植物生态学报 ›› 2005, Vol. 29 ›› Issue (3): 479-486.DOI: 10.17521/cjpe.2005.0064
收稿日期:
2004-11-02
接受日期:
2004-11-26
出版日期:
2005-05-30
发布日期:
2005-05-30
作者简介:
E-mail: wxzhu@binghamton.edu
Received:
2004-11-02
Accepted:
2004-11-26
Online:
2005-05-30
Published:
2005-05-30
摘要:
人类社会的日益扩张, 导致人类加速占据地球表面景观, 并胁迫地球上生态系统提供不断增长的资源需求和废物吸收能力。所以保护尚未“开放”的自然生态系统及恢复退化的生态系统成为人类长期生存的重要保证。该文 着重讨论了恢复过程中的土壤生态学问题。土壤是所有陆地生态系统的结构与功能基础。土壤微生物与动物的种群变化, 土壤有机质的积累, 及主要元素地球化学循环的改变是恢复生态的重要环节。生态恢复与演替有许多共性, 所以演替理论对于认识生态系统恢复中的结构与功能变化有着很大帮助。与自然演替不同的是, 人的积极参与在生态恢复中占有中心位置。从最初样地的确立与物种的选择, 到后续的灌溉与施肥管理, 人的选择影响着土壤的演化, 生态系统的发展方向, 和最终恢复生态的结果。为保障恢复生态系统的可持续性, 短期的工作目标, 如提供养分促进植物生长, 务必与长期的工作目标, 如土壤的恢复相结合。植物与土壤的相互反馈是生态恢复成功的重要标志。成功的生态恢复不仅是对现有生态学理论的“试金检验”, 也是推动生态学学科发展的重要原动力。
朱伟兴. 恢复及演替过程中的土壤生态学考虑 (英文). 植物生态学报, 2005, 29(3): 479-486. DOI: 10.17521/cjpe.2005.0064
ZHU Wei-Xing. CONSIDERATION OF SOIL ECOLOGICAL PROCESSES IN RESTORATION AND SUCCESSION. Chinese Journal of Plant Ecology, 2005, 29(3): 479-486. DOI: 10.17521/cjpe.2005.0064
Changes during restoration | Effects on ecosystem structure and function | Restoration strategy | |
---|---|---|---|
Soil organic matter (SOM) | Increase in primary succession types of restoration. Minor change in secondary succession scenarios. | Improves soil texture, micro_structure, pH, bulk density, water holding capacity, etc. Reduces soil erosion and increases nutrient retention. Benefits soil microbial growth and the accumulation of N capital. Benefits plant growth and the accumulation of organic carbon. | Establish pioneering plants. Establish microbial symbiotic relationship (N fixation, mycorrhizae) with plants. Fertilizing to increase primary production. Amending organic carbon through top_soil transfer, mulching, and sluggish addition. |
Soil nutrients | Limited in the early stages of primary succession scenarios. Nutrient cycling/input ratios increase. Usually not limited in 2nd succession scenarios. | Enhances ecosystem production. Enhances carbon and nitrogen accumulation and cycling. Affects species interactions including mutualistic symbiotic relationships. | Apply inorganic fertilizers. Apply organic nutrients. Establish N_fixing plants. Establish mycorrhizal symbionts to enhance nutrient uptake by plants. Add high C∶N material (like woodchips) to assimilate excess nutrients. |
Soil organisms | Increase in biomass and composition in primary succession scenarios. Composition changes in 2nd succession scenarios. | Forms mutualistic or symbiotic relationships with plants. Increases ecosystem complexity. Increases nutrient turnover. Increases nutrient retention. | Inoculate commercially produced beneficial microbial species. Transfer top_soil from mature ecosystems. Increase plant diversity to boost microbial diversity. |
Table 1 Key soil indices and their changes during restoration
Changes during restoration | Effects on ecosystem structure and function | Restoration strategy | |
---|---|---|---|
Soil organic matter (SOM) | Increase in primary succession types of restoration. Minor change in secondary succession scenarios. | Improves soil texture, micro_structure, pH, bulk density, water holding capacity, etc. Reduces soil erosion and increases nutrient retention. Benefits soil microbial growth and the accumulation of N capital. Benefits plant growth and the accumulation of organic carbon. | Establish pioneering plants. Establish microbial symbiotic relationship (N fixation, mycorrhizae) with plants. Fertilizing to increase primary production. Amending organic carbon through top_soil transfer, mulching, and sluggish addition. |
Soil nutrients | Limited in the early stages of primary succession scenarios. Nutrient cycling/input ratios increase. Usually not limited in 2nd succession scenarios. | Enhances ecosystem production. Enhances carbon and nitrogen accumulation and cycling. Affects species interactions including mutualistic symbiotic relationships. | Apply inorganic fertilizers. Apply organic nutrients. Establish N_fixing plants. Establish mycorrhizal symbionts to enhance nutrient uptake by plants. Add high C∶N material (like woodchips) to assimilate excess nutrients. |
Soil organisms | Increase in biomass and composition in primary succession scenarios. Composition changes in 2nd succession scenarios. | Forms mutualistic or symbiotic relationships with plants. Increases ecosystem complexity. Increases nutrient turnover. Increases nutrient retention. | Inoculate commercially produced beneficial microbial species. Transfer top_soil from mature ecosystems. Increase plant diversity to boost microbial diversity. |
Fig.2 Changes of soil properties in a natural restoration in the Himalaya landslide sites, described as a function of site age in years MF:Mature reference forest Created based on the data inSingh et al.(2001) Certain soil parameters expressed with adjusted scales
Fig.3 Accumulation and transformations of soil N in the forest floor (FF) and mineral soil (MS) in a primary succession series in Alaska floodplain The age (year) of the succession is shown in parenthesis after the dominant plant type.Created based on the data in van Cleve et al.(1993)
[1] |
Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Ka makea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogensaturationintemperateforestecosystems:hy pothesesrevisited. BioScience, 48,921-934.
