植物生态学报 ›› 2007, Vol. 31 ›› Issue (4): 665-672.DOI: 10.17521/cjpe.2007.0086
申瑞玲1,2, 关保华1,2, 蔡颖1,2, 安树青1,2,*(), 蒋金辉1,2, 董蕾3
收稿日期:
2006-07-19
接受日期:
2007-01-05
出版日期:
2007-07-19
发布日期:
2007-07-30
通讯作者:
安树青
作者简介:
* E-mail: anshq@nju.edu.cn基金资助:
SHEN Rui-Ling1,2, GUAN Bao-Hua1,2, CAI Ying1,2, AN Shu-Qing1,2,*(), JIANG Jin-Hui1,2, DONG Lei3
Received:
2006-07-19
Accepted:
2007-01-05
Online:
2007-07-19
Published:
2007-07-30
Contact:
AN Shu-Qing
摘要:
植物通过改变自身的形态和生态生理特征对多变的环境因素做出响应,这种表型可塑性能增强外来物种的入侵能力。该文研究了入侵植物喜旱莲子草(Alternanthera philoxeroides)对底泥磷浓度、植株密度以及二者间交互作用的可塑性响应,探讨可塑性是否能使其获得更高的入侵能力。结果表明:低密度×底泥高磷浓度处理条件下的叶重、茎重、总重、叶数、分枝数和茎长等明显高于低、中磷浓度处理;高密度×底泥高磷浓度条件下的叶数、茎长和比茎长的值最大;植株的含磷量随底泥磷浓度的升高显著增加,说明喜旱莲子草响应底泥磷浓度变化时改变了自身的形态与生态生理性状。泥底含磷量对叶重比、叶数、茎长、茎磷含量、叶磷含量和植株总含磷量的影响都达到显著水平(p<0.05);植株密度对茎重、比茎长、叶磷含量和植株总磷含量的影响达到显著水平(p<0.05)。与入侵能力相关的叶重比、叶数、茎长在底泥高磷浓度处理中显著增加,说明底泥的高磷浓度增强了喜旱莲子草的入侵能力。
申瑞玲, 关保华, 蔡颖, 安树青, 蒋金辉, 董蕾. 底泥高磷浓度提高了喜旱莲子草的入侵性. 植物生态学报, 2007, 31(4): 665-672. DOI: 10.17521/cjpe.2007.0086
SHEN Rui-Ling, GUAN Bao-Hua, CAI Ying, AN Shu-Qing, JIANG Jin-Hui, DONG Lei. HIGH SEDIMENT PHOSPHORUS CONCENTRATION ENHANCED INVASIVENESS OF ALTERNANTHERA PHILOXEROIDES. Chinese Journal of Plant Ecology, 2007, 31(4): 665-672. DOI: 10.17521/cjpe.2007.0086
植株密度 Planting density | 底泥磷浓度处理 Sediment phosphorus concentration (mg·g-1) | ||
---|---|---|---|
低 Low 27.56 ± 0.78 | 中 Medium 52.85 ± 1.30 | 高 High 115.61 ± 2.72 | |
低(4株·桶-1) Low (4 individuals per container) | LSP-LPD | MSP-LPD | HSP-LPD |
高(8株·桶-1) High (8 individuals per container) | LSP-HPD | MSP-HPD | HSP-HPD |
表1 实验设计和处理代码
Table 1 The experimental design and treatment codes
植株密度 Planting density | 底泥磷浓度处理 Sediment phosphorus concentration (mg·g-1) | ||
---|---|---|---|
低 Low 27.56 ± 0.78 | 中 Medium 52.85 ± 1.30 | 高 High 115.61 ± 2.72 | |
低(4株·桶-1) Low (4 individuals per container) | LSP-LPD | MSP-LPD | HSP-LPD |
高(8株·桶-1) High (8 individuals per container) | LSP-HPD | MSP-HPD | HSP-HPD |
图1 喜旱莲子草生物量积累与分配对底泥磷浓度和植株密度的响应 LPD、HPD、LSP、MSP、HSP: 见表1
Fig.1 Responses of biomass accumulation and biomass allocation of Alternanthera philoxeroides to the sediment phosphorus concentration and planting density LPD、HPD、LSP、MSP、HSP: See Table 1
图2 喜旱莲子草的形态指标对底泥磷浓度和植株密度的响应(平均值±标准差)
Fig.2 Responses of the morphological traits of Alternanthera philoxeroides to the sediment phosphorus concentration and planting density (Mean±SE) LPD、HPD、LSP、MSP、HSP: 见图1 See Fig.1 图中不同的字母表示不同处理之间通过Duncan法进行多重检验得出的显著性差异 Bars with the same letters are not significantly different at p=0.05 (Duncan's post-hoc tests)
图3 喜旱莲子草的生态生理指标对底泥磷浓度和植株密度的响应(平均值±标准差)
