植物生态学报 ›› 2006, Vol. 30 ›› Issue (5): 835-843.DOI: 10.17521/cjpe.2006.0106
收稿日期:
2005-06-06
接受日期:
2005-10-31
出版日期:
2006-06-06
发布日期:
2006-09-30
通讯作者:
陈家宽
作者简介:
E-mail: jkchen@fudan.edu.cn基金资助:
PAN Xiao-Yun(), GENG Yu-Peng, ZHANG Wen-Ju, LI Bo, CHEN Jia-Kuan(
)
Received:
2005-06-06
Accepted:
2005-10-31
Online:
2006-06-06
Published:
2006-09-30
Contact:
CHEN Jia-Kuan
About author:
First author contact:E-mail of the first author: xypan@fudan.edu.cn
摘要:
喜旱莲子草(Alternanthera philoxeroides)原产南美洲,是中国国家环保总局公布的9种危害最大的外来入侵植物之一。该文比较了分布于河岸带4种小生境中,喜旱莲子草和它的同属土著植物莲子草(Alternanthera sessilis)的盖度和生长特征变化,以了解影响喜旱莲子草入侵的生境和生长特征。按照距水体的距离远近,这些小生境依次为:废弃农田、沼泽、河边沙石滩及河间卵石滩。 结果表明,这4种生境在基质性质、土壤养分和生产力方面存在显著的差异。在生产力较高的生境中(如废弃地和沼泽),喜旱莲子草是优势种,但在生产力较低的生境中(即河边砾石滩及河间卵石滩)土著种莲子草的相对盖度大于喜旱莲子草。随着生境土壤养分的增加,喜旱莲子草表现出明显的形态可塑性。喜旱莲子草与觅光相关的几个形态指标,如茎的长度、节间长度和节的数目以及单叶面积都显著增加;同时,那些着生叶片的分枝也从匍匐状转变成直立生长。在生产力较高的生境中,喜旱莲子草的植冠高度和茎干密度成正相关,表明喜旱莲子草对极度密集的种群环境有很强的适应能力。这些结果说明,较高的形态可塑性和优先占据具有较高土壤养分的小生境是喜旱莲子草沿河岸带入侵的基本特征,可能也是促成其入侵的重要的内部(植物自身)和外部(生境)条件。
潘晓云, 耿宇鹏, 张文驹, 李博, 陈家宽. 喜旱莲子草沿河岸带不同生境的盖度变化及形态可塑性. 植物生态学报, 2006, 30(5): 835-843. DOI: 10.17521/cjpe.2006.0106
PAN Xiao-Yun, GENG Yu-Peng, ZHANG Wen-Ju, LI Bo, CHEN Jia-Kuan. COVER SHIFT AND MORPHOLOGICAL PLASTICITY OF INVASIVE ALTERNANTHERA PHILOXEROIDES ALONG A RIPARIAN ZONE IN SOUTH CHINA. Chinese Journal of Plant Ecology, 2006, 30(5): 835-843. DOI: 10.17521/cjpe.2006.0106
图1 研究地点示意图 DL: 废弃地Dry land MD: 河边沙石滩地Marsh dunes SW: 沼泽Swamp GD: 河间砾石滩地Gravel dunes
Fig.1 Location of the study area at the cross between Puyang River and Zhejiang-Jiangxi railway in Zhuji, Zhejiang Province, China
河间砾石滩 Gravel dune | 河边沙石滩 Marsh dune | 废弃地 Dryland | 沼泽 Swamp | ||||
---|---|---|---|---|---|---|---|
海拔 Elevation (m) | 37 | 34 | 39 | 30 | |||
坡度Slope (%) | 3.1 | 1.7 | <0.3 | 0 | |||
朝向Aspect | NW-SE | NW-SE | NW-SE | N-S | |||
砾石含量Rocks and gravel content (%) | 76 | 50 | 5 | 9 | |||
土壤含量Soil content (%) | 3 | 30 | 81 | 76 | |||
有机质Organic matter (g·kg-1) | 0.83 | 2.53 | 16.54 | 24.10 | |||
总N Total N (g·kg-1) | 0.05 | 0.15 | 1.04 | 1.58 | |||
有效P Available P (mg·kg-1) | 0.31 | 0.89 | 12.72 | 17.49 | |||
有效K Available K (mg·kg-1) | 1.53 | 7.41 | 66.45 | 115.16 | |||
pH | 7.9 | 7.6 | 7.3 | 7.1 | |||
植被盖度Vegetation cover (%) | 13.7 | 27.6 | 94.4 | 98.1 | |||
优势种 Dominant plant species | 莲子草 Alternanthera sessilis | 莲子草 A. sessilis | 喜旱莲子草 A. philoxeroides | 喜旱莲子草 A. philoxeroides | |||
次优势种 Sub-dominant species | 喜旱莲子草 A. philoxeroides | 喜旱莲子草 A. philoxeroides | 莲子草 A. sessilis | 凤眼莲 Eichhornia crassipes |
表1 4种小生境的主要地理和植被特征
Table 1 Description of the four substrates and their vegetation characteristics
河间砾石滩 Gravel dune | 河边沙石滩 Marsh dune | 废弃地 Dryland | 沼泽 Swamp | ||||
---|---|---|---|---|---|---|---|
海拔 Elevation (m) | 37 | 34 | 39 | 30 | |||
坡度Slope (%) | 3.1 | 1.7 | <0.3 | 0 | |||
朝向Aspect | NW-SE | NW-SE | NW-SE | N-S | |||
砾石含量Rocks and gravel content (%) | 76 | 50 | 5 | 9 | |||
土壤含量Soil content (%) | 3 | 30 | 81 | 76 | |||