DOI URL |
[2] | Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995). Patternsandregulationofmycorrhizalplantandfungaldiversity. PlantandSoil, 170,47-62. |
[3] | Allen JA (1997). Reforestationofbottomlandhardwoodsandtheis sueofwoodyspeciesdiversity. RestorationEcology, 5,125-134. |
[4] | Allen MF (1991). TheEcologyofMycorrhizae. CambridgeUniver sityPress, Cambridge. |
[5] |
Binkley D, Giardina C (1998). Whydotreespeciesaffectsoils?Thewarpandwoofoftree_soilinteractions. Biogeochemistry, 42,89-106.
DOI URL |
[6] | Bradshaw AD (1987). Restoration:anacidtestforecology.In:JordanIIIWR, GilpinME, AberJDeds.RestorationEcology:aSyntheticApproachtoEcologicalResearch. CambridgeUniversityPress, Cambridge.23-29. |
[7] | Bradshaw AD (1996). Underlyingprinciplesofrestoration. CanadianJournalofFisheriesandAquaticSciences, 53 (S1),3-9. |
[8] | ChapinIII FS, Matson PA, Mooney HA (2002). PrinciplesofTer restrialEcology. Springer, NewYork. |
[9] | Clein JS, Schimel JP (1995). NitrogenturnoverandavailabilityduringsuccessionfromaldertopoplarinAlaskantaigaforests. SoilBiology&Biochemistry, 27,743-752. |
[10] | Coleman DC, Crossley DAJr (1996). FundamentalsofSoilEcology. AcademicPress, SanDiego. |
[11] |
Dobson AP, Bradshaw AD, Baker AJM (1997). Hopesforthefuture:restorationecologyandconservationbiology. Science, 277,515-522.
DOI URL |
[12] | Ehrenfeld JG (2000). Definingthelimitsofrestoration:theneedforrealisticgoals. RestorationEcology, 8,2-9. |
[13] | Ehrenfeld JG, Toth LA (1997). Restorationecologyandthee cosystemperspective. RestorationEcology, 5,307-317. |
[14] | Ehrenfeld JG, Zhu W, Parsons WFJ (1995). Above_andbelow_groundcharacteristicsofpersistentforestopeningsintheNewJer seyPinelands. BulletinoftheTorreyBotanicalClub, 122,298-305. |
[15] | Fahey TJ, Battles JJ, Wilsons GF (1998). Responsesofearlysuc cessionalNorthernhardwoodforeststochangesinnutrientavail ability. EcologicalMonographs, 68,183-212. |
[16] | Friedrich JM, Dawson JO (1984). SoilnitrogenconcentrationandJuglansnigragrowthinmixedplotswithnitrogen_fixingAlnus, Elaeagnus, Lespedeza, andRobiniaspecies. CanadianJournalofForestResearch, 14,864-868. |
[17] | Handel SN, Robinson GR, Parson WFJ, Mattei JH (1997). Restorationofwoodyplantstocappedlandfills:rootdynamicsinanengineeredsoil. RestorationEcology, 5,178-186. |
[18] |
Hedin LO, Armesto JJ, Johnson AH (1995). Patternsofnutrientlossfromunpolluted, old_growthtemperateforests:evaluationofbiogeochemicaltheory. Ecology, 76,493-509.
