植物生态学报 ›› 2010, Vol. 34 ›› Issue (5): 526-534.DOI: 10.3773/j.issn.1005-264x.2010.05.006
所属专题: 生态系统碳水能量通量
张丽华1,2, 陈亚宁2,*(), 赵锐锋3, 李卫红2, 谢忠奎1
收稿日期:
2009-08-14
接受日期:
2009-12-10
出版日期:
2010-08-14
发布日期:
2010-05-01
通讯作者:
陈亚宁
作者简介:
* E-mail: chenyn@ms.xjb.ac.cn
ZHANG Li-Hua1,2, CHEN Ya-Ning2,*(), ZHAO Rui-Feng3, LI Wei-Hong2, XIE Zhong-Kui1
Received:
2009-08-14
Accepted:
2009-12-10
Online:
2010-08-14
Published:
2010-05-01
Contact:
CHEN Ya-Ning
摘要:
土壤呼吸是陆地生态系统碳循环的重要组成部分。随着全球气候变暖趋势逐渐明显, 土壤呼吸的时空变异及其对温度变化的响应已成为生态学研究的重要内容之一。利用LI-8100自动土壤CO2通量测量系统, 连续两年生长季测定了准噶尔盆地新垦绿洲杨树(Populus sp.)、榆树(Ulmus pumila)人工防护林地土壤呼吸的时间动态, 并分析了土壤水热因子及光合作用对土壤呼吸的影响。研究结果表明: 两种林分土壤呼吸日变化波动呈现一定的不规则性; 季节变化表现为明显的单峰格局。杨树林地土壤呼吸速率显著高于榆树林地, 生长季平均土壤呼吸速率分别为3.71和1.82 μmol CO2·m-2·s-1。两种林分土壤呼吸的季节变化与气温、不同深度层次土壤温度间均呈显著的指数相关, 而与土壤含水量之间相关不显著。50和35 cm土壤温度可以分别解释两种林分土壤呼吸时间变化的78.5%和64.4%, 与土壤温度和含水量的共同解释率接近。林分间土壤呼吸速率差异受到林木生长状况、光合作用及土壤盐分等的影响。研究结果初步阐明了准噶尔盆地干旱区典型绿洲防护林植被土壤呼吸的季节动态特征及主要影响因子, 为进一步揭示该区域林地土壤碳循环特点提供了一定的理论基础。
张丽华, 陈亚宁, 赵锐锋, 李卫红, 谢忠奎. 干旱区杨树、榆树人工防护林地土壤CO2释放通量研究. 植物生态学报, 2010, 34(5): 526-534. DOI: 10.3773/j.issn.1005-264x.2010.05.006
ZHANG Li-Hua, CHEN Ya-Ning, ZHAO Rui-Feng, LI Wei-Hong, XIE Zhong-Kui. Analysis of soil CO2 efflux in Populus and Ulmus pumila planting shelterbelts in arid region, China. Chinese Journal of Plant Ecology, 2010, 34(5): 526-534. DOI: 10.3773/j.issn.1005-264x.2010.05.006
图1 2005年7月(A)、2006年10月(B)杨树人工林地土壤呼吸速率(■)和近地面气温(□)的日变化, 榆树人工林地土壤呼吸速率(●)和近地面气温(○)的日变化。
Fig. 1 Changes of Populus sp. woodland’s soil respiration rate (■) and air temperature near soil surface (□), as well as Ulmus pumila woodland’s soil respiration rate (●) and air temperature near soil surface (○), measured in July 2005 (A) and October 2006 (B).
图2 2005和2006年生长季杨树(实心图标)、榆树(空心图标)人工林地土壤呼吸速率(A)、温度(B)和土壤含水量(C)的季节变化。
Fig. 2 Seasonal variations of soil respiration rate (A), temperature (B) and soil water content (C) in Populus sp. (solid symbols) and Ulmus pumila (open symbols) woodlands in growing season in 2005 and 2006.