Fig.3 Responses of the ecophysiological traits of Alternanthera philoxeroides to the sediment phosphorus concentration and planting density (Mean±SE) LPD、HPD、LSP、MSP、HSP: 见图 1 See Fig. 1 图中不同的字母表示不同处理之间通过Duncan法进行多重检验得出的显著性差异 Bars with the same letters are not significantly different at p=0.05 (Duncan's post-hoc tests)
参数 Dependent variables | 底泥磷浓度 Sediment P concentration (df=2) | 植株密度 Planting density (df=1) | 交互作用 Interaction (df=2) | |||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
叶重 Leaf mass | 2.466 | 0.124 | 0.001 | 0.978 | 1.756 | 0.211 | ||
叶重比 Leaf mass ratio | 3.873 | 0.048 | 3.614 | 0.080 | 0.430 | 0.659 | ||
叶数 Leaf number | 3.916 | 0.047 | 0.496 | 0.494 | 1.050 | 0.378 | ||
茎重 Stem mass | 1.890 | 0.190 | 5.261 | 0.039* | 7.820 | 0.006 | ||
茎重比 Stem mass ratio | 1.767 | 0.210 | 3.218 | 0.096 | 0.701 | 0.514 | ||
茎长 Stem length | 7.938 | 0.006 | 0.003 | 0.958 | 6.680 | 0.010 | ||
茎直径 Stem basal diameter | 1.038 | 0.382 | 0.496 | 0.494 | 6.804 | 0.010 | ||
比茎长 Stem special length | 0.509 | 0.613 | 4.720 | 0.049 | 4.054 | 0.043 | ||
分枝数 Number of branches | 2.192 | 0.151 | 3.805 | 0.073 | 5.400 | 0.020 | ||
根重 Root mass | 1.260 | 0.316 | 1.748 | 0.209 | 2.706 | 0.104 | ||
根重比 Root mass ratio | 1.137 | 0.351 | 0.009 | 0.925 | 0.092 | 0.913 | ||
根冠比 Root/shoot | 1.287 | 0.309 | 0.000 | 0.994 | 0.108 | 0.899 | ||
根数 Root number | 1.586 | 0.242 | 0.933 | 0.352 | 0.674 | 0.526 | ||
地上重 Above-ground mass | 1.186 | 0.336 | 3.341 | 0.091 | 6.757 | 0.010 | ||
总重 Total mass | 1.236 | 0.323 | 3.171 | 0.098 | 6.107 | 0.014 | ||
叶磷含量 Leaf P concentration | 255.010 | <0.001 | 17.734 | 0.006 | 5.316 | 0.047 | ||
茎磷含量 Stem P concentration | 111.116 | <0.001 | 0.317 | 0.594 | 1.032 | 0.412 | ||
根磷含量 Root P concentration | 2.806 | 0.138 | 3.265 | 0.121 | 0.106 | 0.390 | ||
总磷含量Total plant P concentration | 32.482 | <0.001 | 8.085 | 0.029 | 2.733 | 0.143 |
表2 底泥磷浓度和植株密度对喜旱莲子草形态和生态生理特征的影响的双因素方差分析
Table 2 Two-way ANOVA of effects of the sediment phosphorus concentration and planting density on the morphological and ecophysiological traits of Alternanthera philoxeroides
参数 Dependent variables | 底泥磷浓度 Sediment P concentration (df=2) | 植株密度 Planting density (df=1) | 交互作用 Interaction (df=2) | |||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
叶重 Leaf mass | 2.466 | 0.124 | 0.001 | 0.978 | 1.756 | 0.211 | ||
叶重比 Leaf mass ratio | 3.873 | 0.048 | 3.614 | 0.080 | 0.430 | 0.659 | ||
叶数 Leaf number | 3.916 | 0.047 | 0.496 | 0.494 | 1.050 | 0.378 | ||
茎重 Stem mass | 1.890 | 0.190 | 5.261 | 0.039* | 7.820 | 0.006 | ||
茎重比 Stem mass ratio | 1.767 | 0.210 | 3.218 | 0.096 | 0.701 | 0.514 | ||
茎长 Stem length | 7.938 | 0.006 | 0.003 | 0.958 | 6.680 | 0.010 | ||
茎直径 Stem basal diameter | 1.038 | 0.382 | 0.496 | 0.494 | 6.804 | 0.010 | ||
比茎长 Stem special length | 0.509 | 0.613 | 4.720 | 0.049 | 4.054 | 0.043 | ||
