植物生态学报 ›› 2008, Vol. 32 ›› Issue (1): 204-211.DOI: 10.3773/j.issn.1005-264x.2008.01.024
陈小莉1, 李世清1,2,*(), 任小龙2, 强虹2, 吉春容2, 闫登明2
收稿日期:
2006-10-30
接受日期:
2007-02-03
出版日期:
2008-10-30
发布日期:
2008-01-30
通讯作者:
李世清
作者简介:
* E- mail: spl@ms.iswc.ac.cn基金资助:
CHEN Xiao-Li1, LI Shi-Qing1,2,*(), REN Xiao-Long2, QIANG Hong2, JI Chun-Rong2, YAN Deng-Ming2
Received:
2006-10-30
Accepted:
2007-02-03
Online:
2008-10-30
Published:
2008-01-30
Contact:
LI Shi-Qing
摘要:
该试验采用开顶式气室(Open top chambers)装置,在两种大气NH3浓度水平(大气背景浓度值为10 nl·L-1和高NH3浓度1 000 nl·L-1)和两种供氮介质水平(高供氮介质和低供氮介质)下,对两种氮效率玉米(Zea mays)基因型(‘氮高效5号’(NE5)和‘氮低效四单19’(SD19))的叶绿素指标值(SPAD值)、净光合速率(Pn)、气孔导度(Gs)、生物量和根冠比等生物学和生理学指标进行了测定。结果表明,大气NH3浓度升高对两种氮效率玉米基因型各生理指标有显著影响(p<0.05)。与大气背景NH3浓度相比,当大气NH3浓度为1 000 nl·L-1 时,生长在高供氮介质中氮高效5号的SPAD值、Pn和Gs分别降低7.0%、14.0%和6.5%,而氮低效四单19的对应指标分别降低9.0%、11.0%和6.9%;生长在低供氮介质中的两种氮效率玉米基因型各生理指标均显著增加(p<0.05):氮高效5号的SPAD值、Pn和Gs分别增加5.7%、7.1%和17%,氮低效四单19的对应指标分别增加7.0%、11.0%和22.0%。高供氮介质中NH3浓度升高对氮低效基因型玉米冠层生物量抑制作用小于对氮高效基因型玉米的抑制效应,而低供氮介质中NH3浓度升高对氮高效基因型玉米冠部的促进作用显著高于对氮低效基因型玉米的促进作用(p<0.05);两种大气NH3营养下玉米根冠比的变化与采样时期有关。说明从大气中吸收NH3有利于改善生长在低供氮介质上玉米的氮素营养状况,而且对氮低效基因型玉米的促进作用比对氮高效基因型玉米更加显著。
陈小莉, 李世清, 任小龙, 强虹, 吉春容, 闫登明. 大气NH3浓度升高对不同氮效率玉米生理指标及生物量的影响. 植物生态学报, 2008, 32(1): 204-211. DOI: 10.3773/j.issn.1005-264x.2008.01.024
CHEN Xiao-Li, LI Shi-Qing, REN Xiao-Long, QIANG Hong, JI Chun-Rong, YAN Deng-Ming. INFLUENCE OF INCREASED ATMOSPHERIC NH3 ON PHYSIOLOGY INDEX AND BIOMASS OF MAIZE WITH DIFFERENT N EFFICIENCY. Chinese Journal of Plant Ecology, 2008, 32(1): 204-211. DOI: 10.3773/j.issn.1005-264x.2008.01.024
基因型 Genotype | NH3浓度 NH3 concentration (nl·L-1) | SPAD值 SPAD value | Pn (μmol CO2·m-2·s-1) | Gs (mmol·m-2·s-1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6月10日 June 10 | 6月20日 June 20 | 6月30日 June 30 | 平均 Average | 6月10日 June 10 | 6月20日 June 20 | 6月30日 June 30 | 平均 Average | 6月10日 June 10 | 6月20日 June 20 | 6月30日 June 30 | 平均 Average | ||||||||||
高供氮介质 High N medium | |||||||||||||||||||||
NE5 | 10 | 43.6 | 45.4 | 47.1 | 45.4a | 23.6 | 25.8 | 26.5 | 25.3b | 0.20 | 0.24 | 0.26 | 0.23b | ||||||||
SD19 | 10 | 38.2 | 40.0 | 42.3 | 40.2b | 26.3 | 29.1 | 29.8 | 28.4a | 0.28 | 0.32 | 0.33 | 0.31a | ||||||||
NE5 | 1 000 | 40.1 | 42.1 | 44.5 | 42.2a | 19.9 | 21.8 | 23.6 | 21.8b | 0.11 | 0.14 | 0.18 | 0.14b | ||||||||
SD19 | 1 000 | 34.7 | 36.6 | 38.4 | 36.6b | 22.3 | 25.6 | 28.0 | 25.3a | 0.27 | 0.31 | 0.29 | 0.29a | ||||||||