有机质Organic matter (g·kg-1) | 0.83 | 2.53 | 16.54 | 24.10 | |||
总N Total N (g·kg-1) | 0.05 | 0.15 | 1.04 | 1.58 | |||
有效P Available P (mg·kg-1) | 0.31 | 0.89 | 12.72 | 17.49 | |||
有效K Available K (mg·kg-1) | 1.53 | 7.41 | 66.45 | 115.16 | |||
pH | 7.9 | 7.6 | 7.3 | 7.1 | |||
植被盖度Vegetation cover (%) | 13.7 | 27.6 | 94.4 | 98.1 | |||
优势种 Dominant plant species | 莲子草 Alternanthera sessilis | 莲子草 A. sessilis | 喜旱莲子草 A. philoxeroides | 喜旱莲子草 A. philoxeroides | |||
次优势种 Sub-dominant species | 喜旱莲子草 A. philoxeroides | 喜旱莲子草 A. philoxeroides | 莲子草 A. sessilis | 凤眼莲 Eichhornia crassipes |
图2 喜旱莲子草(黑色)、莲子草(白色)和其它种(灰色)的盖度在4种小生境下的变化 DL、MD、SW、GD:同图1 See Fig.1
Fig.2 Cover of Alternanthera philoxeroides (Black bar), A. sessile (White bar), and the other species (Grey bar) among the four microhabitats at the end of the growing season (Oct. 2003)
图3 分布于两种沙石滩地上的喜旱莲子草(P)和莲子草(S)的冠丛高度和直径 误差棒代表95%的置信区间 Error bars represent 95% confidence interval of the means GD、MD: 同图1 See Fig. 1
Fig.3 Canopy height and diameter of patchy distributed Alternanthera philoxeroides (P) and A. sessile (S) on gravel dune and marsh dune at the end of the growing season (Oct. 2003)
图4 分布于4种生境下的喜旱莲子草(灰色)和莲子草(黑色)的茎叶形态变化 平均值±标准差 Mean±SE SW、DL、MD、GD:同图1 See Fig. 1
Fig.4 Plasticity in stem length, mean internode length, number of nodes, stem diameter, mean leaf area, and branch angle of leaf-bearing stems of Alternanthera philoxeroides (Grey)and A. sessilis (Black) across the four microhabitats at the end of the growing season (Nov. 2003)
形态指标 Morphological parameters | 喜旱莲子草(%) Alternanthera philoxeroides | 莲子草(%) Alternanthera sessilis | 相对值 Relative values |
---|---|---|---|
茎长 Stem length (cm) | 97.7 | 10.8 | 9.1 |
节间长 Internode length (cm) | 76.5 | 1.1 | 6.9 |
节数 Nodes number | 21.8 | 11.2 | 2.0 |
茎直径 Stem diameter (mm) | 44.1 | 2.7 | 16.7 |
叶面积 Leaf area (cm2) | 94.0 | 1.4 | 69.8 |
分枝角度Branch angle (°) | 24.9 | 0.3 | 83.0 |
表2 喜旱莲子草和莲子草枝叶形态指标在小生境间的变异系数
Table 2 Coefficient of variation (CV) for several morphological parameters of Alternanthera philoxeroides and A. sessilis among different microhabitats
形态指标 Morphological parameters | 喜旱莲子草(%) Alternanthera philoxeroides | 莲子草(%) Alternanthera sessilis | 相对值 Relative values |
---|---|---|---|
茎长 Stem length (cm) | 97.7 | 10.8 | 9.1 |
节间长 Internode length (cm) | 76.5 | 1.1 | 6.9 |
节数 Nodes number | 21.8 | 11.2 | 2.0 |
茎直径 Stem diameter (mm) | 44.1 | 2.7 | 16.7 |
叶面积 Leaf area (cm2) | 94.0 | 1.4 | 69.8 |
分枝角度Branch angle (°) | 24.9 | 0.3 | 83.0 |
图5 喜旱莲子草毯状居群中植冠高度和茎杆密度的相关图 DL: y=0.89x-14.11, r2=0.93, p<0.01; SW: y=0.66x-20.75, r2=0.94, p<0.01 DL、SW: 同图1 See Fig. 1
Fig.5 Relationship between stem density (30 cm×30 cm quadrate-1) and mean canopy height (above ground on dryland and above water surface on swamp) in monotypic stand of Alternanthera philoxeroides on dryland and swamp substrate at the end of the 2003 growing season