分枝数 Number of branches | 2.192 | 0.151 | 3.805 | 0.073 | 5.400 | 0.020 | ||
根重 Root mass | 1.260 | 0.316 | 1.748 | 0.209 | 2.706 | 0.104 | ||
根重比 Root mass ratio | 1.137 | 0.351 | 0.009 | 0.925 | 0.092 | 0.913 | ||
根冠比 Root/shoot | 1.287 | 0.309 | 0.000 | 0.994 | 0.108 | 0.899 | ||
根数 Root number | 1.586 | 0.242 | 0.933 | 0.352 | 0.674 | 0.526 | ||
地上重 Above-ground mass | 1.186 | 0.336 | 3.341 | 0.091 | 6.757 | 0.010 | ||
总重 Total mass | 1.236 | 0.323 | 3.171 | 0.098 | 6.107 | 0.014 | ||
叶磷含量 Leaf P concentration | 255.010 | <0.001 | 17.734 | 0.006 | 5.316 | 0.047 | ||
茎磷含量 Stem P concentration | 111.116 | <0.001 | 0.317 | 0.594 | 1.032 | 0.412 | ||
根磷含量 Root P concentration | 2.806 | 0.138 | 3.265 | 0.121 | 0.106 | 0.390 | ||
总磷含量Total plant P concentration | 32.482 | <0.001 | 8.085 | 0.029 | 2.733 | 0.143 |
[1] | Bakker J, Wilson S (2001). Competitive abilities of introduced and native grasses. Plant Ecology, 157, 117-125. |
[2] |
Barreto R, Charudattan R, Pomella A, Hanada R (2000). Biological control of neotropical aquatic weeds with fungi. Crop Protection, 19, 697-703.
DOI URL |
[3] | Bradshaw AD (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115-155. |
[4] |
Callaway RM, Aschehoug ET (2000). Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science, 290, 521-523.
DOI URL PMID |
[5] |
Cheng YX, Zhang WJ, Fu CZ, Lu BR (2003). Genetic diversity of alligator weed in China by RAPD analysis. Biodiversity and Conservation, 12, 637-645.
DOI URL |
[6] | Dewitt TJ, Andrew S, David SW (1998). Costs and limits of phenotypic plasticity. Trees, 13, 77-81. |
[7] |
Dietz H, Køhler A, Ullmann I (2002). Regeneration growth of the invasive clonal forb Rorippa austriaca (Brassicaceae) in relation to fertilization and interspecific competition. Plant Ecology, 158, 171-182.
DOI URL |
[8] |
Dong M, de Kroon H (1994). Plasticity in morphology and biomass allocation in Cynodon dactvlon, a grass species forming stolons and rhizomes. Oikos, 70, 99-106.
DOI URL |
[9] |
Dong M, During HJ, Werger MJA (1997). Clonal plasticity in response to nutrient availability in the pseudoannual herb, Trientalis europeae L. Plant Ecology, 131, 233-239.
DOI URL |
[10] |
Earle TT, Riess K, Hidalgo J (1951). Tracer studies with alligator weed using 2,4-D-C14. Science, 114, 695-696.
DOI URL PMID |
[11] |
Eggler WA (1953). The use of 2,4-D in the control of water hyacinth and alligator weed in the Mississippi delta, with certain ecological implications. Ecology, 34, 409-414.
DOI URL |
[12] |
Fransen B, Blijjenberg J, de Kroon H (1999). Root morphological and physiological plasticity of perennial grass species and the exploitation of spatial and temporal heterogeneous nutrient patches. Plant and Soil, 211, 179-189.