低供氮介质 Low N medium | |||||||||||||||||||||
NE5 | 10 | 37.6 | 39.6 | 41.6 | 39.6a | 21.0 | 23.3 | 26.4 | 23.6a | 0.17 | 0.19 | 0.22 | 0.19a | ||||||||
SD19 | 10 | 33.9 | 35.9 | 37.9 | 35.9a | 17.5 | 19.3 | 21.5 | 19.4b | 0.11 | 0.13 | 0.18 | 0.14a | ||||||||
NE5 | 1 000 | 40.0 | 42.0 | 44.0 | 42.0a | 22.1 | 25.3 | 28.8 | 25.4a | 0.19 | 0.24 | 0.26 | 0.23a | ||||||||
SD19 | 1 000 | 36.3 | 38.3 | 40.3 | 38.3b | 18.9 | 21.8 | 24.3 | 21.7b | 0.15 | 0.18 | 0.21 | 0.18b |
表1 不同供氮介质下NH3浓度升高对不同时期‘氮高效5号’(NE5)和‘氮低效四单19’(SD19)的SPAD值、Pn和Gs的影响
Table 1 Effects of increased atmospheric NH3 on SPAD value, Pn and Gs for different growth stages of NE5 and SD19 with various N supplies
基因型 Genotype | NH3浓度 NH3 concentration (nl·L-1) | SPAD值 SPAD value | Pn (μmol CO2·m-2·s-1) | Gs (mmol·m-2·s-1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6月10日 June 10 | 6月20日 June 20 | 6月30日 June 30 | 平均 Average | 6月10日 June 10 | 6月20日 June 20 | 6月30日 June 30 | 平均 Average | 6月10日 June 10 | 6月20日 June 20 | 6月30日 June 30 | 平均 Average | ||||||||||
高供氮介质 High N medium | |||||||||||||||||||||
NE5 | 10 | 43.6 | 45.4 | 47.1 | 45.4a | 23.6 | 25.8 | 26.5 | 25.3b | 0.20 | 0.24 | 0.26 | 0.23b | ||||||||
SD19 | 10 | 38.2 | 40.0 | 42.3 | 40.2b | 26.3 | 29.1 | 29.8 | 28.4a | 0.28 | 0.32 | 0.33 | 0.31a | ||||||||
NE5 | 1 000 | 40.1 | 42.1 | 44.5 | 42.2a | 19.9 | 21.8 | 23.6 | 21.8b | 0.11 | 0.14 | 0.18 | 0.14b | ||||||||
SD19 | 1 000 | 34.7 | 36.6 | 38.4 | 36.6b | 22.3 | 25.6 | 28.0 | 25.3a | 0.27 | 0.31 | 0.29 | 0.29a | ||||||||
低供氮介质 Low N medium | |||||||||||||||||||||
NE5 | 10 | 37.6 | 39.6 | 41.6 | 39.6a | 21.0 | 23.3 | 26.4 | 23.6a | 0.17 | 0.19 | 0.22 | 0.19a | ||||||||
SD19 | 10 | 33.9 | 35.9 | 37.9 | 35.9a | 17.5 | 19.3 | 21.5 | 19.4b | 0.11 | 0.13 | 0.18 | 0.14a | ||||||||
NE5 | 1 000 | 40.0 | 42.0 | 44.0 | 42.0a | 22.1 | 25.3 | 28.8 | 25.4a | 0.19 | 0.24 | 0.26 | 0.23a | ||||||||
SD19 | 1 000 | 36.3 | 38.3 | 40.3 | 38.3b | 18.9 | 21.8 | 24.3 | 21.7b | 0.15 | 0.18 | 0.21 | 0.18b |
基因型 Genotype | NH3浓度 NH3 concentration (nl·L-1) | 测定日期 Determination time | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
6月10日 June 10 | 6月20日 June 20 | 6月30日 June 30 | ||||||||||
根系 Roots | 茎叶 Shoots | 总量 Total | 根系 Roots | 茎叶 Shoots | 总量 Total | 根系 Roots | 茎叶 Shoots | 总量 Total | ||||
高供氮介质 High N medium | ||||||||||||
NE5 | 10 | 0.15a | 0.44a | 0.59a | 5.75a | 9.49a | 15.24a | 50.90a | 246.36a | 297.26a | ||