DOI URL |
[19] | Likens GE (1992). TheEcosystemApproach:ItsUseandAbuse. EcologyInstitute, Luhe. |
[20] | Likens GE, Bormann FH (1995). BiogeochemistryofaForestedE cosystem.2ndedn. Spinger_Verlag, NewYork. |
[21] |
Lubchenco J, Olson AM, Brubaker LB, Carpenter SR, Holland MM (1991). Thesustainablebiosphereinitiative:anecologicalresearchagenda. Ecology, 72,371-412.
DOI URL |
[22] | Odum EP (1969). Thestrategyofecosystemdevelopment:anun derstandingofecologicalsuccessionprovidesabasisforresolvingman'sconflictwithnature. Science, 164,262-270. |
[23] | Paul EA, Clark FE (1996). SoilMicrobiologyandBiochemistry.2ndedn. AcademicPress, NewYork. |
[24] | Pickett STA, Parker VT (1994). Avoidingtheoldpitfalls:opportu nitiesinanewdiscipline. RestorationEcology, 2,75-79. |
[25] |
Pickett STA, Cadenasso ML (2002). Theecosystemasamultidi mensionalconcept:meaning, modelandmetaphor. Ecosystems, 5,1-10.
DOI URL |
[26] | Requena N, Perez_Solis E, Azcón_Aguilar C, Jeffries P, Barea J (2001). Managementofindigenousplant_microbesymbiosesaidsrestorationofdesertifiedecosystems. AppliedandEnvironmentalMicrobiology, 67,495-498. |
[27] | Robinson GR, Handel SN (2000). Directionalspatialpatternsofrecruitmentduringanexperimentalurbanwoodlandreclamation. EcologicalApplication, 10,174-188. |
[28] | Singh KP, Mandal TN, Tripathi SK (2001). Patternsofrestorationofsoilphysicochemicalpropertiesandmicrobialbiomassindiffer entlandslidesiteinthesalforestecosystemofNepalHimalaya. EcologicalEngineering, 17,385-401. |
[29] | Suding KN, Gross KL, Houseman GR (2004). Alternativestatesandpositivefeedbacksinrestorationecology. TrendsinEcologyandEvolution, 19,46-53. |
[30] | Schoenholtz SH, Burger JA, Kreh RE (1992). Fertilizerandor ganicamendmenteffectsonminesoilpropertiesandrevegetationsuccess. SoilScienceSocietyofAmericaJournal, 56,1177-1184. |
[31] | vanCleve K, Yarie J, Erickson R, Dryness CT (1993). NitrogenmineralizationandnitrificationinsuccessionalecosystemsontheTananaRiverfloodplain, interiorAlaska. CanadianJournalofForestResearch, 23,970-978. |
[32] | Vallauri DR, Aronson J, Barbero M (2002). Ananalysisofforestrestoration120yearsafterreforestationonbadlandsinthesouth westernAlps. RestorationEcology, 10,16-26. |
[33] | Vance NC, Entry JA (2000). SoilpropertiesimportanttotherestorationofaShastaredfirbarrensintheSiskiyouMountains. ForestEcologyandManagement, 138,427-434. |
[34] |
Vitousek PM (1994). Beyondglobalwarming:ecologyandglobalchange. Ecology, 75,1861-1876.
DOI URL |
[35] |
Vitousek PM, Reiners WA (1975). Ecosystemsuccessionandnu trientretention:ahypothesis. BioScience, 25,376-381.
DOI URL |
[36] |
Vitousek PM, Matson PA (1985). Disturbance, nitrogenavailabili ty, andnitrogenlossesinanintensivelymanagedloblollypineplantation. Ecology, 66,1360-1376.
DOI URL |
[37] |
Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997). Hu mandominationofearth'secosystems. Science, 277,494-499.
DOI URL |
[38] | Yu ZY, Peng SL (1996). EcologicalStudiesonVegetationRehabil itationofTropicalandSubtropicalDegradedEcosystems. Guang dongScience&TechnologyPress, Guangzhou. (inChinese). |
[39] |
Zak DR, Tilman D, Parmenter RR, Rice CW, Fisher FM, Vose J, Milchunas D, Martin CW (1994). Plantproductionandsoilmi croorganismsinlate_successionalecosystems:acontinental_scalestudy. Ecology, 75,2333-2347.
DOI URL |
[40] | Zhu WX, Carriero MM (2004). Solubleorganicnitrogenandmi crobialnitrogendynamicsindeciduousforestsoils:neglectedseg mentsofthenitrogencycle. SoilBiology&Biochemistry, 36,267-278. |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[6] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[7] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[8] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[9] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[10] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[11] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[12] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[13] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[14] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[15] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19