DOI URL |
[13] |
Gaudet JJ (1975). Mineral concentrations in papyrus in various African swamps. Journal of Ecology, 63, 483-491.
DOI URL |
[14] | Geng YP (耿宇鹏), Zhang WJ (张文驹), Li B (李博), Chen JK (陈家宽) (2004). Phenotypic plasticity and invasiveness of alien plants. Biodiversity Science (生物多样性), 12, 447-455. (in Chinese with English abstract) |
[15] | Guan BH (关保华), Ge Y (葛滢), Fan MY (樊梅英), Niu XY (牛晓音), Lu Y (卢毅), Chang J (常杰) (2003). Phenotypic plasticity of growth and morphology in Mosla chinensis responds to diverse relative soil water content. Acta Ecologica Sinica (生态学报), 23, 259-263. (in Chinese with English abstract) |
[16] |
He WM, Dong M (2003). Plasticity in physiology and growth of Salix matsudana in response to simulated atmospheric temperature rise in the Mu Us Sandland. Photosynthetica, 41, 297-300.
DOI URL |
[17] | Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977). Distribution and Biology. University Press of Hawaii, Honolulu, Hawaii, 609. |
[18] |
Hunt KW (1943). Floating mats on a southeastern coastal plain reservoir. Bulletin of the Torrey Botanical Club, 70, 481-488.
DOI URL |
[19] | Hunt R (1978). Plant Growth Analysis. Edward Arnold, London. |
[20] |
Longstreth DJ, Mason CB (1984). The effect of light on growth and dry matter allocation patterns of Lternanthera philoxeroides (Mart.) Griseb. Botanical Gazette, 145, 105-109.
DOI URL |
[21] |
Longstreth DJ, Bolanos JA, Goddard RH (1985). Photosynthetic rate and mesophyll surface area in expanding leaves of Alternanthera philoxeroides growth at two light levels. American Journal of Botany, 72, 14-19.
DOI URL |
[22] |
Maddox DM, Andres LA, Hennessey RD, Blackburn RD, Spencer NR (1971). Insects to control alligator weed: an invader of aquatic ecosystems in the United States. BioScience, 21, 985-991.
DOI URL |
[23] | Pigliucci M (2001). Phenotypic Plastcitity: Beyond Nature and Nurture. Johns Hopkins Press, Baltimore, London, |
[24] |
Sainty G, McCorkelle G, Julien M (1998). Control and spread of alligator weed Alternanthera philoxeroides (Mart.) Griseb, in Australia: lessons for other regions. Wetlands Ecology and Management, 5, 195-201.
DOI URL |
[25] |
Schooler S, Baron Z, Julien M (2006). Effect of simulated and actual herbivory on alligator weed, Alternanthera philoxeroides, growth and reproduction. Biological Control, 36, 74-79.
DOI URL |
[26] |
Schroeder MS, Janos DP (2004). Phosphorus and intraspecific density alter plant responses to Arbuscular mycorrhizas. Plant and Soil, 264, 335-348.
DOI URL |
[27] |
Spector T, Putz FE (2006). Biomechanical plasticity facilitates invasion of maritime forest in the southern USA by Brazilian pepper ( Schinus terebinthifolius). Biological Invasions, 8, 255-260.
DOI URL |
[28] |
Sultan SE, Bazzaz FA (1993). Phenotypic plasticity in Polygonum persicaria. Ⅲ. The evolution of ecological breadth for nutrient environment. Evolution, 47, 1050-1071.
DOI URL PMID |
[29] |
Sultan SE (2001). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537-542.
DOI URL PMID |
[30] |
Vojtíšková L, Munzarová E, Votrubová A, Řihová A, Juřicová B, (2004). Growth and biomass allocation of sweet flag ( Acorus calamus L.) under different nutrient conditions. Hydrobiologia, 518, 9-22.
DOI URL |
[31] |
Xie YH, An SQ, Yao X, Xiao KY, Zhang C (2005). Short-time response in root morphology of Vallisneria natans to sediment type and water-column nutrient. Aquatic Botany, 81, 85-96.
DOI URL |
[32] |
Xie YH, An SQ, Wu BF, Wang WW (2006). Density-dependent root morphology and root distribution in the submerged plant Vallisneria natans. Environmental and Experimental Botany, 57, 195-200.