SD19 | 10 | 0.24b | 0.65b | 0.89b | 5.97b | 12.4b | 18.37b | 34.82b | 194.55b | 229.37b | ||
NE5 | 1 000 | 0.14a | 0.36a | 0.50a | 5.44a | 8.83a | 14.27a | 44.26a | 207.33a | 251.59a | ||
SD19 | 1 000 | 0.22b | 0.61b | 0.83b | 5.61b | 11.7b | 17.31b | 24.12b | 164.53b | 188.65b | ||
低供氮介质 Low N medium | ||||||||||||
NE5 | 10 | 0.19a | 0.46a | 0.65a | 6.33a | 10.04a | 16.37a | 36.8a | 147.74a | 184.54a | ||
SD19 | 10 | 0.17b | 0.34b | 0.51b | 5.89b | 9.62a | 15.51a | 37.3a | 125.50b | 162.80b | ||
NE5 | 1 000 | 0.21a | 0.50a | 0.71a | 6.67a | 11.60a | 18.27a | 39.5a | 156.16a | 195.66a | ||
SD19 | 1 000 | 0.19b | 0.43b | 0.62b | 6.22b | 9.80b | 16.02b | 44.8b | 134.83b | 179.63b |
表2 不同供氮介质下NH3浓度升高对‘氮高效5号’(NE5)和‘氮低效四单’(SD19)生物量的影响(克·盆-1)
Table 2 Effects of increased atmospheric NH3 on biomass of NE5 and SD19 under various N supplies (g·pot-1)
基因型 Genotype | NH3浓度 NH3 concentration (nl·L-1) | 测定日期 Determination time | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
6月10日 June 10 | 6月20日 June 20 | 6月30日 June 30 | ||||||||||
根系 Roots | 茎叶 Shoots | 总量 Total | 根系 Roots | 茎叶 Shoots | 总量 Total | 根系 Roots | 茎叶 Shoots | 总量 Total | ||||
高供氮介质 High N medium | ||||||||||||
NE5 | 10 | 0.15a | 0.44a | 0.59a | 5.75a | 9.49a | 15.24a | 50.90a | 246.36a | 297.26a | ||
SD19 | 10 | 0.24b | 0.65b | 0.89b | 5.97b | 12.4b | 18.37b | 34.82b | 194.55b | 229.37b | ||
NE5 | 1 000 | 0.14a | 0.36a | 0.50a | 5.44a | 8.83a | 14.27a | 44.26a | 207.33a | 251.59a | ||
SD19 | 1 000 | 0.22b | 0.61b | 0.83b | 5.61b | 11.7b | 17.31b | 24.12b | 164.53b | 188.65b | ||
低供氮介质 Low N medium | ||||||||||||
NE5 | 10 | 0.19a | 0.46a | 0.65a | 6.33a | 10.04a | 16.37a | 36.8a | 147.74a | 184.54a | ||
SD19 | 10 | 0.17b | 0.34b | 0.51b | 5.89b | 9.62a | 15.51a | 37.3a | 125.50b | 162.80b | ||
NE5 | 1 000 | 0.21a | 0.50a | 0.71a | 6.67a | 11.60a | 18.27a | 39.5a | 156.16a | 195.66a | ||
SD19 | 1 000 | 0.19b | 0.43b | 0.62b | 6.22b | 9.80b | 16.02b | 44.8b | 134.83b | 179.63b |
基因型 Genotype | NH3浓度 NH3 concentration (nl·L-1) | 根冠比 Ratio of roots and shoots | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
高供氮介质 High N medium | 低供氮介质 Low N medium | ||||||||||||
6月10日 June 10 | 6月20日 June 20 | 6月30日 June 30 | 平均 Average | 6月10日 June 10 | 6月20日 June 20 | 6月30日 June 30 | 平均 Average | ||||||
NE5 | 10 | 0.37 | 0.61 | 0.20 | 0.39a | 0.42 | 0.63 | 0.24 | 0.43a | ||||
SD19 | 10 | 0.36 | 0.44 | 0.18 | 0.33b | 0.49 | 0.61 | 0.30 | 0.47a | ||||