图6 喜旱莲子草(P)和莲子草(S)优势度沿河岸带不同生境转变的资源比率模型 当资源状况位于①和②区时, 入侵种喜旱莲子草成为优势种;当资源状况位于③和④区时, 土著种莲子草成为优势种;在⑤区时2物种可以共存(Tilman, 1982) At the area of ① and ②, invasive Alternanthera philoxeroides wins; at the area of ③ and ④ native A. sessile wins; at the area of ⑤ two species co-exist (Tilman, 1982) ZNGI: 零增长曲线 Zero net growth isoline
Fig.6 Conceptual model of the shift in dominance of Alternanthera philoxeroides (P) and A. sessile (S) as a result of competitive outcomes between the two species for different limiting resources
[1] |
Agrawal AA (2001). Phenotypic plasticity in the interactions and evolution of species. Science, 294,321-326.
DOI URL PMID |
[2] | Alpert P, Bone E, Holzapfel C (2000). Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspective in Plant Ecology, Evolution and Systematics, 3,52-66. |
[3] | Annapurna C, Singh JS (2003). Phenotypic plasticity and plant invasiveness: case study of congress grass. Current Science, 85,197-201. |
[4] | Baker HG (1974). The evolution of weeds. Annual Review of Ecology and Systematics, 5,1-24. |
[5] | Blair AC, Wolfe LM (2004). The evolution of an invasive plant: an experimental study with Silene latifolia. Ecology, 85,3035-3042. |
[6] | Connell JH (1961). The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology, 42,710-723. |
[7] | Daehler CC (2003). Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annual Review of Ecology, Evolution and Systematic, 34,183-211. |
[8] | Davis MA, Grime JP, Thompson K (2000). Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology, 88,528-534. |
[9] | Davis MA, Pelsor M (2001). Experimental support for a resource-based mechanistic model of invasibility. Ecology Letters, 4,421-428. |
[10] | Geng YP(耿宇鹏), Zhang WJ(张文驹), Li B(李博), Chen JK (陈家宽) (2004). Phenotypic plasticity and invasiveness of alien plants. Biodiversity Science(生物多样性), 12,447-455. (in Chinese with English abstract) |
[11] | Grime PJ (1979). Plant Strategies and Vegetational Processes. John Wiley and Sons, Chichester. |
[12] | Guo SL(郭水良), Fang F(方芳), Huang H(黄华), Qiang S(强胜) (2004). Studies on the reproduction and photosynthetic ecophysiology of the exotic invasive plant, Plantago virginica. Acta Phytoecologica Sinica(植物生态学报), 28,787-793. (in Chinese with English abstract) |
[13] | Hoopes MF, Hall LM (2002). Edaphic factors and competition affect pattern formation and invasion in a California grassland. Ecological Applications, 12,24-39. |
[14] | Julien M, Bourne HAS, Low VHK (1992). Growth of the weed Alternanthera philoxeroides (Martius) Grisebach, (alligator weed) in aquatic and terrestrial in Australia . Plant Protection Quarterly, 7,102-108. |
[15] | Julien M, Skarratt BH, Maywald GF (1995). Potential geographical distribution of alligator weed and its biological control by Agasciles hygrophila. Journal of Aquatic Plant Management, 33,55-60. |
[16] |
Jurjavcic NL, Harrison S, Wolf AT (2002). Abiotic stress, competition, and the distribution of the native annual grass Vulpia microstachys in a mosaic environment . Oecologia, 130,555-562.