DOI URL |
[33] |
Xu CY, Zhang WJ, Fu CZ, Lu BR (2003). Genetic diversity of alligator weed in China by RAPD analysis. Biodiversity and Conservation, 12, 637-645.
DOI URL |
[34] | Xu KY, Ye WH, Cao HL, Deng X, Yang QH, Zhang Y (2004). The role of diversity and functional traits of species in community invasibility. Botanical Bulletin of Academia Sinica, 45, 149-157. |
[35] | Xu KY (许凯扬), Ye WH (叶万辉), Cao HL (曹洪麟), Huang ZL (黄忠良) (2004). An experimental study on the relationship between biodiversity and invasibility of plant communities. Acta Phytoecologica Sinica (植物生态学报), 28, 385-391. (in Chinese with English abstract). |
[36] | Xu KY (许凯扬), Ye WH (叶万辉), Li J (李静), Li GM (李国民) (2005). Phenotypic plasticity in response to soil nutrients in the invasive species Alternanthera philoxeroides. Ecology and Environment (生态环境), 14, 723-726. (in Chinese with English abstract) |
[37] |
Ye WH, Li J, Cao HL, Ge XJ (2003). Genetic uniformity of Alternanthera philoxeroides in South China. Weed Research, 43, 297-302.
DOI URL |
[1] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[2] | 杜军, 王文, 何志斌, 陈龙飞, 蔺鹏飞, 朱喜, 田全彦. 祁连山青海云杉物候表型的空间分异及其内在机制[J]. 植物生态学报, 2021, 45(8): 834-843. |
[3] | 杨雪, 申俊芳, 赵念席, 高玉葆. 不同基因型羊草数量性状的可塑性及遗传分化[J]. 植物生态学报, 2017, 41(3): 359-368. |
[4] | 陈修文, 于丹, 刘春花. 秋季水位波动频率对喜旱莲子草、粉绿狐尾藻和水龙的影响[J]. 植物生态学报, 2016, 40(5): 493-501. |
[5] | 班芷桦, 王琼. 喜旱莲子草和接骨草竞争对模拟增温的响应[J]. 植物生态学报, 2015, 39(1): 43-51. |
[6] | 李西良,侯向阳,吴新宏,萨茹拉,纪磊,陈海军,刘志英,丁勇. 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应[J]. 植物生态学报, 2014, 38(5): 440-451. |
[7] | 赵聪蛟, 邓自发, 周长芳, 关保华, 安树青, 陈琳, 陆霞梅. 氮水平和竞争对互花米草与芦苇叶特征的影响[J]. 植物生态学报, 2008, 32(2): 392-401. |
[8] | 宋利霞, 陶建平, 冉春燕, 余小红, 王永健, 李媛. 卧龙亚高山暗针叶林不同林冠环境下华西箭竹的克隆生长[J]. 植物生态学报, 2007, 31(4): 637-644. |
[9] | 蔡颖, 关保华, 安树青, 申瑞玲, 蒋金辉, 董蕾. 克隆植物乌菱对底泥磷含量及植株密度的表型可塑性响应[J]. 植物生态学报, 2007, 31(4): 599-606. |
[10] | 赵磊, 智颖飙, 李红丽, 安树青, 邓自发, 周长芳. 初始克隆分株数对大米草表型可塑性及生物量分配的影响[J]. 植物生态学报, 2007, 31(4): 607-612. |
[11] | 潘晓云, 耿宇鹏, 张文驹, 李博, 陈家宽. 喜旱莲子草沿河岸带不同生境的盖度变化及形态可塑性[J]. 植物生态学报, 2006, 30(5): 835-843. |
[12] | 史刚荣, 汤盈, 张铮. 淮北相山恢复演替群落优势树种叶片的生态解剖[J]. 植物生态学报, 2006, 30(2): 314-322. |
[13] | 张玉芬, 张大勇. 克隆植物的无性与有性繁殖对策[J]. 植物生态学报, 2006, 30(1): 174-183. |
[14] | 王满莲, 冯玉龙. 紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应[J]. 植物生态学报, 2005, 29(5): 697-705. |
[15] | 王琼, 苏智先, 雷泞菲, 张运春. 慈竹母株大小对克隆生长的影响[J]. 植物生态学报, 2005, 29(1): 116-121. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2534
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 4782
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La