年 Year | 类型 Type | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September | 10月 October | 变幅 Fluctuation |
---|---|---|---|---|---|---|---|---|
2005 | 杨树 Populus sp. | 1.854 A | 2.696 aB | 5.170 aC | 3.489 aD | 2.297 aAB | 2.234 aAB | 4.486 |
榆树 Ulmus pumila | 2.106 bA | 2.497 bA | 1.418 bB | 1.290 bBC | 0.999 bBD | 2.689 | ||
2006 | 杨树 Populus sp. | 2.968 aA | 3.251 aAC | 7.461 aB | 6.853 aB | 3.853 aC | 2.505 aD | 6.259 |
榆树 Ulmus pumila | 1.043 bAE | 2.387 bB | 1.594 bCE | 3.433 bD | 2.314 bB | 1.159 bE | 3.187 |
表1 2005和2006年两种林地土壤呼吸速率的差异性比较
Table 1 Comparison of difference in soil respiration rate at two woodlands in 2005 and 2006
年 Year | 类型 Type | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September | 10月 October | 变幅 Fluctuation |
---|---|---|---|---|---|---|---|---|
2005 | 杨树 Populus sp. | 1.854 A | 2.696 aB | 5.170 aC | 3.489 aD | 2.297 aAB | 2.234 aAB | 4.486 |
榆树 Ulmus pumila | 2.106 bA | 2.497 bA | 1.418 bB | 1.290 bBC | 0.999 bBD | 2.689 | ||
2006 | 杨树 Populus sp. | 2.968 aA | 3.251 aAC | 7.461 aB | 6.853 aB | 3.853 aC | 2.505 aD | 6.259 |
榆树 Ulmus pumila | 1.043 bAE | 2.387 bB | 1.594 bCE | 3.433 bD | 2.314 bB | 1.159 bE | 3.187 |
林地类型 Woodland type | 温度 Temperature (℃) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ta | T0 | T5 | T10 | T15 | T20 | T25 | T30 | T35 | T40 | T50 | |
杨树 Populus sp. | 0.436 | 0.348 | 0.538 | 0.567 | 0.611 | 0.641 | 0.682 | 0.720 | 0.747 | 0.769 | 0.785 |
榆树 Ulmus pumila | 0.415 | 0.330 | 0.610 | 0.616 | 0.624 | 0.628 | 0.637 | 0.642 | 0.644 | 0.635 | 0.610 |
表2 杨树、榆树林地土壤呼吸速率与温度的指数相关关系
Table 2 Exponential correlation between soil respiration rate and temperature at two woodlands
林地类型 Woodland type | 温度 Temperature (℃) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ta | T0 | T5 | T10 | T15 | T20 | T25 | T30 | T35 | T40 | T50 | |
杨树 Populus sp. | 0.436 | 0.348 | 0.538 | 0.567 | 0.611 | 0.641 | 0.682 | 0.720 | 0.747 | 0.769 | 0.785 |
榆树 Ulmus pumila | 0.415 | 0.330 | 0.610 | 0.616 | 0.624 | 0.628 | 0.637 | 0.642 | 0.644 | 0.635 | 0.610 |
图3 杨树林地土壤呼吸速率与50 cm土壤温度、榆树林地土壤呼吸与35 cm土壤温度的指数回归。
Fig. 3 Exponential regressions between soil respiration rate and soil temperature at 50 cm depth for Populus sp. woodland and at 35 cm depth for Ulmus pumila woodland.