NE5 | 1 000 | 0.40 | 0.62 | 0.21 | 0.41a | 0.42 | 0.58 | 0.23 | 0.42a | ||||
SD19 | 1 000 | 0.36 | 0.44 | 0.15 | 0.32b | 0.44 | 0.63 | 0.33 | 0.47a |
表3 不同供氮介质下NH3浓度升高对‘氮高效5号’(NE5)和‘氮低效四单’(SD19)根冠比的影响
Table 3 Effects of increased atmospheric NH3 on ratio of roots and shoots of NES and SD19 under various N supplies
基因型 Genotype | NH3浓度 NH3 concentration (nl·L-1) | 根冠比 Ratio of roots and shoots | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
高供氮介质 High N medium | 低供氮介质 Low N medium | ||||||||||||
6月10日 June 10 | 6月20日 June 20 | 6月30日 June 30 | 平均 Average | 6月10日 June 10 | 6月20日 June 20 | 6月30日 June 30 | 平均 Average | ||||||
NE5 | 10 | 0.37 | 0.61 | 0.20 | 0.39a | 0.42 | 0.63 | 0.24 | 0.43a | ||||
SD19 | 10 | 0.36 | 0.44 | 0.18 | 0.33b | 0.49 | 0.61 | 0.30 | 0.47a | ||||
NE5 | 1 000 | 0.40 | 0.62 | 0.21 | 0.41a | 0.42 | 0.58 | 0.23 | 0.42a | ||||
SD19 | 1 000 | 0.36 | 0.44 | 0.15 | 0.32b | 0.44 | 0.63 | 0.33 | 0.47a |
p值 p value | ||||
---|---|---|---|---|
NH3×N | NH3×G | N×G | NH3×N×G | |
SPAD值 SPAD value | <0.001 | 0.583 | 0.882 | 0.586 |
Pn (μmol CO2·m-2·s-1) | 0.097 | 0.600 | 0.029 | 0.009 |
Gs (mmol·m-2·s-1) | 0.097 | 0.600 | 0.029 | 0.009 |
根冠比 Ratio of roots to shoots (R/C) | <0.001 | 0.871 | <0.001 | 0.184 |
表4 供氮介质、大气NH3浓度升及其基因型对SPAD值、Pn、Gs和根冠比影响交互作用的显著性检验
Table 4 Different significance test for interaction between NH3 concentration, supplying N and genotype on SPAD value, Pn, Gs and R/C
p值 p value | ||||
---|---|---|---|---|
NH3×N | NH3×G | N×G | NH3×N×G | |
SPAD值 SPAD value | <0.001 | 0.583 | 0.882 | 0.586 |
Pn (μmol CO2·m-2·s-1) | 0.097 | 0.600 | 0.029 | 0.009 |
Gs (mmol·m-2·s-1) | 0.097 | 0.600 | 0.029 | 0.009 |
根冠比 Ratio of roots to shoots (R/C) | <0.001 | 0.871 | <0.001 | 0.184 |
[1] | Beat H, Albrecht N (2002). Ammonia exchange with grasslands. Agrarforschung, 9, 280-285. |
[2] | Dueck ThA, Dorèl FG, ter Horst R, van der Eerden LJ (1990). Effects of ammonia, ammonium sulphate and sulphur dioxide on the frost sensitivity of Scots pine (Pinus sylvestris L.). Water, Air, & Soil Pollution, 54, 33-49. |
[3] | Fangmeier A, Hadwiger-Fangmeier A, van der Eerden LJ (1994). Effects of atmospheric ammonia on vegetation—a review. Environmental Pollution, 86, 43-82. |
[4] | Hanstein S, Mattsson M, Jaeger HJ (1999). Uptake and utilization of atmospheric ammonia in three native Poaceae species: leaf conductance, composition of apoplastic solution and interactions with root nitrogen supply. New Phytologist, 141, 71-83. |