DOI URL PMID |
[17] |
Kaufman SR, Smouse PE (2001). Comparing indigenous and introduced populations of Melaleuca quinquenervia (Cav.) Blake: response of seedlings to water and pH levels . Oecologia, 127,487-494.
URL PMID |
[18] | Kolb A, Alpert P, Enters D, Holzapfel C (2002). Patterns of invasion within a grassland community. Journal of Ecology, 90,871-881. |
[19] | Lake JC, Leishman MR (2004). Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biological Conservation, 117,215-226. |
[20] | Lee CE (2002). Evolutionary genetics of invasive species. Trends in Ecology and Evolution, 17,386-391. |
[21] | Li ZY(李振宇), Xie Y(解焱) (2002). Invasive Alien Species in China (中国外来入侵种). China Forestry Publishing House, Beijing. (in Chinese) |
[22] | Liu H(刘华), Wu GR(吴国荣), Lu CM(陆长梅), Zai XM(宰学明), Xu QS (徐勤松), Chen JY(陈景耀) (2003). Comparison of contents of anti-oxidant compounds of Alternanther philoxeroides in aquatic and terrestrial environments . Guihaia(广西植物), 23,279-281. (in Chinese with English abstract) |
[23] | Longstreth DJ, Bolanos JA, Goddard RH (1985). Photosynthetic rate and mesophyll surface area in expanding leaves of Alternanthera philoxeroides grown at two light levels . American Journal of Botany, 72,14-19. |
[24] | Longstreth DJ, Mason CB (1984). The effect of light on growth and dry matter allocation patterns of Alteranathera philoxeroides (Mart.) Griseb . Botanical Gazette, 145,105-109. |
[25] | Lonsdale WM (1999). Global patterns of plant invasions and the concept of invasibility. Ecology, 80,1522-1536. |
[26] | Ma RY(马瑞燕), Wang R(王韧) (2004). Effect of morphological and physiological variations in the ecotypes of alligatorweed, Alternanthera philoxeroides on the population rate of its biocontrol agent Agasicles hygrophila. Acta Phytoecologica Sinica(植物生态学报), 28,24-30. (in Chinese with English abstract) |
[27] |
Pattison RR, Goldstein G, Ares A (1998). Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia, 117,449-459.
URL PMID |
[28] | Rejmannek M, Richardson DM (1996). What attributes make some plant species more invasive? Ecology, 77,1655-1661. |
[29] | Rejmanek M (1996). A theory of seed plant invasiveness: the first sketch. Biological Conservation, 78,171-181. |
[30] | Shea K, Chesson P (2002). Community ecology theory as a framework for biological invasions. Trends in Ecology and Evolution, 17,170-176. |
[31] | Siemann E, Rogers WE (2001). Genetic differences in growth of an invasive tree. Ecology Letters, 4,514-518. |
[32] | Tao Y(陶勇), Jiang MX(江明喜) (2004). Study on anatomical structure adaptation of stem of Alternanthera philoxeroides (Mart.) Griseb. to various water condition . Journal of Wuhan Botanical Research(武汉植物学研究), 22,65-71. (in Chinese with English abstract) |
[33] | Tilman D (1982). Resource Competition and Community Structure. Princeton University Press, Princeton. |
[34] | Tsutsui ND, Suarez AV, Holway DA, Case TJ (2000). Reduced genetic variation and the success of an invasive species. Proceedings of the National Academy of Sciences of the United States, 97,5948-5953. |
[35] | Wang BR, Li WG, Wang JB (2005). Genetic diversity of Alternanthera philoxeroides in China . Aquatic Botany, 81,277-283. |
[36] | Wang ML (王满莲), Feng YL (冯玉龙) (2005). Effects of soil nitrogen levels on morphology, biomass allocation and photosynthesis in Ageratina adenophora and Chromoleana odorata. Acta Phytoecologica Sinica (植物生态学报), 29,697-705. (in Chinese with English abstract) |
[37] | Wang JF (王俊峰), Feng YL (冯玉龙) (2004). The effect of light intensity on biomass allocation, leaf morphology and relative growth rate of two invasive plants. Acta Phytoecologica Sinica(植物生态学报), 28,781-786. (in Chinese with English abstract) |
[38] |
Wedin D, Tilman D (1996). Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science, 274,1720-1723.