林地类型 Woodland type | 4-Rs = a +b (TW) | R2 | 7-Rs = aebTWc | R2 | 6-Rs = aTbWc | R2 |
---|---|---|---|---|---|---|
杨树 Populus sp. | Rs = -0.494 + 0.015T50W15-30 | 0.56** | Rs = 0.091e0.131T50W15-300.490 | 0.81* | Rs = 0.002T502.201 W15-300.479 | 0.77* |
榆树 Ulmus pumila | Rs = 0.560 + 0.004T35W5-15 | 0.42* | Rs = 0.181e0.084T35W5-150.291 | 0.59* | Rs = 0.017T351.382 W5-150.258 | 0.58* |
8-Rs = a + bT + cW + dTW | R2 | 5-Rs = a + bT + cW | R2 | |||
杨树 Populus sp. | Rs = 13.554-0.738T50 -1.053W15-30 + 0.071T50W15-30 | 0.82** | Rs = -3.472 + 0.402T50 + 0.025W15-30 | 0.69** | ||
榆树 Ulmus pumila | Rs = 0.698 + 0.043T35 -0.087W5-15 + 0.006T35W5-15 | NS | Rs = -0.842 + 0.134T35 + 0.022W5-15 | 0.56* |
表3 杨树、榆树人工林地土壤呼吸速率与温度、土壤含水量的最佳拟合方程
Table 3 Best regression equations between soil respiration rate and temperature, soil water content at the Populus sp. and Ulmus pumila woodlands
林地类型 Woodland type | 4-Rs = a +b (TW) | R2 | 7-Rs = aebTWc | R2 | 6-Rs = aTbWc | R2 |
---|---|---|---|---|---|---|
杨树 Populus sp. | Rs = -0.494 + 0.015T50W15-30 | 0.56** | Rs = 0.091e0.131T50W15-300.490 | 0.81* | Rs = 0.002T502.201 W15-300.479 | 0.77* |
榆树 Ulmus pumila | Rs = 0.560 + 0.004T35W5-15 | 0.42* | Rs = 0.181e0.084T35W5-150.291 | 0.59* | Rs = 0.017T351.382 W5-150.258 | 0.58* |
8-Rs = a + bT + cW + dTW | R2 | 5-Rs = a + bT + cW | R2 | |||
杨树 Populus sp. | Rs = 13.554-0.738T50 -1.053W15-30 + 0.071T50W15-30 | 0.82** | Rs = -3.472 + 0.402T50 + 0.025W15-30 | 0.69** | ||
榆树 Ulmus pumila | Rs = 0.698 + 0.043T35 -0.087W5-15 + 0.006T35W5-15 | NS | Rs = -0.842 + 0.134T35 + 0.022W5-15 | 0.56* |
林地类型 Woodland type | 深度 Depth (cm) | 有机碳 Organic carbon (g·kg-1) | 全量N Total N (g·kg-1) | 有效N Available N (mg·kg-1) | pH (土水比1:5) (1:5 for soil: water) | 电导率Electrical conductivity (ms·cm-1) | 全盐 Total salinity (g·kg-1) | HCO3- (g·kg-1) |
---|---|---|---|---|---|---|---|---|
杨树 Populus sp. | 0-5 | 6.959 | 0.657 | 31.28 | 8.13 | 0.24 | 0.885 | 0.258 |
5-15 | 4.173 | 0.330 | 21.12 | 8.24 | 0.22 | 0.895 | 0.261 | |
15-30 | 3.043 | 0.357 | 30.69 | 8.17 | 0.24 | 0.859 | 0.240 | |
30-50 | 2.926 | 0.235 | 13.73 | 8.31 | 0.15 | 0.654 | 0.270 | |
榆树 Ulmus pumila | 0-5 | 7.298 | 0.659 | 62.72 | 7.97 | 0.62 | 1.695 | 0.230 |
5-15 | 4.191 | 0.442 | 22.90 | 8.17 | 0.18 | 0.668 | 0.329 | |
15-30 | 4.406 | 0.378 | 28.79 | 8.15 | 0.21 | 0.833 | 0.326 | |
30-50 | 4.407 | 0.429 | 14.78 | 7.91 | 0.14 | 0.270 | 0.947 |
表4 杨树、榆树林地土壤养分、盐分性质比较
Table 4 Comparison of soil nutrient and salinity at two woodlands in 2005 and 2006