[5] | Hegg DA, Radke LF, Hobbs PV (1990). Emissions of some trace gases from biomass fires. Journal of Geophysical Research, 95, 560-567. |
[6] | Husted S, Schjoerring JK (1996). Ammonia flux between oilseed rape plant and the atmosphere in response to changes in leaf temperature, light intensity, and air humidity. Plant Physiology, 112, 67-74. |
[7] | Krupa SV (2003). Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environmental Pollution, 124, 179-221. |
[8] | Li SX (李生秀), Li ZR (李宗让), Tian XH (田霄鸿), Wang ZH (王朝辉) (1995). Nitrogen loss from above-ground plants by volatilization. Plant Nutrition and Fertilizer Sciences (植物营养与肥料学报), 1(2), 18-25. (in Chinese with English abstract) |
[9] | Li SQ (李世清), Zhao L (赵琳), Shao MA (邵明安), Zhang XC (张兴昌), Shangguan ZP (上官周平) (2004). Ammonia exchange between plant canopy and the atmosphere—a review. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 24, 2154-2162. (in Chinese with English abstract) |
[10] | Lockyer DR, Whitehead DC (1986). The uptake of gaseous ammonia by the leaves of Italian ryegrass. Journal of Experimental Botany, 37, 919-927. |
[11] | Mengel K, Kirkby EA (1987). Principles of Plant Nutrition. International Potash Institute, Bern, Switzerland, 347-384. |
[12] | Nadelhoffer KJ, Emmett BA, Gundersen P (1999). Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 398, 145-147. |
[13] | O'Deen WA, Porter LK (1986). Continuous flow system for collecting volatile ammonia and amines from senescing winter wheat. Agronomy Journal, 78, 746-749. |
[14] | Pearson J, Srewart GR (1993). The deposition of atmospheric ammonia and its effects on plants. New Phytologist, 125, 283-305. |
[15] | Peng S, Garcia FV, Laza RC (1993). Adjustments for specific leaf weight improve chlorophyll meter's estimate of rice leaf nitrogen concentration. Agronomy Journal, 85, 987-990. |
[16] | Pérez-Soba M, van der Eerden LJM (1993). Nitrogen uptake in needles of Scots pine (Pinus sylvestris L.) when exposed to gaseous ammonia and ammonium fertilizer in the soil. Plant and Soil, 153, 231-242. |
[17] | Schjoerring JK, Poulsen MM, Husted S (1998). Soil-plant-atmosphere ammonia exchange associated with Calluna vulgaris and Deschampsia flexuosa. Atmospheric Environment, 32, 507-512. |