DOI URL PMID |
[39] | Williams DG, Mark RN, Black RA (1995). Ecophysiology of introduced Pennisetum setaceum on Hawaii: the role of phenotypic plasticity . Ecology, 76,1569-1580. |
[40] | Xu CY, Zhang WJ, Fu CZ, Lu BR (2003). Genetic diversity of alligator weed in China by RAPD analysis. Biodiversity and Conservation, 12,637-645. |
[41] | Ye WH, Li J, Cao HL, Ge XJ (2003). Genetic uniformity of Alternanthera philoxeroides in South China . Weed Research, 43,297-302. |
[1] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[2] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[3] | 秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望[J]. 植物生态学报, 2021, 45(6): 573-582. |
[4] | 王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展[J]. 植物生态学报, 2021, 45(10): 1064-1074. |
[5] | 许光耀, 李洪远, 莫训强, 孟伟庆. 中国归化植物组成特征及其时空分布格局分析[J]. 植物生态学报, 2019, 43(7): 601-610. |
[6] | 陈宝明, 韦慧杰, 陈伟彬, 朱政财, 原亚茹, 张永隆, 蓝志刚. 外来入侵植物对土壤氮转化主要过程及相关微生物的影响[J]. 植物生态学报, 2018, 42(11): 1071-1081. |
[7] | 蒋利玲, 曾从盛, 邵钧炯, 周旭辉. 闽江河口入侵种互花米草和本地种短叶茳芏的养分动态及植物化学计量内稳性特征[J]. 植物生态学报, 2017, 41(4): 450-460. |
[8] | 陈修文, 于丹, 刘春花. 秋季水位波动频率对喜旱莲子草、粉绿狐尾藻和水龙的影响[J]. 植物生态学报, 2016, 40(5): 493-501. |
[9] | 陈权, 马克明. 红树林生物入侵研究概况与趋势[J]. 植物生态学报, 2015, 39(3): 283-299. |
[10] | 班芷桦, 王琼. 喜旱莲子草和接骨草竞争对模拟增温的响应[J]. 植物生态学报, 2015, 39(1): 43-51. |
[11] | 胡楚琦, 刘金珂, 王天弘, 王文琳, 卢山, 周长芳. 三种盐胁迫对互花米草和芦苇光合作用的影响[J]. 植物生态学报, 2015, 39(1): 92-103. |
[12] | 杨中领, 苏芳龙, 苗原, 钟明星, 肖蕊. 施肥和放牧对青藏高原高寒草甸物种丰富度的影响[J]. 植物生态学报, 2014, 38(10): 1074-1081. |
[13] | 周晴, 潘晓云. 中国南部基塘区农业模式的变迁与凤眼蓝的入侵[J]. 植物生态学报, 2014, 38(10): 1093-1098. |
[14] | 王硕, 高贤明, 王瑾芳, 党伟光. 紫茎泽兰土壤种子库特征及其对幼苗的影响[J]. 植物生态学报, 2009, 33(2): 380-386. |
[15] | 申瑞玲, 关保华, 蔡颖, 安树青, 蒋金辉, 董蕾. 底泥高磷浓度提高了喜旱莲子草的入侵性[J]. 植物生态学报, 2007, 31(4): 665-672. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19