林地类型 Woodland type | 深度 Depth (cm) | 有机碳 Organic carbon (g·kg-1) | 全量N Total N (g·kg-1) | 有效N Available N (mg·kg-1) | pH (土水比1:5) (1:5 for soil: water) | 电导率Electrical conductivity (ms·cm-1) | 全盐 Total salinity (g·kg-1) | HCO3- (g·kg-1) |
---|---|---|---|---|---|---|---|---|
杨树 Populus sp. | 0-5 | 6.959 | 0.657 | 31.28 | 8.13 | 0.24 | 0.885 | 0.258 |
5-15 | 4.173 | 0.330 | 21.12 | 8.24 | 0.22 | 0.895 | 0.261 | |
15-30 | 3.043 | 0.357 | 30.69 | 8.17 | 0.24 | 0.859 | 0.240 | |
30-50 | 2.926 | 0.235 | 13.73 | 8.31 | 0.15 | 0.654 | 0.270 | |
榆树 Ulmus pumila | 0-5 | 7.298 | 0.659 | 62.72 | 7.97 | 0.62 | 1.695 | 0.230 |
5-15 | 4.191 | 0.442 | 22.90 | 8.17 | 0.18 | 0.668 | 0.329 | |
15-30 | 4.406 | 0.378 | 28.79 | 8.15 | 0.21 | 0.833 | 0.326 | |
30-50 | 4.407 | 0.429 | 14.78 | 7.91 | 0.14 | 0.270 | 0.947 |
图4 杨树、榆树表观光合电子传递速率对光合有效辐射响应的比较。
Fig. 4 Comparison of response curves of apparent photosynthetic electron transport rate to photosynthetically active radiation in leaves of Populus sp. and Ulmus pumila woodlands.
[1] | Campbell JL, Law BE (2005). Forest soil respiration across three climatically distinct chronosequences in Oregon. Biogeochemistry, 73, 109-125. |
[2] | Campbell JL, Sun OJ, Law BE (2004). Supply-side controls on soil respiration among Oregon forests. Global Chang Biology, 10, 857-1869. |
[3] | Carbone MS, Winston GC, Trumbore SE (2008). Soil respiration in perennial grass and shrub ecosystems: linking environmental controls with plant and microbial sources on seasonal and diel timescales. Journal of Geophysical Research, 113, G02022, doi: 10.1029/2007JG000611. |
[4] | Chu JX (褚金翔), Zhang XQ (张小全) (2006). Dynamic and fractionalization of soil respiration under three different land use/covers in the subalpine region of western Sichuan Province, China. Acta Ecologica Sinica (生态学报), 26, 1693-1700. (in Chinese with English abstract) |
[5] | Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS, Ellsworth DS, Hanson PJ, Law BE, Luo Y, Pregitzer KS, Randolph JC, Zak D (2002). Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology, 113, 39-51. |
[6] | Davidson EA, Janssens IA, Luo YQ (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154-164. |
[7] | Dilly O, Zyakun A (2008). Priming effect and respiratory quotient in a forest soil amended with glucose. Geomicrobiology Journal, 25, 425-431. |
[8] | Dilustro JJ, Collins B, Duncan L, Crawford C (2005). Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. Forest Ecology and Management, 204, 85-95. |
[9] |
Ekblad A, Högberb P (2001). Nature aboundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia, 127, 305-308.