[18] | van der Eerden LJM, Pérez-Soba M (1992). Physiological responses of Pinus sylvestris to atmospheric ammonia. Trees, 6, 48-53. |
[19] | van Hove LWA, Van Kooten O, Van Wijk KJ, Vredenberg WJ, Aderna EH, Pieters GA (1991). Physiological effects of long term exposure to low concentrations of SO2 and NH3 on poplar leaves. Physiologia Plantarum, 82, 32-40. |
[20] | Wedin DA, Tilman D (1996). Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science, 274, 1720-1723. |
[21] | Wang ZH (王朝辉), Tian XH (田霄鸿), Li SX (李生秀) (2001). Nitrogen losses from winter wheat plant by NH3 volatilization in late growing stage. Acta Agronomica Sinica (作物学报), 27, 1-6. (in Chinese with English abstract) |
[22] | Yin B, Shen RF, Zhu ZL (1996). Use of new water soluble film-forming material to ammonia loss from water solution. Pedosphere, 6, 329-334. |
[23] | Zhao P (赵平), Sun GC (孙谷畴), Zeng XP (曾小平), Cai XA (蔡锡安), Peng SL (彭少麟) (2003). Variations of photosynthetic parameters in leaves of acacia auriculaeformis grown in different nitrogen sources under increased atmospheric NH3. Acta Ecologica Sinica (生态学报), 23, 1386-1394. (in English with Chinese abstract) |
[1] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[2] | 秦天姿, 任安芝, 樊晓雯, 高玉葆. 内生真菌种类和母本基因型对内生真菌-禾草共生体叶形状和叶面积的影响[J]. 植物生态学报, 2020, 44(6): 654-660. |
[3] | 张俪文, 韩广轩. 植物遗传多样性与生态系统功能关系的研究进展[J]. 植物生态学报, 2018, 42(10): 977-989. |
[4] | 杨雪, 申俊芳, 赵念席, 高玉葆. 不同基因型羊草数量性状的可塑性及遗传分化[J]. 植物生态学报, 2017, 41(3): 359-368. |
[5] | 李义博, 宋贺, 周莉, 许振柱, 周广胜. C4植物玉米的光合-光响应曲线模拟研究[J]. 植物生态学报, 2017, 41(12): 1289-1300. |
[6] | 赵文赛, 孙永林, 刘西平. 干旱-复水-再干旱处理对玉米光合能力和生长的影响[J]. 植物生态学报, 2016, 40(6): 594-603. |
[7] | 孟凡超, 张佳华, 姚凤梅. CO2浓度升高和降水增加协同作用对玉米产量及生长发育的影响[J]. 植物生态学报, 2014, 38(10): 1064-1073. |
[8] | 王艳哲, 邵立威, 刘秀位, 张小雨, 张喜英. 小麦和玉米根系取样位置优化确定及根系分布模拟[J]. 植物生态学报, 2013, 37(4): 365-372. |
[9] | 慈敦伟,戴良香,宋文武,张智猛. 花生萌发至苗期耐盐胁迫的基因型差异[J]. 植物生态学报, 2013, 37(11): 1018-1027. |
[10] | 李涛, 陈保冬. 丛枝菌根真菌通过上调根系及自身水孔蛋白基因表达提高玉米抗旱性[J]. 植物生态学报, 2012, 36(9): 973-981. |
[11] | 杨斌, 谢甫绨, 温学发, 孙晓敏, 王建林. 华北平原农田土壤蒸发δ18O的日变化特征及其影响因素[J]. 植物生态学报, 2012, 36(6): 539-549. |
[12] | 时鹏, 王淑平, 贾书刚, 高强, 孙晓强. 三种种植方式对土壤微生物群落组成的影响[J]. 植物生态学报, 2011, 35(9): 965-972. |
[13] | 王红丽, 张绪成, 宋尚有. 半干旱区旱地不同覆盖种植方式玉米田的土壤水分和产量效应[J]. 植物生态学报, 2011, 35(8): 825-833. |
[14] | 冯远娇, 金琼, 王建武. 机械损伤对Bt玉米化学防御的系统诱导效应[J]. 植物生态学报, 2010, 34(6): 695-703. |
[15] | 贾士芳, 李从锋, 董树亭, 张吉旺. 弱光胁迫影响夏玉米光合效率的生理机制初探[J]. 植物生态学报, 2010, 34(12): 1439-1447. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19