ, Jones CG, Bruford MW, Nichols RA (2000). 'Ghost' alleles of the Mauritius kestrel. Nature, 403, 616. |
[15] | Hao RM (郝日明), Huang ZY (黄致远), Liu XJ (刘兴剑), Wang ZL (王中磊), Xu HQ (徐惠强), Yao ZG (姚志刚) (2000). The natural distribution and characteristics of the rare and endangered plants in Jiangsu, China. Chinese Biodiversity (生物多样性), 8, 153-162. (in Chinese with English abstract) |
[16] | Hickey RJ (1986). On the identity of Isoetes triquetra A. Braun. Taxon, 35, 243-246. |
[17] | Hickey RJ, Macluf C, Taylor WC (2003). A re-evaluation of Isoetes savatieri Franchet in Argentina and Chile. American Fern Journal, 93, 126-136. |
[18] | Huang HW (黄宏文) (2000). Ultra-thin slab IEF-PAGE method—an effective bio-analytic method for isozyme analysis. Journal of Wuhan Botanical Research (武汉植物学研究), 18, 224-228. (in Chinese with English abstract) |
[19] | Hufford KM, Mazer SJ (2003). Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends in Ecology and Evolution, 18, 147-155. |
[20] | Kang M, Ye QG, Huang HW (2005). Genetic consequence of restricted habitat and population decline in endangered Isoetes sinensis (Isoetaceae). Annals of Botany, 96, 1265-1274. |
[21] | Liu H, Wang QF, Taylor WC (2005). Isoetes orientalis (Isoetaceae), a new haxaploid quillwort from China. Novon, 15, 164-167. |
[22] | McDowell SCL, Turner DP (2002). Reproductive effort in invasive and non-invasion Rubus. Oecologia, 133, 102-111. |
[23] | McKay JK, Latta RG (2002). Adaptive population divergence: markers, QTL and traits. Trends in Ecology and Evolution, 17, 285-291. |
[24] | Meng FS (孟繁松)(1998). Studies on Annalepis from Middle Triassic along the Yangtze River and its bearing on the orgin of Isoetes. Acta Botanica Sinica (植物学报), 40, 768-774. (in Chinese with English abstract) |
[25] | Merilä J, Crnokrak P (2001). Comparison of genetic differentiation at marker loci and quantitative traits. Journal of Evolutionary Biology, 14, 892-903. |
[26] | Pang XA (庞新安), Liu X (刘星), Liu H (刘虹), Wu C (吴翠), Wang JY (王晶苑), Yang SX (杨书香), Wang QF (王青锋) (2003). The geographic distribution and habitat of the Isoetes plants in China. Biodiversity Science (生物多样性), 11, 288-294. (in Chinese with English abstract) |
[27] | Petit C, Fréville H, Mignot A, Colas B, Riba M, Imbert E, Hurtrez-Boussés S, Virevaire M, Olivieri I (2001). Gene flow and local adaptation in two endemic plant species. Biological Conservation, 100, 21-34. |
[28] | Prout T, Baker JSF (1989). Ecological aspects of the heritability of body size in Drosophila buzzatii. Genetics, 123, 803-813. |
[29] | Spiegelhalter DJ, Thomas A, Best N, Lunn D (2003). WinBUGS. Ver. 1.4 User Manual. MRC Biostatistics Unit, Cambridge, U.K, http://www.mrc-bsu.cam.ac.uk/bugs. |
[30] | Spitze K (1993). Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics, 135, 367-374. |
[31] | Storfer A (1996). Quantitative genetics: a promising approach for the assessment of genetic variation in endangered species. Trends in Ecology and Evolution, 11, 343-348. |
[32] | Takamiya M, Watanabe M, Ono K (1994). Biosystematic studies on the genus Isoetes (Isoetaceae) in Japan. Ⅰ. Variations of the somatic chromosome number. Journal of Plant Research, 107, 289-297. |
[33] | Taylor WC, Hickey RJ (1992). Habitat, evolution and speciation in Isoetes. Annals of the Missouri Botanical Garden, 79, 613-621. |
[34] |
Tonsor SJ, Kalisz S, Fisher J, Holtsford TP (1993). A life-history based study of population genetic structure: seed bank to adults in Plantago lanceolata. Evolution, 47, 833-843.