DOI URL PMID |
[10] | Epron D, Nouvenon Y, Roupsard O, Mouvondy W, Mabiala A, Saint-andre L, Joffre R, Jourdan C, Bonnefond J-M, Berbigier P, Hamel O (2004). Spatial and temporal variations of soil respiration in an Eucalyptus plantation in Congo. Forest Ecology and Management, 202, 149-160. |
[11] | Erland B, Hakan W (2003). Soil and rhizosphere microorganisms have the same Q10 for respiration in a model system. Global Change Biology, 9, 1788-1791. |
[12] | Ge ZW (葛之葳), Gong JR (龚吉蕊), Duan QW (段庆伟), You X (尤鑫), Zhang XS (张新时) (2009). Diurnal and monthly variation of soil respiration during growing season in Yili, Xinjiang. Journal of Nanjing Forestry University (Natural Science Edition) 南京林业大学学报(自然科学版), 33, 65-68. (in Chinese with English abstract) |
[13] | Hamer U, Marschner B (2005). Priming effects in soils after combined and repeated substrate additions. Geoderma, 128, 38-51. |
[14] | Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biology and Biochemistry, 39, 418-425. |
[15] | Illeris L, Michelsen A, Jonasson S (2003). Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert. Biogeochemistry, 85, 15-29. |
[16] | IPCC (Intergovernmental Panel on Climate Change) (2000). Land use, land-use change and forestry. In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ eds. A Special Report of the IPCC. Cambridge University Press, Cambridge, UK. |
[17] | Irvine J, Law BE, Kurpius MR (2005). Coupling of canopy gas exchange with root and rhizosphere respiration in a semiarid forest. Biogeochemistry, 73, 271-282. |
[18] | Janssens IA, Pilegaard K (2003). Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology, 9, 911-918. |
[19] | Kang SY, Doh S, Lee DV, Jin L, Kimball JS (2003). Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology, 9, 1427-1437. |
[20] | Liang NS, Nakadai T, Hirano T, Qu LY, Takayoshi K, Yasumi F, Gen I (2004). In situ comparison of four approaches to estimating soil CO2 efflux in a northern larch (Larix kaempferi Sarg.) forest. Agricultural and Forest Meteorology, 123, 97-117. |
[21] | Liu Q, Edwards NT, Post WM, Gu L, Ledford J, Lenhart S (2006). Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest. Globe Change Biology, 12, 2136-2145. |
[22] |
Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625.
DOI URL PMID |
[23] | Lü W (吕文), Zhang WD (张卫东), Bao J (包军) (2000). Discussion on developing of Poplar and construction of Three Norths Protection Forest Project. Protection Forest Science and Technology (防护林科技), 43(2), 67-69. (in Chinese) |
[24] | Moyano FE, Kutsch WL, Rebmann C (2008). Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agricultural and Forest Meteorology, 148, 135-143. |
[25] | Moyano FE, Kutsch WL, Schulze ED (2007). Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biology and Biochemistry, 39, 843-853. |
[26] |
Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang JY, Barr A, Chen AP, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008). Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52.
URL PMID |
[27] | Qian YB (钱亦兵), Zhou HR (周华荣), Xu M (徐曼), Jiang J (蒋进), Wang XQ (王雪芹), Li DM (李东梅), Zhao CJ (赵从举) (2004). Relationship between water-soil properties and desert plant diversities in agricultural development area of Kelamayi. Journal of Soil and Water Conservation (水土保持学报), 18, 186-189. (in Chinese with English abstract) |
[28] | Raich JW, Tufekcioglu A (2000). Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71-90. |
[29] | Schaefer DA, Feng WT, Zou XM (2009). Plant carbon inputs and environmental factors strongly affect soil respiration in a subtropical forest of southwestern China. Soil Biology and Biochemistry, 41, 1000-1007. |
[30] | Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20. |
[31] |
Tang JW, Badocchi DD, Xu LK (2005). Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Biology, 11, 1298-1304.
URL PMID |
[32] | Trumbore S (2006). Carbon respired by terrestrial ecosystems-recent progress and challenges. Global Change Biology, 12, 141-153. |
[33] |
Vargas R, Detto M, Baldocchi DD, Allen MF (2009). Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Global Change Biology, doi: 10.1111/j.1365-2486.2009.021-11.x.
URL PMID |
[34] | Wang CK, Yang JY, Zhang QZ (2006). Soil respiration in six temperate forests in China. Global Change Biology, 12, 1-12. |
[35] | Wang GB (王国兵), Tang YF (唐燕飞), Ruan HH (阮宏华), Shi Z (施政), He R (何容), Wang Y (王莹), Lin F (蔺菲), Su GX (苏广鑫) (2009). Seasonal variation of soil respiration and its main regulating factors in a secondary oak forest and a pine plantation in north-subtropical area in China. Acta Ecologica Sinica (生态学报), 29, 966-975. (in Chinese with English abstract) |
[36] | Wang GJ (王光军), Tian DL (田大伦), Zhu F (朱凡), Yan WD (闫文德), Li SZ (李树战) (2008). Comparison of soil respiration and its controlling factors in sweetgum and camphortree plantations in Hunan, China. Acta Ecologica Sinica (生态学报), 28, 4107-4114. (in Chinese with English abstract) |
[37] | Xu M, Qi Y (2001a). Soil surface CO2 efflux and its spatial and temporal variation in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667-677. |
[38] | Xu M, Qi Y (2001b). Spatial and seasonal variations of Q10 determine by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical, 15, 687-696. |
[39] | Yang LF (杨兰芳), Cai ZC (蔡祖聪), Qi SH (祁士华) (2007). Effects of maize growth and photosynthesis on δ13C in soil respiration. Acta Ecologica Sinica (生态学报), 27, 1072-1078. (in Chinese with English abstract) |
[40] | Yang YS (杨玉盛), Chen GS (陈光水), Wang XG (王小国), Xie JS (谢锦升), Dong B (董彬), Li Z (李震), Gao R (高人) (2005). Effect of clear-cutting on soil respiration of Chinese fir plantation. Acta Pedologica Sinica (土壤学报), 42, 584-590. (in Chinese with English abstract) |
[41] | Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007). Microbial biomass and activity in salt affected soils under arid conditions. Applied Soil Ecology, 35, 319-328. |
[42] | Zhou WJ (周文君), Sha LQ (沙丽清), Shen SG (沈守艮), Zheng Z (郑征) (2008). Seasonal change of soil respiration and its influence factors in rubber (Hevea brasiliensis) plantation in Xishuangbanna, SW China. Journal of Mountain Science (山地学报), 26, 317-325. (in Chinese with English abstract) |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[3] | 石荡, 郭传超, 蒋南林, 唐莹莹, 郑凤, 王瑾, 廖康, 刘立强. 新疆野杏天然更新幼株的个体特征及空间分布格局[J]. 植物生态学报, 2023, 47(4): 515-529. |
[4] | 张宏祥, 闻志彬, 王茜. 新疆野苹果种群遗传结构及其环境适应性[J]. 植物生态学报, 2022, 46(9): 1098-1108. |
[5] | 张欢, 张云玲, 张彦才, 阎平. 新疆奇台荒漠类草地自然保护区主要植物群落及其特征[J]. 植物生态学报, 2021, 45(8): 918-924. |
[6] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[7] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[8] | 张静, 刘耘华, 盛建东, 柴强, 李瑞霞, 赵丹. 新疆北部草地典型灌木的碳氮特征[J]. 植物生态学报, 2018, 42(3): 307-316. |
[9] | 王力, 张芸, 孔昭宸, 杨振京, 阎顺, 李月丛. 新疆天山南坡吐鲁番地区表土花粉的初步研究[J]. 植物生态学报, 2017, 41(7): 779-786. |
[10] | 王薪琪, 王传宽, 张泰东. 森林土壤碳氮循环过程的新视角: 丛枝与外生菌根树种的作用[J]. 植物生态学报, 2017, 41(10): 1113-1125. |
[11] | 杨菲,杨吉华,艾钊,张国庆,胡建朋. 鲁东沿海丘陵茶园防护林的小气候特征[J]. 植物生态学报, 2014, 38(11): 1205-1213. |
[12] | 朱教君. 防护林学研究现状与展望[J]. 植物生态学报, 2013, 37(9): 872-888. |
[13] | 张芸, 孔昭宸, 阎顺, 杨振京, 倪健. 新疆天山北坡地区中晚全新世古生物多样性特征[J]. 植物生态学报, 2005, 29(5): 836-844. |
[14] | 杜晓军, 姜凤岐. 防护林防护成熟与干扰[J]. 植物生态学报, 2002, 26(增刊): 115-118. |
[15] | 闫俊华, 周国逸, 林永标. 鹤山马占相思生态系统重建过程中对立地水热因子的调节作用[J]. 植物生态学报, 2002, 26(4): 465-472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19