URL PMID |
[35] | Waldmann P, Andersson S (1998). Comparison of quantitative genetic variation and allozyme diversity within and between populations of Scabiosa canescens and S. columbaria. Heredity, 81, 79-85. |
[36] |
Waldmann P, García-Gil MR, Sillanpää MIJ (2005). Comparing Bayesian estimates of genetic differentiation of molecular markers and quantitative traits: an application to Pinus syvestris. Heredity, 94, 623-629.
URL PMID |
[37] |
Yang RC, Yeh FC, Yanchuk AD (1996). A comparison of isozyme and quantitative genetic variation in Pinus contorta ssp. latifolia by FST. Genetics, 142, 1045-1052.
URL PMID |
[38] | Ye QG (叶其刚), Li JQ (李建强) (2003). Distribution status and causation of endangerment of Isoetes sinensis Palmer in Zhejiang Province. Journal of Wuhan Botanical Research (武汉植物学研究), 21, 216-222. (in Chinese with English abstract) |
[39] |
Young A, Boyle T, Brown T (1996). The population genetic consequences of habtat fragmentation for plants. Trends in Ecology and Evolution, 11, 413-418.
URL PMID |
[40] | Yu YF (于永福) (1999). A milestone of wild plant conservation in China. Plants (植物杂志), (5), 3-11. (in Chinese) |
[1] | 杜军, 王文, 何志斌, 陈龙飞, 蔺鹏飞, 朱喜, 田全彦. 祁连山青海云杉物候表型的空间分异及其内在机制[J]. 植物生态学报, 2021, 45(8): 834-843. |
[2] | 秦天姿, 任安芝, 樊晓雯, 高玉葆. 内生真菌种类和母本基因型对内生真菌-禾草共生体叶形状和叶面积的影响[J]. 植物生态学报, 2020, 44(6): 654-660. |
[3] | 张俪文, 韩广轩. 植物遗传多样性与生态系统功能关系的研究进展[J]. 植物生态学报, 2018, 42(10): 977-989. |
[4] | 杨雪, 申俊芳, 赵念席, 高玉葆. 不同基因型羊草数量性状的可塑性及遗传分化[J]. 植物生态学报, 2017, 41(3): 359-368. |
[5] | 慈敦伟,戴良香,宋文武,张智猛. 花生萌发至苗期耐盐胁迫的基因型差异[J]. 植物生态学报, 2013, 37(11): 1018-1027. |
[6] | 顾舒平, 尹黎燕, 李洁琳, 李伟. 不同碱度条件下中华水韭昼夜CO2气体交换的特征[J]. 植物生态学报, 2009, 33(6): 1184-1190. |
[7] | 王晨阳, 郭天财, 马冬云, 朱云集, 贺德先, 王永华. 环境、基因型及其互作对小麦主要品质性状的影响[J]. 植物生态学报, 2008, 32(6): 1397-1406. |
[8] | 刘亚令, 李作洲, 姜正旺, 刘义飞, 黄宏文. 中华猕猴桃和美味猕猴桃自然居群遗传结构及其种间杂交渐渗[J]. 植物生态学报, 2008, 32(3): 704-718. |
[9] | 陈小莉, 李世清, 任小龙, 强虹, 吉春容, 闫登明. 大气NH3浓度升高对不同氮效率玉米生理指标及生物量的影响[J]. 植物生态学报, 2008, 32(1): 204-211. |
[10] | 李钧敏, 董鸣, 钟章成. 入侵植物薇甘菊种群的遗传分化[J]. 植物生态学报, 2007, 31(4): 680-688. |
[11] | 朱志红, 刘建秀, 王孝安. 克隆植物的表型可塑性与等级选择[J]. 植物生态学报, 2007, 31(4): 588-598. |
[12] | 王铁娟, 杨持, 马静, 乔淑军, 尹俊. 籽蒿的地理分布与遗传分化[J]. 植物生态学报, 2005, 29(1): 122-127. |
[13] | 江立庚, 戴廷波, 韦善清, 甘秀芹, 徐建云, 曹卫星. 南方水稻氮素吸收与利用效率的基因型差异及评价[J]. 植物生态学报, 2003, 27(4): 466-471. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19